
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 2001

Secure and Flexible Global File Sharing Secure and Flexible Global File Sharing

Stefan Miltchev
University of Pennsylvania

Vassilis Prevelakis
University of Pennsylvania

Sotiris Ioannidis
University of Pennsylvania

Angelos D. Keromytis
University of Pennsylvania

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Stefan Miltchev, Vassilis Prevelakis, Sotiris Ioannidis, Angelos D. Keromytis, and Jonathan M. Smith,
"Secure and Flexible Global File Sharing", . January 2001.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-01-23.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/152
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/152
mailto:repository@pobox.upenn.edu

Secure and Flexible Global File Sharing Secure and Flexible Global File Sharing

Abstract Abstract
Sharing of files is a major application of computer networks, with examples ranging from LAN-based
network file systems to wide-area applications such as use of version control systems in distributed
software development. Identification, authentication and access control are much more challenging in
this complex large-scale distributed environment. In this paper, we introduce the Distributed Credential
Filesystem (DisCFS). Under DisCFS, credentials are used to identify both the files stored in the file system
and the users that are permitted to access them, as well as the circumstances under which such access
is allowed. As with traditional capabilities, users can delegate access rights (and thus share information)
simply by issuing new credentials. Credentials allow files to be accessed by remote users that are not
known a priori to the server. Our design achieves an elegant separation of policy and mechanism which is
mirrored in the implementation. Our prototype implementation of DisCFS runs under OpenBSD 2.8, using
a modified user-level NFS server. Our measurements suggest that flexible and secure file sharing can be
made scalable at a surprisingly low performance cost.

Keywords Keywords
filesystems, access control, trust management, keynote, openBSD, credentials

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-01-23.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/152

https://repository.upenn.edu/cis_reports/152

Secure and Flexible Global File Sharing *

Stefan Miltchev, Vassilis Prevelakis, Sotiris Ioannidis,
Angelos D. Keromytis, and Jonatham M. Smith

{miltchev,vassilip, sotiris ,angelos, jms}@dsl .cis .upenn. edu
CIS Department

University of Pennsylvania

Abstract that flexible and secure file sharing can be made
scalable at a surprisingly low performance cost.

Sharing of files is a major application of com- ~ ~ ~ ~ ~ ~ d ~ : Filesystems, access control,
puter networks, with examples ranging from n u s t Management, KeyNote, OpenBSD , cre-
LAN-based network file systems to wide-area ap- dentials.
plications such as use of version control systems
in distributed software development. Identifica-
tion, authentication and access control are much 1 IntrOduct ion
more challenging in this complex large-scale dis-
tributed environment. The widespread use of the Internet demonstrates

In this paper, we introduce the Distributed the importance of information sharing. This
Credential Filesystem (DisCFS). Under DisCFS, widespread use has also spurred a shift from its
credentials are used to identify both the files original use as an open network where informa-
stored in the file system and the users that are tion was freely available, towards one where var-
permitted to access them, as well as the circum- ious organizations and users wish to share in-
stances under which such access is allowed. AS formation under some (often restrictive) policy.
with traditional capabilities, users can delegate It has proven very difficult, in practice, to make
access rights (and thus share information) sim- even the simplest policies scalable and secure. In
ply by issuing new credentials. Credentials allow many respects, this is due to both the complex-
files to be accessed by remote users that are not ity of the distributed environment and the need
known a pm'ori to the server. Our design achieves to specify and enforce global policies on informa-
an elegant separation of policy and mechanism tion sharing.
which is mirrored in the implementation. In this paper we present a system that al-

Our prototype implementation of IlisCFS lows file sharing to be performed between users
runs under OpenBSD 2-83 using a ~~~odi f ied user- of different domains without the intervention of
level NFS server- Our rmasurements suggest the administrators of their systems. The system

 hi^ work was supported by DARPA under contrXt stores access permissions on special certificates
F39502-99-1-0512-MOD P0001. that are issued by users. For example, if Alice

wants to read Bob's paper, Bob only has to issue
the appropriate credential and send it to Alice
(e.g., via email).

We will show that this simple mechanism is
secure and scalable. Further, by requiring the
cooperation of only the users involved in the file
exchange, this mechanism offers great flexibil-
ity and low administrative overheads. Access to
the files may be monitored by the system and
the entity issuing the requests may be identified
through its public key. Mechanisms for restrict-
ing access or imposing access controls are also
provided.

We have integrated our access mechanism with
a user-level NFSv2 server running on many Unix
systems including OpenBSD 2.8 [2]. The perfor-
mance measurements collected by running com-
mon file related benchmarks indicate that our
approach is very efficient. We endeavor to even-
tually offer this access mechanism as part of the
standard NFS authentication framework.

Organization The paper is organized into six
further sections. The next section provides a
more complete motivation for our system. Sec-
tion 3 discusses related work. Sections 4 and 5
describe our design and implementation under
the OpenBSD operating system. Section 6 eval-
uates the system using both micro- and macre
benchmarks. Finally Section 7 concludes the pa-
per with a summary of our results and our future
plans.

2 Motivation

Existing systems have several major shortcom-
ings in when used to carry out information shar-
ing tasks:

First, traditional user authentication implies

that the user is known to the system, before file
requests can be processed. However, the com-
monly used information access model on the Web
is that browsers can download pages from Web
servers without prior registration (i.e., anony-
mously).

Second, file and directory permissions are in-
herited from multi-user computer operating sys-
tems. Sharing is achieved by either account shar-
ing (which is extremely ill-advised, as it defeats
accountability) or through the use of group ac-
cess permissions on files and directories. How-
ever, group permissions assume the intervention
of the system administrator for creating the user
accounts, and adding the appropriate users to
the correct groups. Such permissions lack flexi-
bility and granularity, and perhaps most impor-
tant, extensibility: there is no way of adding
new permissions if the existing ones prove in-
adequate.

The third and most important shortcoming
is the extensive administrative intervention re-
quired for file sharing to work, such as password
and group password files. Where users belong to
a common organization this is not a severe prob-
lem. Yet, if users from separate organizations
wish to share files, the administrative complex-
ity rapidly blooms into impossibility.

A typical example is as follows: Bob, a sales-
man, would like some clients to be able to have
access to advance information about a prod-
uct. Since the information is not intended to be
widely available, Bob will have to place the lit-
erature in a restricted part of the corporate Web
site and make arrangements so that only the des-
ignated clients have access to the material. The
traditional way of doing things implies that ac-
counts and passwords are created and handed
over to the users. A more sophisticated way of
achieving the same goal would be to use X.509 [7]

credentials for user authentication. While this
approach addresses some of the well-known se-
curity problems of password authentication, it
leaves much to be desired in terms of flexibility
and required administrative intervention.

For example, accounts must still be set up on
the server, placing additional burdens on the ad-
ministrators who now must maintain yet another
list of users. The other problem relates to the ac-
tual management of permissions that are given
to these credentials; Bob will have to go through
his client list and tell the administrators who can
access what, thus generating an access list that
matches credentials to permissions. While this
approach may work for small groups of clients,
it does not scale well.

To have effective sharing of information while
maintaining control over who has access requires
that a number of requirements must be met. For
convenience, we distinguish internal and exter-
nal users. Internal users are those who have ac-
counts on the system. These users can create
files and assign access permissions to them. Ex-
ternal users do not have accounts and are oth-
erwise unknown to the system. In our previous
example Bob would be an internal user, while his
clients would be external users. We assume that
the number of local users is minute compared to
the number of external users. With this defini-
tion in mind, the requirements are as follows:

Default policy. The administrator should be
able to specify the default access policies for
the entire system. Since these vary between
sites, the system should not make assump-
tions.

Scaling. The system should be able to cope
with large numbers of files and even larger
number of users accessing those files.

There should be no involvement of the ad-
ministrators in the process of allowing exter-
nal users access to files in the system. The
users themselves should be able to authorize
access to files by external users.

Apart horn the actual files, the system
should maintain as little additional state as
possible.

Delegation is extremely important for the
operation of the system, since there is al-
ready an implicit delegation of access au-
thority from the administrators to the local
users and from the local users to external
users.

The file access conditions must be flexible
and expandable. In any case there should
be no constrains by the system as to what
conditions may be imposed for access.

The access mechanism should work for both
centralized servers and in a distributed en-
vironment where the files are stored in mul-
tiple servers.

Before we continue with the description of the
Distributed Credential File System (DisCFS),
which was designed and implemented to meet
the listed requirements, we will discuss previous
work done in the area of wide area file sharing.

3 Related Work

Network file sharing is an area that has attracted
a lot of attention given the need for informa-
tion exchange. The explosion in the growth of
the Internet over the past several years, and the
projections that the growth will continue at a
similar pace, makes file sharing an even more

important issue. There are however a number of
problems in the proposed and already existing
sharing mechanisms.

3.1 File Systems

Network file systems, like NFS and AFS [16, 101
are the most popular and widespread mecha-
nisms for sharing files in tight administration do-
mains. However, crossing administrative bound-
aries creates numerous administrative problems
(e.g., merging distinct Kerberos [14] realms or
NIS domains).

Encrypting file systems like CFS [3] place
great emphasis on maintaining the privacy of the
user information by encrypting the file names
and their contents. The limitation of such sys-
tems is that sharing is particularly difficult to im-
plement; the file owner must somehow commu-
nicate the secret encryption key for the file to all
the users that wish to access it. Even then, tra-
ditional access controls must still be used to en-
force access restrictions (e.g., read-only, append-
only, immutable file, etc.). Our system assumes
that the server is trustworthy, so that the files
can be stored in clear text. CFS-like encryption
mechanisms may still be used on top of DisCFS.

The concept of credential-based access control
appears also in the Exokernel. [13]. In this sys-
tem, users can create new capabilities at will,
but the new capability must be dominated by
an existing one. This is similar to our chains
of certificates, but is rather limited by the fact
that permissions are hardwired into the system,
the hierarchical capability tree may be up to
8 levels deep, and the access-list based control
mechanism is inflexible. In our system, certifi-
cate chains can be of arbitrary length, and the
access policy can consider factors such as time-
of-day, so that, for example, leisure-related files

may not be available during office hours.
WebFS is part of the larger WebOS[17] project

at UC Berkeley. It implements a network file
system on top of the HTTP protocol. WebFS
relies on user level HTTP servers, used to trans-
fer data, along with a kernel module that im-
plements the file system. Access control lists
(ACLs) are associated with each file that enu-
merate users who have read, write, or exe-
cute permission on individual files. Users are
uniquely identified by their public keys. We have
taken a more general and scalable approach in
that there is no need for ACLs since each cre-
dential is sufficient to identify both the users and
their privileges.

The system that is most closely related to
our work is the secure file system, or SFS
[12]. SF'S introduces the notion of self-certifging
pathnamesfile names that effectively contain
the appropriate remote server's public key. In
this way SFS needs no separate key manage-
ment machinery to communicate securely with
file servers. Our DisCFS goes a step further. It
uses credentials to identify both the files stored
in the file system and the users that are per-
mitted to access them, as well as the circum-
stances under which such access is allowed. Fur-
thermore, users can delegate access rights simply
by issuing new credentials, providing a natural
and very scalable way of sharing information.

3.2 Other Protocols

To share files across wide area networks a num-
ber of protocols have been deployed, the most
commonly used ones being FTP and HTTP
[15, 81. Anonymous FTP, where there is no need
for authentication, offers total flexibility since
any user can download or upload files to FTP
servers. Similarly in the Web architecture, ac-

I Administrator 1
I

1 1st Certificate

I Bob 1

2nd Certificate

Figure 1: Delegation of privileges, from the
administrator to Bob, and then to Alice.

cess is either anonymous or subject to some sort
of ad-hoc authentication mechanism. This con-
figuration is useful only in the case where file
content is non-critical. In the case where authen-
tication is required, the flexibility is reduced to
an absolute minimum. The only users allowed to
access the server, in that case, are users that are
already known to the system. This, as is the case
with existing network file systems, limits the col-
laboration possibilities only between users in the
same administration domain.

4 DisCFS Design

4.1 System Architecture

The basic principle behind DisCFS is Trust Man-
agement [5, 6, 41. Trust Management dispenses
with unique names as an indirect means for per-
forming access control. Instead, it uses a direct
binding between a public key and a set of autho-
rizations. This results in an extremely decentral-
ized authorization system that is flexible enough

to cope with a large variety of authentication
scenarios.

Rather than having users authenticated by
the system and then checking access lists to see
whether their requests should be honored or not,
our system is based entirely on keys and autho-
rizations. User requests are signed by the user's
key and must be accompanied by other creden-
tials that form a chain of trust linking the user's
key to a key that is trusted by the system. In
our first example in Section 1, we looked at Bob's
predicament in trying to allow his clients access
to internal files. Utilizing a trust management
system, the server would trust only the adminis-
trator's key. Bob will be given a credential that
binds Bob's key with the files in question and is
signed by the administrator. The credential may
allow Bob read and write access to the files.

If Bob then wishes Alice to be able to only read
these files, he will simply need to create a new
credential which will grant Alice's key read ac-
cess to the files. Alice will issue a request signed
by her key. If Alice's request is to be honored by
the system, it has to be accompanied by Bob's
credential. This credential forms a link between
the external user (Alice) and the internal user
(Bob). Bob's own credential (issued by the ad-
ministrator) must also be available, to link the
internal user to the administrator. Thus, Alice's
request must be accompanied by both creden-
tials in order to be granted (see Figure 1). Cre-
dential caching may be used to reduce the num-
ber of credentials that have to be exchanged.

It is interesting to observe that in DisCFS the
traditional problem of credential (or certificate)
revocation is fairly straightforward to address:
since the credentials related to a specific file have
to be examined by the DisCFS server where the
file is stored, revocation (especially if it is infre-
quent) can be done by notifying the server about

IPsec - - 1 -- lPsec connection -
I !
1 -

I - j !
~p~ . ~

~~ ~ Connection I i , -=~ ~ Negotiation
L--p-

DisCFS Client DisCFS Server

DisCFS Client DisCFS Server

Figure 2: Client establishes IPsec connection
with DisCFS server. Figure 3: Client sends file-related credentials

to the DisCFS server; file becomes visible to
client.

bad keys or credentials. If the credentials are rel-
atively short-lived, the server need only remem-
ber such information for a short period of time.

In order to be able to express access rights
and the diverse conditions under which these are
granted, we need some form of policy definition store information about every Person or

language. In our system we use the Keynote that may need to retrieve a file. We also provide

trust management system [4] for this purpose. Our users with the ability to propagate access to
the files by simply passing on (delegating) their
rights to other users. In this way users pass cre-

4.2 KeyNote in DisCFS dentials rather than passwords, thus allowing the

The basic service provided by the KeyNote sys- system to associate access requests with keys and

tem is compliance checking; that is, checking also to be able to reconstruct the authorization

whether a proposed action conforms to policy. path from the administrator to the user making

Actions in KeyNote are specified as a set of the request. The system may not know that Al-

name-value pairs, called an action attribute set. ice is trying to get at a file, but it can log that key

Policies are written in the KeyNote assertion lan- A (Alice's key) was used and that key B (Bob's

guage and either accept or reject action attribute key) authorized the operation.

sets presented to it (non-binary results are also
possible). Policies can be broken up and dis- During the writing of this paper we encoun-
tributed as credentials, which are signed asser- tered one obvious application of our system. The
tions that can be sent over a network and to administrator of the host that we were using for
which a local policy can defer in making its de- editing the paper had failed to create a group for
cisions. The credential mechanism allows for ar- all of us. Since we could not find a group that we
bitrarily complex graphs of trust, in which cre- all belonged to, the only way for all of us to be
dentials signed by several entities are considered able to access the CVS repository with the files
when authorizing actions. was to make them world writable. If the central

The advantage of using Keynote is that we no server supported DisCFS then the owner of the
longer need to have a priori knowledge of the repository would simply need to issue read-write
user base. Thus, the system does not need to certificates to all the other authors.

4.3 DisCFS over NFS lPsec connection

As the actual network filesystem we use NFS.
This allows for easy integration into existing sys-
tems without need for extensive upgrades. More-
over, the entire scheme works with both mono-

DisCFS Client
u

DisCFS Server

lithic and distributed servers. Since the servers
do not need to share information about users,

Figure 4: Client sends read requests, server
there is no synchronization overhead. Each sends file blocks to client if policy allows the
repository is responsible for only the part of the

operation.
distributed filesystem that is stored locally and
there is no need to distribute and synchronize
authentication and access control databases (like
NIS). a A secure link between the client and the

The NFS protocol is particularly suitable for server is established so that subsequent
communications are secure. our needs for the following reasons:

a All requests coming over the IPsec link can
a NFS is widely used and supported by nu-

be safely assumed to come from the autho-
merous ~latforms. . -

rized user.

a The NFS protocol is portable, stable and
reliable.

a The NFS server is available as a user level
program, so development is possible with-
out modifications to the operating system
kernel. This is particularly useful since it
is not always possible to have access to the
operating system source.

Like NFS, the DisCFS system consists of a
client and a server. The client runs on the user

When a file is stored in DisCFS, a credential
is generated containing information that allows
the future retrieval of the file contents as well
as information about the file creator. Since the
entire DisCFS closely follows NFS semantics, it
appears to the user as another mounted file sys-
tem. Files for which credentials have been sup-
plied appear under the mount point of the Dis-
CFS file system. It is important to note that
without the credential, retrieval of the file is not
possible.

workstation and establishes a connection to the Once the user submits the necessary file ere-
DisCFS server. We use IPsec [l : L] for the connec- denti& (Figure 3, the file will appear under the
tion between the client and the server (a shown DisCFS mount point using the same name it had
in Figure 2) thus ensuring the following: when its credential was created. The client may

then use file 110 requests similar to NFS (Figure
a User authentication is handled through the 4). The system also permits the user to override

creation of the IPsec Security Associations the default file name and allows files to be placed
between the client and the server. in user-specified locations.

5 Implementation Details

We built our implementation of DisCFS by mod-
ifying the existing user-level daemon of the cryp
tographic file system CFS [3]. In the prototype,
we replaced the encryption functionality of CFS
with the access control mechanism described in
Section 4. For our platform, we used OpenBSD
2.8 [2] since it already contains several impor-
tant components of our system, such as IPsec
and KeyNote. However, the implementation is
fairly portable across different systems.

The main task in implementing DisCFS was
the integration of KeyNote credentials with NFS.
To that end, we used a modified version of the
CFS cattach utility that sets up an IPsec tun-
nel between the client system and the DisCFS
server and attaches the remote directory over
the IPsec connection. This allows the DisCFS
server retrieve the public key used for authen-
tication in the IKE [9] protocol (as part of the
IPsec key establishment phase) and associate it
with a unix-style userid. Future NFS requests
are protected with IPsec, allowing the DisCFS
server to associate them with the public key of
the user.

As a result of the attach operation, the de-
sired directory would appear under the default
DisCFS mount point (e.g., /discfs). However,
since the user has not provided a KeyNote cre-
dential assertion, the file permissions of the at-
tached directory are set to 000 (meaning no ac-
cess is granted). The file/directory ownership is
set to the userid provided during the attach op-
eration. This value has no local significance for
the DisCFS server, and thus no prior arrange-
ment with the system administrator is needed.
Similarly, no file ownership conflicts are possible;
the userid is irrelevant to the DisCFS server, and
is only manipulated in this way to make possible

the use of unmodified NFS clients.
To get any privileges to the attached directory

or any other files/directories in it, the user would
have to have a credential like the one shown in
Figure 5. This credential was issued by the ad-
ministrator (as identified by the public key ap-
pearing in the Authorizer field) to a specific user
(as identified by the public key appearing in the
Licensees field), and contains enough informa-
tion for the DisCFS server to determine what
permissions should be granted to the client sys-
tem. A fileldirectory is identified by a handle,
which, in our prototype implementation, is sim-
ply the inode number of the fileldirectory on the
server. This handle is used by the DisCFS server
to locate the actual file in its local file storage.
The handle specifics need to be changed in the
future since inodes are not suitable as globally
unique identifier across a network. A possible
solution would be to build a handle from the in-
ode number and a generation number, similar to
the 4.4 BSD NFS implementation.

The credential assertions in our implemen-
tation grant standard unix permissions. The
return values for the assertions form a partial
order of 8 combinations ("false", "X", "W",
"WX ," R" ," R X ," RW" and " RWX") and trans-
late directly into the standard octal representa-
tion. Thus, in the credential of Figure 5 the user
is granted read, write, and execute access on the
testdir directory. We wrote a utility which al-
lows a user to submit credential assertions to the
DisCFS daemon over RPC. Succesfully submit-
ted credential assertions are added to a persis-
tent KeyNote session. Following this operation,
the permissions of the attached directory are
changed accordingly. When read or write oper-
ations occur however, the KeyNote is consulted
again on whether the specific requests should be
granted; thus, the DisCFS server does not have

Authorizer: 1~dsa-hex:3081de0240503ca3b98b754259d8b3bdd6ed396O~~
Licensees: 1'dsa-hex:308lde02405be60a70c532le7fd20fd4dOd2a4f611
Conditions: (app-domain == LIDisCFS") &&

(HANDLE == "666240") -> "RWX" ;
Comment : "testdir"
signature: "sig-dsa-shal-hex:302e021500eebl5aflal0980017164911

Figure 5: KeyNote credential granting user miltchev access to directory testdir. The keys and
signatures have been truncated in the interest of readability.

to trust the client to enforce the file permissions.
To improve performance, we use a cache of re-
quested operations and policy results.

It should also be noted that some of the proce-
dures defined by the NFS protocol do not make
semantic sense for our implementation. For ex-
ample, since access control is managed through
credential assertions the setattr procedure be-
comes superfluous. The careful reader will also
notice that there is a problem with the cre-
ate and mkdir procedures. A user could cre-
ate a file in the attached directory since he has
read, write, and execute access. However, he
would not be able to access the newly created
file since he would not have a credential as-
sertion for it. Thus, we had to add our own
procedures that upon successfull creation of a
file/directory return a credential with full access
to the creator of the file. The owner can then
issue other credentials further delegating access
to this fileldirectory.

6 Experiment a1 Evaluation

While the architectural discussion is largely
qualitative, some estimates of the system per-
formance are useful. With a design such as this,
the most useful data would be system bench-

Alice
450MHz lntel PI11

Server 128MB SDRAM

Quantum Fireball CTlO

100Mbps Ethernet I
Client

Bob

4OOMHz lntel PI1

256MB SDRAM

Figure 6: Experimental setup. Alice is the ma-
chine that hosts the server and Bob is used as
the client. Local file system experiments were
performed on Alice.

marks for applications in distributed environ-
ments. We performed several experiments, both
micro-benchmarks and macro-benchmarks, to
get a quantitative evaluation. The experiments
are focused on any possible performance over-
heads introduced by our access control mecha-
nism.

Our test machines are x86 architecture ma-
chines running 0 penBSD 2.8 and interconnected
by 100 Mbps Ethernet. More specifically, in the

two-host tests (source to sink) that explore the
network performance of our system, Alice is an
450 MHz Intel PI11 with 128MB of memory and
a Quantum Fireball CTlO 9.6GB, and serves as
the sink. Bob, the source, is a 400 MHz Intel
PI1 with 256MB of memory (see Figure 6). The
single host tests, that explore the storage perfor-
mance of our system were performed on Alice.
Our prototype system is running on Alice, with
Bob playing the role of the client.

In the following tables, FFS means measure-
ments taken on the local file system. CFS-NE is
our base case: it is basically CFS with encryption
turned off and modified to run remotely. The
server was running on Alice and the client on
Bob. Finally DbCFS is our prototype.

The Bonnie benchmark [I] was used in order
to evaluate the performance when writing and
reading a very large file (100MB). Figures 7, 8,
and 9 present results for single-character writes,
block writes and re-writes respectively. The re-
sults for single character reads and block reads
are presented in Figures 10 and 11. The perfor-
mance advantage of the local file system (FFS)
comes as no surprise. However, this benchmark
demonstrates that the read and write perfor-
mance of CFS- NE and Dis CFS is virtually iden-
tical. Hence, we can conclude that the over-
head incurred by the KeyNote credential lookups
when using cached policy results is minimal.

To test file system search performance we used
a simple script that goes through every .c and
.h file of the OpenBSD kernel source code and

Filesystem: FFS CFS-NE DisCFS

Figure 7: Bonnie Sequential Output (Char)

Throughput (100 K/sec)

Filesystem: 0 FFS C F S N E a DisCFS

Figure 8: Bonnie Sequential Output (Block)

counts the number of lines, words and bytes.
The test was conducted with a cache size of 128
policy results. The results are presented in Fig-
ure 12. As with the micro-benchmarks, CFS-NE
and DisCFS exhibit practically identical perfor-
mance characteristics.

7 Conclusions

There are three major contributions of this pa-
per.

First, we have introduced the idea of a com-
pletely credential-based mechanism for authen-
tication and access control of files. We argue
that this design is a fundament a1 improvement,

Filesystem: FFS CFS-NE @ DisCFS

Figure 9: Bonnie Sequential Output (Rewrite)

as it completely separates the policy for control-
ling the file (i.e., its associated users and access
rights) from the access control mechanism used
by the underlying file storage. As we have ar-
gued in the paper, this gives DisCFS advantages
in flexibility, security and scalability relative to
previous designs.

Second, we have described our DisCFS proto-
type, which is based on OpenBSD 2.8 and CFS
[3]. The implementation uses the KeyNote trust
management system as the basis for robust scal-
able credential management. It supports com-
mon unix file operations. The prototype shows
that it is remarkably easy to both implement
and deploy DisCFS, as it uses components such
as NFS and IPsec, which already exist in most
common operating systems. Furthermore, the
traditional semantics of the unix filesystem can
easily be supported by DisCFS.

Filesystem: FFS CFS-NE DisCFS

Figure 10: Bonnie Sequential Input (Char)

Filesystem: 0 FFS CFS-NE DisCFS

Figure 11: Bonnie Sequential Input (Block)

Third, we evaluated the system's performance
with a set of micro-benchmarks which measured
primitive operations in the context of our access
control mechanism. This demonstrated that Dis-
CFS was constrained by the same factors, such
as remote RPC times, which plague other dis-
tributed systems. In a second evaluation, we
compared the performance of DisCFS to CFS, a
more "macro" benchmark, and showed that the
performance impact of DisCFS 's enhancements
is low.

Among the directions we will pursue for fu-
ture work are investigation of new file sharing
policies for unusual scenarios, such as the un-

Time sec

180 l - 7 . vacy, pages 164-173. IEEE Computer Soci-
ety Press, Los Alamitos, 1996.

[6] M. Blaze, J. Feigenbaum, and M. Strauss.
Compliance Checking in the PolicyMaker
Trust-Management System. In Proc. of the
Financial Cryptography '98, Lecture Notes
in Computer Science, vol. 1465, pages 254-
274. Springer, Berlin, 1998.

[7] CCITT. X. 509: The Directory Authentica-
Filesystem: C] F F S CFS-NE DisCFS tion Framework. International Telecommu-

nications Union, Geneva, 1989.
Figure 12: Filesystem Search

- [8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
and T. Berners-Lee. Hypertext Transfer

trusted users characteristic of the WWW, and Protocol - HTTPI1.1, 1997.
attempting to rigorously quantify the scalability
advantages offered by DisCFS. [9] D. Harkins and D. Carrel. The Internet Key

Exchange (IKE) . Request for Comments
(Proposed Standard) 2409, Internet Engi-

References neering Task Force, November 1998.

[I] Bonnie Filesystem Performance Bench-
mark. http://www.textuality.com/bonnie/.

[2] The OpenBSD Operating System.
http://www.openbsd.org/.

[3] M. Blaze. A Cryptographic File System
for Unix. In Proc. of the 1st ACM Con-
ference on Computer and Communiclations
Security, November 1993.

[4] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. D. Keromytis. The KeyNote Trust Man-
agement System Version 2. Internet RFC
2704, September 1999.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. De-
centralized Trust Management. In Proc. of
the 17th Symposium on Security and Pri-

[lo] John H. Howard, Michael L. Kazar,
Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, ftobert N. Sidebotham,
and Michael J. West. Scale and performance
in a distributed file system. ACM Trans-
actions on Computer Systems, 6(1):51-81,
February 1988.

[ll] S. Kent and R. Atkinson. Security Archi-
tecture for the Internet Protocol. Request
for Comments (Proposed Standard) 2401,
Internet Engineering Task Force, November
1998.

[12] David Mazieres, Michael Kaminsky,
M. Frans Kaashoek, and Emmett Witchel.
Separating key management from file sys-
tem security. In Symposium on Operating
Systems Principles, pages 124-139, 1999.

[13] David Mazieres and M. Frans Kasshoek. Se-
cure Applications Need Flexible Operating
Systems. In The 6th Workshop on Hot Top-
ics in Operating Systems, May 1997.

[14] S. P. Miller, B. C. Neuman, J. I. Schiller,
and J. H. Saltzer. Kerberos Authentica-
tion and Authorization System. Technical
report, MIT, December 1987.

[15] J.B. Postel and J. Reynolds. File Transfer
Protocol, 1985.

[16] Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon. De-
sign and implementation of the sun net-
work file system. In Proceedings of the 1985
Summer Usenix Conference, Portland, OR,
June 1985.

[17] Amin Vahdat. Operating System Services
for Wide-Area Applications. PhD thesis,
University of California, Berkeley, Decem-
ber 1998.

	Secure and Flexible Global File Sharing
	Recommended Citation

	Secure and Flexible Global File Sharing
	Abstract
	Keywords
	Comments

	tmp.1182354279.pdf.9ZkIF

