
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

10-1-1991

Parallel Algorithms for Depth-First Search Parallel Algorithms for Depth-First Search

Jon Freeman
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Jon Freeman, "Parallel Algorithms for Depth-First Search", . October 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-71.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/428
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=repository.upenn.edu%2Fcis_reports%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/428
mailto:repository@pobox.upenn.edu

Parallel Algorithms for Depth-First Search Parallel Algorithms for Depth-First Search

Abstract Abstract
In this paper we examine parallel algorithms for performing a depth-first search (DFS) of a directed or
undirected graph in sub-linear time. this subject is interesting in part because DFS seemed at first to be
an inherently sequential process, and for a long time many researchers believed that no such algorithms
existed. We survey three seminal papers on the subject. The first one proves that a special case of DFS is
(in all likelihood) inherently sequential; the second shows that DFS for planar undirected graphs is in NC;
and the third shows that DFS for general undirected graphs is in RNC. We also discuss randomnized
algorithms, P-completeness and matching, three topics that are essential for understanding and
appreciating the results in these papers.

Disciplines Disciplines
Theory and Algorithms

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-71.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/428

https://repository.upenn.edu/cis_reports/428

Parallel Algorithms For Depth-First Search

MS-CIS-91-71

Jon Freeman

Department of Computer and Informat ion Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

October 1991

Parallel Algorithms for Depth-First Search

J o n Freeman
Department of Computer a n d Information Science

University of Pennsylvania
Philadelphia, PA 19 104

October 1991

Abstract

In this paper we examine parallel algorithms for performing a depth-first search (DFS) of a
directed or undirected graph in sub-linear time. This subject is interesting in part because DFS
seemed at first to be an inherently sequential process, and for a long time many researchers
believed that no such algorithms existed. We survey three seminal papers on the subject. The
first one proves that a special case of DFS is (in all likelihood) inherently sequential; the second
shows that DFS for planar undirected graphs is in NC; and the third shows that DFS for
general undirected graphs is in RNC. We also discuss randomized algorithms, P-completeness
and matching, three topics that are essential for understanding and appreciating the results in
these papers.

1 Introduction

In this paper we examine parallel algorithms for performing a depth-first search (DFS) of a directed

or undirected graph in sublinear time. This subject is interesting in part because DFS seemed a t

first to be an inherently sequential process, and for a long time many researchers believed that no

such algorithms existed. We survey three seminal papers on the subject. The first one proves that

a special case of DFS is (in all likelihood) inherently sequential; the second shows that DFS for

planar undirected graphs is in NC; and the third shows that DFS for general undirected graphs is

in RNC. We also discuss randomized algorithms, P-completeness and matching, three topics that

are essential for understanding and appreciating the results in these papers.

We begin by defining DFS, mentioning some important applications of DFS, and indicating

where sub-linear DFS algorithms would be useful.

1.1 Definition of DFS

We begin with some standard graph-theoretic definitions. A graph G is a set of vertices V and a

set of edges E, written G = (V, E). We let IVI = n and IE(= m. A directed edge of G is an element

of V x V; an undirected edge of G is a subset of V of cardinality two. G is directed (undirected) if

E consists entirely of directed (undirected) edges. The indegree of a vertex T in a directed graph

G is the number of edges of the form (v,E); the outdegree of a vertex T is the number of edges of

the form (77, w). A directed (rooted) tree T is a directed graph in which every node except one has

indegree 1; the remaining node has indegree 0 and is called the root of T. A graph G' = (V', El)

is a subgmph of a graph G = (V, E) if V' C V and E' E. A directed tree T is a spanning tree

of a graph G if T is a subgraph of G and T contains all the vertices of G. A spanning tree T is a

depth-first search tree of G iff, for all non-tree edges {v, w} (or (v, w) if G is directed), v and w lie

on the same branch of T [3, 541.

The depth-first search problem is: given a graph G and a vertex T in G, construct a depth-first

search tree T of G rooted at T . T is called a search tree because the standard way to construct

it is to search G in a depth-first manner, as follows. We begin our search at r ; T is initially

empty, and all the vertices of G are marked unvisited. We mark the current vertex v as visited and

sequentially examine all unexplored edges leaving v (in any order we wish). If there is an unvisited

vertex w adjacent to v, we make w the current vertex and repeat. If there is no such vertex, we

backtrack to the last vertex we visited that has at least one such vertex and repeat. We halt when

we have explored every edge (and visited every vertex) in G. This algorithm has a simple recursive

description [5] :

procedure DFS(v)
begin

mark v as visited;
while there is an unmarked vertex w adjacent to v do

add (v, w) to T;
DFS(w)

end { while)
end { DFS)

The running time of DFS is easy to analyze; it is just O(n + m), since we visit every vertex

and explore every edge exactly once. Given what we are trying to accomplish, then, this algorithm

is optimal to within a constant factor. For this reason, we will frequently equivocate between the

terms "parallel DFS algorithms" and "sub-linear DFS algorithms" , as only parallel DFS algorithms

can run in sub-linear time.

It should be clear that the decision we make at each vertex (i.e., which edge to explore next) has

a drastic effect on the decisions we make afterwards. This is why so many people conjectured that

DFS was inherently sequential when the question first arose. The reason why they were mistaken is

that, loosely speaking, their understanding of DFS as a search problem was not declarative enough.

1.2 Applications of DFS

Here are some of the first significant applications of DFS, in chronological order:

Tarjan used it to find the strongly connected components of a directed graph, and the bicon-

nected components of an undirected graph, both in linear time [54].

Hopcroft and Karp used it to improve the best-known algorithm for bipartite matching (which

we will define below) from O(nm) to 0(n1I2m) 1311.

Tarjan used it to find dominators in a directed graph in time O(n1og n + m) [55].

Hopcroft and Tarjan used it to test the planarity of a graph in linear time 1291.

Even and Tarjan used it to test vertex connectivity in time 0(n1I2m2) and edge connectivity

in time 0(n5I3m) [18].

DFS is such a fundamental operation on graphs that it would be extremely difficult, if not

impossible, to list all of the uses researchers have found for it.

1.3 Usefulness of Parallel DFS Algorithms

Speeding up any algorithm is always significant in its own right, but there may be certain circum-

stances in which we would not benefit greatly from doing so. With that in mind, we note that in

order for us to benefit from sub-linear DFS algorithms, constructing the graph itself should not be

more time-consuming than the time required to perform the search. This will be the case when the

graph is constructed in parallel, for example, or when we need to search a given graph many times

starting at different vertices.

The next three sections discuss parallel algorithms, randomized algorithms, and parallel ran-

domized algorithms, respectively.

2 Parallel Algorithms

In this section, we explain the basic idea behind parallel algorithms, describe four popular models

of parallel computation, and define the class NC.

2.1 The Basic Idea

The basic idea behind parallel algorithms is obvious: If we have more than one processor at our

disposal, we can solve a problem more quickly by dividing it into independent sub-problems and

solving them at the same time, one on each processor. The running time of the algorithm is then

the longest running time of any of these processors; more specifically, given input n, the running

time T(n) on input n is the elapsed time from when the first processor begins executing to when

the last processor stops executing.

We say that a parallel algorithm for a given problem is optimal if its processor bound P(n)

and its time bound T(n) are such that P(n)T(n) = O(S), where S is the running time of the best

known sequential algorithm for the problem. Thus parallel algorithms should meet at least two

criteria: T(n) should be as small as possible, and they should be optimal.

2.2 Models of Parallel Computation

There are four popular models of parallel computation: shared memory models, boolean circuits,

fixed connection networks, and parallel comparison trees [48]. The next four subsections describe

each of these models in turn.

2.2.1 Shared Memory Models

A shared memory model consists of a set of synchronous processors and a shared global memory

through which they communicate [19]. The processors are random access machines (RAM'S),

therefore memory accesses and operations on integers take constant time, but integers cannot be

unreasonably large [13]. There are three conventions regarding whether to permit simultaneous

reads or writes to the same memory location: EREW (exclusive read, exclusive write), CREW

(concurrent read, exclusive write), and CRCW (concurrent read, concurrent write). If and when

read or write conflicts do occur, some sort of priority scheme is used to resolve them. These

three variations are not equally powerful, but researchers nevertheless consider all of them to be

"reasonable".

2.2.2 Boolean Circuits

A Boolean circuit a with n inputs is a finite directed acyclic graph with nodes labeled as follows

[14]. There are n input nodes and one output node. The input nodes are labeled with variables

and their negations; all other nodes are labelled with a Boolean operation such as V or A. There is

at least one path from every input node to the output node. The fan-in of a is the largest indegree

of any node, the size of a is the number of gates it contains, and the depth of a is the length of

the longest path from an input node to the output node. Let C be a finite alphabet and consider

a language L & En. We say that a Boolean circuit C accepts L if for all w E En, C outputs 1 on

w u w E L . The circuit size complexity of L is the size of the smallest circuit that accepts L.

Now consider a language L* C*. The circuit size complexity of L* is a function f such that

f (n) is the circuit size complexity of Ln = L* n En. In order to recognize languages in C*, then,

we need families of Boolean circuits < a , > in which each circuit in the family accepts strings of

a particular length.

We can easily extend this model by allowing these circuits to have multiple outputs. The

resulting Boolean circuits can compute arbitrary functions from (0, l), to (0, lIm. The definitions

of size and depth remain the same.

We are usually only interested in uniform circuit families, i.e., families < a , > such that, given

n, we can easily construct the specific circuit a,. (See Cook for an justification [14].) Researchers

have proposed several different uniformity conditions in the past [14], but the one in widest use today

is log-space uniformity. A circuit family < a, > satisfies this condition if, given n, a deterministic

Turing machine can generate a description of a, in space O(1og n).

Boolean circuit families are due to Borodin [8]. They are appealing for several reasons. For

one thing, they are realistic in the sense that ultimately all computers consist of Boolean circuits.

Also, the theory of Boolean circuit complexity is interesting in its own right and has a long history

[13, 141.

2.2.3 Fixed Connection Networks

A fixed connection network is a directed graph in which the vertices correspond to processors

and the edges correspond to connections between pairs of processors. The degree of each node is

typically either a constant or a slowly increasing function of the number of vertices [48].

2.2.4 Parallel Comparison Trees

A parallel comparison tree is an ordinary comparison tree in which we can make several comparisons

simultaneously at each node. This model is due to Valiant [57], and is significantly more powerful

than the other three.

2.3 The Class NC

Let N C ~ be the set of all functions computable by a uniform Boolean circuit family < a, > with

size no(') and depth 0(log0(') n), and let NC = Uk N C ~ . Informally, NCis the class of all problems

we can solve quickly with a reasonable number of processors.

NC stands for "Nick's Class", after Nicholas Pippenger, who first identified i t and suggested

that it contains precisely the problems we think of as having "good" parallel algorithms [45]. NC

remains the same across a wide variety of machine models, although the subclasses NCI" may vary

[14]. I t is easy to see that NC P, but whether NC = P i s a famous open problem (see Section 6

below).

3 Randomized Algorithms

In this section, we explain the basic idea behind randomized algorithms, describe some models of

randomized computation, and explain why randomization is a good idea.

3.1 The Basic Idea

There are many algorithms, such as Quicksort, that work well assuming that the inputs to the

algorithm have a certain probability distribution, i.e., that they are sufficiently random. Unfortu-

nately, the validity of this assumption is often highly questionable [47]. Randomized algorithms,

introduced independently by Rabin [47] and Solovay and Strassen [53], take this idea one step

further by introducing randomization into the algorithm itself. Simply put, a randomized algo-

rithm is one in which some of the decisions depend on the outcomes of coin flips. We can think

of a randomized algorithm as a family of deterministic algorithms, each of which corresponds to a

particular sequence of coin flips. The goal is to construct algorithms of this sort such that, for any

input whatsoever, a large fraction of the possible deterministic algorithms will output the correct

answer quickly, and hence the overall algorithm will output the correct answer quickly with high

probability.

Let us formalize this idea by defining a complexity measure for randomized algorithms. We say

that a resource bound is O(f(n)) if there exists a c E R such that the amount of the resource used

(on any input of size n) is no greater than ca f (n) with probability 2 1 - n-a.

3.2 Types of Randomized Algorithms

There are two main kinds of randomized algorithms [48]. Some of them will always terminate

within a certain amount of time but will output the correct answer with a certain probability;

these are called Monte Carlo algorithms. The others will always output the correct answer, but

their running time is a random variable whose average value is known; these are called Las Vqas

algorithms.

The error of a randomized algorithm can also be of two different kinds [48]. Consider randomized

algorithms whose output is either yes or no (e.g., for deciding membership in a language). An

algorithm of this sort is said to have 1-sided error if it is always correct when it answers yes, but

is correct with high probability when it answers no. If it is correct with high probability in either

case, it is said to have 2-sided error.

3.3 The Class RP

We define the class R P to be the set of all problems that have randomized polynomial-time algo-

rithms. It is clear that P C RP; whether P = RP is another famous open problem. It is tempting

to try to answer this question purely on philosophical grounds-by asserting that coin flips are

ultimately of no use when we are seeking a definite yes or no, for example, or by claiming that

nature is not truly random [14]. It is also worth noting that if P # RP, then randomized algorithms

cannot work too well on typical computers (even though they seem to), because typical computers

use pseudo-random numbers, which are generated deterministically [14].

3.4 Models of Randomized Computation

We can easily define models of randomized computation by simply extending the standard models.

For the RAM model, for example, we simply create a slightly different RAM that has the ability

to flip an n-sided coin in constant time on inputs of length n. A randomized machine model is said

to compute a function f if it outputs the correct value of f with probability > 112.

3.5 The Advantages of Randomized Algorithms

The first and most obvious advantage of randomized algorithms is that we no longer have to

assume anything about the distribution of the inputs in order to prove that they run quickly. A

second advantage is that they need not be any less accurate than deterministic algorithms. This is

because there is always a non-zero probability that the hardware itself might fail, and if we want

to, we can always ensure that the probability of our algorithm returning a wrong answer is less

than this value [2]! Third, randomized algorithms are usually simpler and easier to understand

than deterministic algorithms for the same problem with similar running times. And fourth, there

are many problems for which the best-known randomized algorithm is faster than the best-known

deterministic algorithm (including DFS, as we will see). In fact, there are at least two problems

(primality testing1 and exact matching [42]) that are in the class RNC (defined below) but are not

known to be in P.

4 Parallel Randomized Algorithms

This section is structurally identical to Section 2, in which we discussed deterministic parallel

algorithms.

4.1 The Basic Idea

Because parallelism and randomization are completely different approaches, we can combine them,

thereby obtaining the advantages of both. Reif was apparently the first to propose this idea and

demonstrate its effectiveness on a variety of algebraic and graph-theoretic problems [51].

The definition of optimality is similar to that of deterministic parallel algorithms: a parallel

randomized algorithm with processor bound P(n) and time bound T(n) is optimal if P(n)T(n) =

o(s), where S is the running time of the best known sequential algorithm for the same problem.

4.2 Models of Computation

If we can randomize models of sequential computation, we can easily randomize models of parallel

computation too. In the PRAM model, for instance, we simply replace each RAM with a random-

ized RAM (described above). Similarly, a randomized Boolean circuit is just a Boolean circuit in

which each node can also do coin flips. As before, a parallel randomized machine model is said to

compute a function f if it outputs the correct value of f with probability > 1/2.

Miller has shown that primality testing is in P assuming that the extended Riemann Hypothesis holds [41]; the
best known deterministic algorithm that does not make this assumption takes time [l].

4.3 The Class RNC

We define the class RNC in much the same way as the class NC. Let R N C ~ be the set of all

functions computable by a uniform family of randomized Boolean circuits < a, > with size no(')

and depth O(logo(l) n), and let RNC= Uk R N C ~ . The intuition is also similar: RNCis the set of

all problems that have fast parallel randomized algorithms. As with NC, RNC remains the same

across a wide range of machine models.

With these definitions in hand, we can now turn our attention to the main subject of this paper.

In the next section, we present a history of parallel DFS algorithms and show where our three main

papers fit in this history. After that, we will discuss these three papers in chronological order,

introducing additional topics as necessary.

5 History of Parallel DFS Algorithms

As we stated in the introduction, the history of parallel DFS algorithms is interesting because for

a long time, many researchers believed that no such algorithms existed. Wyllie was the first to

suggest that it might be possible to parallelize DFS [58]. After he made this conjecture, several

researchers examined the problem and concluded that there was no way to do so 115, 49, 501.

Starting in 1983, however, breakthroughs in this area began to occur. We list those breakthroughs

below in chronological order, from 1983 to the present.

Ghosh and Bhattacharjee gave an 0(log2 n) algorithm for DFS in directed acyclic graphs,

thereby becoming the first to give a sub-linear time algorithm for any special case of DFS

[23]. Their algorithm has an error which is corrected by Zhang [59].

r Reif proved that the lexicographic version of DFS (defined below) is P-complete, thereby

providing strong evidence for the claim that general DFS is inherently sequential [50].

Smith showed that DFS for planar undirected graphs is in NC; his algorithm takes time

0 (log3 n) [52].

r Anderson gave the first sub-linear time algorithm for DFS in general undirected graphs. His

algorithm is randomized and takes time 0(1/5ElogC n) for some small constant c [7].

r Anderson improved the running time of his previous algorithm somewhat, to 0(2~+) [6].

a Aggarwal and Anderson gave the first R N C algorithm for DFS in general undirected graphs.

The running time of their algorithm is O (~ , , (n) l o ~ ~ n), where Tmm(n) is the time needed

to find a minimum weight perfect matching on an n vertex graph with maximum edge weight

n [3]. Currently Tmm = 6(log2 n) [42], for a bound of 6(log5 n).

a Kao gave the first N C algorithm for DFS in planar directed graphs [35].

a Goldberg et. al. gave the first sub-linear time deterministic algorithm for undirected graphs;

their algorithm takes time 0 (& log5 n) [25].

a Aggarwal et. al. gave the first RNCalgorithm for DFS in general directed graphs. The running

time of their algorithm is O(log5 n(T,,(n) + log2 n)), where Tmm is as defined above; letting

Tmm = 0(log2 n), this simplifies to 0(log7 n). They also built on the results in Goldberg

et. al.'s paper to give the first sub-linear deterministic DFS algorithm for general directed

graphs, which takes time O(,/Zlogll n) [4].

a Hagerup showed how to perform DFS in planar undirected graphs in time O(1ogn). Other

researchers had previously improved the time (and processor) bounds of Smith's algorithm

somewhat; see Hagerup's paper for details [28].

In the remainder of this paper, we discuss three of the above results in depth: Reif's proof

that lexicographic DFS is (in all likelihood) difficult to parallelize, Smith's N C algorithm for planar

graphs, and Aggarwal and Anderson's RNC algorithm for general undirected graphs. We begin

with Reif's result, but first we touch on two topics that are crucial to understanding it-namely,

P-completeness and the parallel computation thesis.

6 P-Completeness and the Parallel Computation Thesis

Let us consider non-trivial ways to formally reduce problems in the class P to one another. Obvi-

ously, we cannot use polynomial-time reduction, as we do for the class NP; we use a space reduction

instead.

Let L and L' be languages over a finite alphabet C. We say that L' is log-space reducible to

L (written LSlogL') if there exists a function f such that f is con~putable on a log-space Turing

machine and, for each w E C*, w E L' if and only if f (w) E L. L is P-complete if L E P and, for

each L' E P , L<l,gL'. As with polynomial-time reducibility, we know that log-space reducibility

is transitive [30]. Therefore, to show that a problem L E P is P-complete, it suffices to show that

some P-complete problem L' is log-space reducible to L.

Many problems are known to be P-complete. Cook gave the first P-completeness proof (for

path systems), although he did not state it as such [12]. Jones and Lasser showed that seven

important problems (such as the emptiness problem for CFG's) were P-complete, thereby doing

for P-completeness what Karp did for NP-completeness [33]. Goldschlager et. al. showed that the

maximum flow problem is P-complete [26].

We have not yet said anything about the significance of P-complete problems. On a superficial

level, all we can conclude about these problems is that, if we could solve one of them in log-space,

we could solve every problem in P in log-space. It turns out, however, that the P-complete problems

are precisely the problems in P that are (in all likelihood) not in NC, i.e., the ones that are hard

to parallelize. Stated another way, if any P-complete problem is in NC, then P = NC. This result

follows from an important conjecture of theoretical computer science called the parallel computation

thesis, which states that time-bounded parallel machines and space-bounded sequential machines

are polynomially related; i.e., for any function T(n),

U PARALLEL-TIME(T~(~)) = U S P A C E (T ~ (~)) .
k k

If we let T(n) = clog n in this equation (for some constant c), the result follows easily.

Pratt and Stockmeyer were the first to prove that this thesis held for their model of parallel

computation, although they did not state it as such [46]. Chandra and Stockmeyer were the first

to state it explicitly [lo]. Goldschlager provided strong evidence for its validity [27]. Pratt and

Stockmeyer were not the only ones to prove that the thesis held for their model; see, for example,

Goldschlager [27] and Fortune and Wyllie [19].

There are many obvious similarities between the P-complete problems and the NP-complete

problems, which we will not bother to list here. One important diflerence between the two classes

is that NP-complete problems have received far more attention than their counterparts in the

class P. We believe, however, that the increasing importance of parallel algorithms will rectify this

imbalance in the near future.

7 Reif's P-Completeness Proof

Reif studied a special case of DFS known as lexicographic DFS, and proved that it is P-complete.

In lexicographic DFS, for each vertex v in G, the order in which we explore v's outgoing edges is

fixed. (If we use adjacency lists to represent G, [54], we say that G's adjacency lists are fixed.) We

present the proof below.

As with all problems, we must convert DFS into a decision problem in order to analyze its

complexity. Let (U)DFS-ORDER be the following problem: Given a directed (undirected) graph

G, a starting vertex s, and two vertices u and v, and assuming that the order in which we visit each

vertex's outgoing edges is fixed, do we visit u before v in a depth-first search of G starting from s?

Let us also define the circuit value problem 1501. A Boolean circuit B (not to be confused

with the Boolean circuits of Section 2.2.2) is a sequence (Bo, Bl , . . . , B,) such that each Bi is

either true, fabe, or an expression op(B;, , B;,), where il, i2 < i and op is a binary Boolean op-

eration. We recursively define value(true) = true, value(false) = false, and value(op(B;, , B;,)) =

op(value(B;,), vaZue(B;,)). Finally, we define value(B) to be vaZue(B,). The circuit value problem

is as follows: Given a Boolean circuit B , is vaZue(B) = true?

Ladner proved that the circuit value problem is P-complete 1381. We also have the following

proposition 1501:

Proposition 1: The circuit value problem remains P-complete under the restrictions that Bo =

true and the only Boolean operation in B is NOR, i.e., all non-trivial B;'s have the form B; =

l(B;, V B;,) where i l , i2 < i.

Proof: This follows easily from the fact that { NOR) is a functionally complete set.

Reif proved that DFS-ORDER is P-complete by reducing this special case of the circuit value

problem to it. Then he reduced DFS-ORDER to UDFS-ORDER to show that UDFS-ORDER is

P-complete. We present these two reductions below.

Theorem 1: DFS-ORDER is P-complete.

Proof: For each Boolean operation B; = T(B;, VB;,) in B , where Bi occurs in subsequent operations

Bjl , Bj, , . . . , Bjk , we construct the "digraph gadget" G; in Figure 1. For each vertex v in G;, the

numbers on the edges leaving v indicate the order in which they appear in v's adjacency list. The

G;'s are linked together; for example, the node Exit(i - I) is a part of gadget GiP1 and the node

In(jk, i) is a part of gadget Gjk.

Suppose that we are performing a depth-first search of G; starting at Exit(i - I), and we have

not previously visited either node In(i, il) or node In(i, iz). Then the DFS tree edges for Gi will

1

Figure 1: The digraph gadget G; for Boolean operation Bi = 7(B;, V B;,) in B , where B; occurs

in subsequent operations Bjl, Bj2,. . . , Bj,.

look as they do in Figure 2. Conversely, suppose that we have previously visited either In(i, il) or

In(i, i2) or both; then the DFS tree edges for G; will look as they do in Figure 3.

Let G be the graph consisting of the union of all the G;'s, and let Exit(0) be the root of G. We

have the following lemma.

Lemma 1: In a depth-first search of G, we visit S(n) before T(n) iff value(B) = true.

Proof: We prove by induction that, for all i, 1 5 i 5 n, value(Ba) = true iff the DFS tree edges in

G; are as shown in Figure 2, and value(B;) = false iff they are as shown in Figure 3.

+: The base case is trivial. Fix an i and assume that B; = T(B;, V B;,) (where i l , i2 < i) and

the condition holds for all i' < i. If value(B;) = twe, then vakue(B;,) = value(B;,) = false. By the

inductive hypothesis, the DFS trees for G;, and Gi2 are as shown in Figure 3, which means that

we have not already visited either In(i, i l) or In(i, iz), so the DFS tree for G; must be as shown in

Figure 2. Conversely, suppose that vaIue(B;) = false. Then either value(B;,) = true or value(B;,)

= true, so by the inductive hypothesis, the DFS tree for either G;, or G;, is as in Figure 2, which

means that we have already visited either In(i, il) or In(i, i2), SO the DFS tree for Gi must be as

shown in Figure 3.

Figure 2: The DFS tree edges for G;, assuming we have not previously visited either In(i, il) or

In(& i2).

Enter(i)

T(i)
Figure 3: The DFS tree edges for G;, assuming we have already visited either In(i, il) or In(i, i2)

or both.

e: The argument is similar.

The lemma follows immediately when we let i = n.

Given B, a deterministic Turing machine can easily construct G in log-space. This fact, together

with Lemma 1 and Proposition 1, implies that DFS-ORDER is P-complete.

Theorem 2: UDFS-ORDER is P-complete.

Proof: Given the directed graph G = (V, E) defined above, we create an undirected graph G' =

(V, El) by replacing every edge (u,v) or (v, u) E E with an undirected edge {u, v) such that the

following property holds: For each vertex v E V, let EvOut and E,. be the edges in G leaving v In
and entering v, respectively. In GI, after visiting v we first visit the edges in EwoUt, in exactly the

same order in which we visited them in G; then we visit the edges in Ewin in any order whatsoever.

The root of GI is also Exit(0). I t is easy to see that G and G' have the same DFS trees. Therefore

Lemma 1 holds for GI as well, and the theorem follows.

7.1 Implications

Reif7s proof helped to support the belief that DFS is inherently sequential. There are several

problems other than DFS, however, whose lexicographic versions are P-complete but whose general

versions are in either NC or RNC, including the maximal independent set problem [37] and the

maximal path problem [7] . Thus it seems that the complexity of a problem's lexicographic version

does not tell us much about the complexity of its general version.

8 Smith's NC Algorithm for Planar Graphs

Smith showed that DFS of undirected planar graphs is in NC. This was the first fast parallel

algorithm for any significant special case of DFS. We outline his algorithm below, but first we

present some definitions and preliminary results [52].

8.1 Definitions and Essential Theorems

Proposition 2: Let G be a connected graph with biconnected components G; and a given vertex

x. For each G;, let xi be the articulation point of G; connected to x by the shortest possible path.

If Ti is a DFS tree of G; rooted at x;, then the union of the Ti's is a DFS tree for G rooted at x.

Let G be a graph and suppose that P is a simple path in G such that G - P is a disjoint union

of components {G;) and one end of P is called its m t . Let e be an edge in G. We say that e

touches P if precisely one vertex in e is in P. e in inessential for Gi if e touches P but there exists

another edge e' in G; that touches P at a point farther away from the root than the point at which

e touches P; otherwise e is essential for G;.

Given these definitions, the reduction of G by P is a graph G' that results from deleting all of

the inessential edges (for the components of G - P) from G (and not deleting their end vertices).

G' consists of the union of P , the essential edges of G, and the components {G;) of the graph that

results from deleting all of the vertices of P from G.

Proposition 3: Let e; be an essential edge for G; connecting G; to P and let Ti be a DFS tree of

G; rooted at the end vertex of e; that is in G;. Then the union of P , the {e;) and the {T ;) is a

DFS tree of G.

Proof: Let T denote this union. We prove that T satisfies Tarjan's condition for a DFS tree2: if

we say that vl < 0 2 whenever vz is an ancestor of vl in T, then T is a DFS tree iff for all edges

(u, v) E E, either u < v or v < u [54]. Consider an edge e in G. If e connects two vertices in some

tree Ti, then they will be comparable, because the Ti's are DFS trees by assumption. e cannot

connect two distinct trees T; and Tj because, again by assumption, they are contained in distinct

components of G - P. Finally, consider the case where e = {vTi,vp) connects a tree T; to P. e

is either inessential or essential for G;. If it is inessential, its end vertices are comparable because

every vertex in Ti is a descendant of u p . If it is essential, then its end vertices are comparable

because e and ei both touch P at up, e;'s other vertex is trivially a descendant of vp, and VT, is a

descendant of e;'s other vertex.

Let G be a connected graph. Define G,, the solid subgraph, to consist of all the edges in G

contained in some cycle; define Gt, the treelike subgraph, to consist of all other edges in G. We can

decompose G into G, and Gt in (parallel) time O(log2 n) [ll].

The following theorem is the most significant result in the paper.

Theorem 3: Let G be a planar, biconnected graph with n vertices. Then there exists a parallel

algorithm for finding a simple cycle in G with the property that its interior and exterior subgraphs

have 5 2n/3 vertices. This algorithm runs in time O(log3 n) (and requires O(n4) processors).

This condition is equivalent to the condition we gave in Section 1.1.

16

Proof: The proof is complicated and is not suitable for presentation in a paper of this nature.

8.2 Description of the Algorithm

Here is a high-level description of the algorithm [52].

Input: An undirected planar graph G and an entry vertex r.

Output: A DFS tree T for G rooted at r.

Met hod:

1. Embed G in the plane. (See [32] for a description of what this operation involves.)

2. Find the biconnected components of G.

3. Find Gs and Gt and add Gt to T. The remainder of the algorithm is performed on Gs.

4. For each biconnected component C of G,, do in parallel:

(a) For C,, find a partitioning cycle, as described above.

(b) Find a path connecting the entry vertex to the partitioning cycle:

i. Find a spanning tree of C, using the method in [ll].

ii. Direct the spanning tree, with the entry vertex as its root, using the Euler tour

method [56].

iii. Delete all branches of the spanning tree that are directed away from the partitioning

cycle.

iv. Select a branch of the directed spanning tree that enters the partitioning cycle and

propagate a marker backwards to the root. This is the path that connects the root

to the partitioning cycle.

(c) Delete an edge of the partitioning cycle (found in 4.a.) that is adjacent to the point

where the path found in 4.b. touches it. Call the resulting path P and add it to T.

(d) Find the set {C;) of connected components of C - P.

(e) For each of the Ci's, find the set of all edges that touch P and determine which of them

are essential.

(f) Select any one of the essential edges. Let v; be the endpoint of this edge that is not in

P .

(g) Apply steps 3 and 4 to each of the C;'s using the v;'s as the entry vertices.

The correctness of this algorithm follows from Proposition 3.

8.3 Analysis

Let us analyze this algorithm step by step. Step 1 can be done in time 0(log2 n) [32]. Step 2 can

also be done in time 0(log2 n) [56]. Step 4.a. takes time 0(log2 n), as mentioned above. Step 4.b.

also takes total time O(log2 n). Step 4.c. takes unit time; step 4.d. takes time O(log2 n) [l l]; and

finally, step 4.e. takes time 0 (log n). Therefore one phase of this algorithm takes time O(log2 n).

Since each of the components we find in step 4.d. has 5 2n/3 vertices, we will only have to repeat

steps 3 and 4 O(1og n) times, for a total time bound of O(log3 n).

Before moving on to third and final paper, we discuss one more supplementary topic-the

problem of matching. Matching is easy to think about and has many important applications, as

we will see.

9 Matching

Matching is a problem that many researchers know well but does not appear in most introductory

algorithms textbooks. Matching algorithms show up as subroutines in many other important

algorithms, including a DFS algorithm that we will describe below.

In this section, we define the most common matching problems, list some important applications

of matching, present a history of matching algorithms, and provide a list of open problems.

9.1 Definitions

A matching in a finite undirected graph G = (V, E) is a set M E such that no vertex in V

is incident with more than one edge in M. A matching on a bipartite graph is called a bipartite

matching. Some people say "matching" when they really mean "bipartite matching", thereby

causing needless confusion. A matching of maximum cardinality is called a maximum matching;

a matching that includes every vertex in G (when it exists) is called a perfect matching. If every

edge has a numerical weight, the weight of a set of edges is the sum of the weights of each edge.

A minimum weight perfect matching is a perfect matching of smallest possible weight; a maximum

weight perfect matching is a perfect matching of largest possible weight. Each of these kinds of

matchings defines a particular matching problem, of course.

9.2 Applications of Matching

There are many applications of matching, both general and bipartite. matching. Applications of

bipartite matching seem to outnumber applications of general matching, however, which explains

why so many researchers have focused on speeding up bipartite matching.

Applications of bipartite matching include: the assignment problem, finding chain decomposi-

tions in posets, finding coset representatives in groups, finding systems of distinct representatives,

finding block-triangular decompositions of sparse matrices [31], and the maximal path problem [7].

Applications of general matching include scheduling the tasks of multiprocessor computers and

scheduling transmissions on packet radio networks [44], and DFS in both directed and undirected

graphs [3, 41.

9.3 Relationships Among Matching Problems

We should note that the various matching problems listed above are not completely independent

of one another. For example, perfect matching trivially reduces to maximum matching, since every

perfect matching is maximum; we need only find a maximum matching and then check whether it

has cardinality n/2. Also, maximum matching reduces to minimum-weight (or maximum-weight)

perfect matching on an edge-weighted graph in which every edge has weight 0 or 1: Given the

original graph G, we assign each of its edges a weight of 0, then turn it into a complete graph G1

by adding extra edges of weight 1. Then a maximum matching on G is clearly a minimum-weight

perfect matching on GI, and vice-versa [36].

9.4 History of Matching Algorithms

Here are the most significant breakthroughs in matching algorithms (both general and bipartite),

in chronological order:

a Edmonds showed that general matching was in P, thereby solving an important open problem

[16]. He did not formally analyze the running time of his algorithm, but a straightforward

implementation takes time 0 (n4) [43].

a Hopcroft and Karp gave an 0(n1I2rn) algorithm for maximum matching in bipartite graphs

a Gabow improved the running time of Edmonds7s algorithm to O(n3) [20].

Kameda and Munro gave an O(nm) algorithm for general matching [34].

r Even and Kariv gave an 0(n5I2) algorithm for general matching [17].

Micali and Vazirani gave an 0(n'I2m) algorithm for general matching [40]. Peterson and Loui

correct a few minor errors in the original paper and give a clear exposition of the algorithm

[44]. This is still the best known deterministic algorithm for general matching.

Borodin et. al. showed that the size of a maximum matching in a bipartite graph is in RNC.

Running time: 0(log2 n) [9].

Karp et. al. showed that constructing a perfect matching in a general graph is in RNC.

Running time: 0 (log3 n) [36].

r Galil and Pan improved the processor bound of Karp et. al.'s algorithm by a factor of n4

without increasing the running time [22].

Mulmuley et. al. gave a randomized algorithm for maximum matching in general graphs that

takes time 0(log2 n) [42].

r Gabow and Tarjan gave a deterministic algorithm for bipartite matching whose worst-case

running time is O(n log2 n) [21].

Goldberg, Plotkin and Vaidya gave the first sub-linear deterministic algorithm for maximum

matchings in bipartite graphs. Running time: 0(n2f3 log3 n) [25].

Goldberg, Plotkin, Shmoys, and Tardos gave a deterministic algorithm for bipartite matching

that runs in time O(fi logk m) for some constant k. This algorithm is faster than the

previous one for graphs of low to moderate density [24].

9.5 Open Problems

As the above history indicates, the best known randomized algorithms for bipartite and general

matching are much faster than their deterministic counterparts. Therefore the only significant open

problems that remain concern deterministic matching. First, is bipartite matching in NC? And

second, is there a deterministic algorithm for general matching that runs in quadratic time (or

better)?

10 Aggarwal and Anderson's RNC Algorithm

In this section, we describe the first RNC algorithm for DFS in general undirected graphs, due

to Aggarwal and Anderson [3]. Their algorithm calls general matching algorithms as subroutines,

and these subroutines are the costliest parts of the algorithm in terms of both time and processors.

This algorithm is in RNC because general matching is in RNC; if general matching were in NC,

this algorithm would be too.

10.1 Definitions

A path in a graph G = (V, E) is an ordered set of distinct vertices p = p1,p2,. . . ,pk with edges

(p;,p;+l) E E for 1 < i < k. A set Q of vertex disjoint paths is a separator if the largest connected

component of V - Q has size at most n/2. An initial segment of G is a rooted subtree T' that can

be extended to some DFS tree T .

10.2 Overview of the Algorithm

Here is a high-level description of the algorithm [3]. Given G and r , we construct an initial segment

T' rooted at r such that the largest connected component of V - T' has size at most n/2. Let the

connected components of V - T' be C1, C2,. . . , C,. For each C;, there is a unique vertex xi E T' of

greatest depth that is adjacent to some vertex y; of C;. For each C; (in parallel), we find these two

vertices, recursively construct a DFS tree for C; rooted at y;, and then connect this tree to T' with

an edge from xi to y;. The size of the recursive problem is at most half of the size of the original

problem, so the running time of the algorithm is O(1og n) times the time needed to construct TI.

To construct an initial segment, we first construct a separator Q such that the number of

paths in Q is less than a fixed constant (hence Q is a "small separator"), then we construct the

initial segment from Q. Constructing Q is the most complicated and time-consuming part of the

algorithm. We discuss each of these two tasks in order below.

10.3 Constructing a Separator

We wish to construct a set of vertex disjoint paths Q = {ql, q2,. . . , qk) where k is less than a

fixed constant and the largest component of V - Q has size at most n/2. To do this, we make use

of a procedure Reduce(Q) which reduces the number of paths in Q by a constant fraction while

maintaining the separator property.

Q is initially just V, and the separator property trivially holds. Each call to Reduce eliminates

1/12 of the paths in Q, so we only have to call it 0 (log n) times to ensure that Q contains no more

than 11 paths. Then we can use Q to construct an initial segment (see Section 10.6).

10.4 Reducing the Number of Paths

We now describe the operation of Reduce [3]. The basic idea is to find a set of vertex disjoint paths

between pairs of paths in Q, then merge each of these pairs. We divide the paths in Q into two sets,

L and S (for Long and Short paths, respectively). Suppose we find a set of vertex disjoint paths

P, and consider a path p E P that connects a path 1 E L to a path s E S. If the endpoints of p are

x and y, then l = I'xl" and s = s'ys". Now we would like to use p to merge 1 and s. If Is'l 2 I S " \ ,
then we replace I by l'xs' and replace s by st'; otherwise, we replace I by l'xs" and replace s by sf.

In either case, we discard lN. We have now decreased the length of s by at least half, and we may

be able to merge s completely, thereby eliminating it from S . Clearly, we merge these (1,s) pairs

in parallel. Our goal is to proceed in this way until we have reduced the number of paths in Q by a

constant fraction. Note that we also want P to satisfy two obvious constraints: first, P should be

as large as possible; and second, the lengths of the segments we discard (I" in our example) should

be as large as possible.

Unfortunately, the process we have described will not necessarily work the way we would like

it to. There are two things that could go wrong:

1. Discarding a segment (i.e., 1") might cause two of the connected components of V - Q to

merge, thereby violating the separator property.

2. The set of vertex disjoint paths we find might not be large enough to substantially decrease

the lengths of the paths in S.

Let us assume for the moment that neither of these cases arises. If initially IQI = IT, we

begin by putting h7/4 paths in L and 31114 paths in S ; then we find a set of vertex disjoint paths

P = {pl,pz,. . . ,pa). We take constraint 1 to mean that the number of paths found must not be

less than 11/12, so we assume that I PI > 11/12, i.e., we can reduce the lengths of at least K / 1 2

paths in S by at least half. Since there are 3K/4 paths in S initially, we will only have to find

and merge paths 9logn times at the most before S becomes empty. We repeat these steps until

IQI 5 1111/12.

If either of these cases arises, it turns out that, as long as P satisfies the constraints listed above,

we can still reduce the number of paths in Q by a constant fraction. First, we consider case 1. Let

be the paths in L not joined to paths in P, s be the paths in S not joined to paths in P, and L*

be the set of path segments in L that are in danger of being discarded. Finally, let T = V - Q - P

be the set of vertices not on any path. We have the following lemma:

Lemma 2: If the largest connected component of T U L* has size at least n/2, then the largest

connected component of T U (S - 3) has size less than n/2.

Proof: Since Q is a separator for G, the largest connected component of T has size at most n/2.

There cannot be a path from any vertex in L* to any vertex in S U that uses vertices of T; if

there were, we could have found a different set P with the same cardinality and strictly less cost.

The induced subgraph on T U L* U (S - S) must contain at least 2 connected components. Either

the components containing vertices of L* or the ones containing vertices of S - must have total

size at most n/2 since L* and S - s are in different components. We assumed that the largest

connected component of T U L* has size at least n/2, so the size of the components containing S - 3
in T U L* U (S - S) must be at most n/2. Thus the largest connected component of T U (S - 3)

has size at most n/2.

Thus if case 1 arises, we can simply add the paths in S - s to T instead. This will reduce

the total number of paths in Q by a constant fraction [3]. If case 2 arises, we can show by similar

reasoning that we can discard either the paths in L - or the paths in S - s without violating

the separator property; this will also reduce the number of paths in Q by a constant fraction.

10.5 Finding Sets of Disjoint Paths

Given L and S, we need to find a set of vertex disjoint paths P = {pl,pz,. . . ,pa) such that a is

as large as possible and, when we use P to merge L and S , the lengths of the paths we discard are

as small as possible. We do this by reducing the problem to two general matching problems (this

approach, as opposed to more direct approaches, has a lower processor bound) [3].

Lemma 3: The problem of finding a maximum set of disjoint paths can be reduced to that of

finding the minimum weight perfect matching in some graph G' in which every edge has a weight

of 0 or 1 only.

Lemma 4: The problem of finding a minimum cost set of disjoint paths of a given size can be

reduced to the problem of finding a minimum weight perfect matching in a graph with at most 2n

vertices and edges of weight at most n.

Proofs: The proofs are fairly difficult and are ignored.

Given these lemmas, we can find a min-cost maximum matching in two steps: first we apply the

reduction of Lemma 3 to find the sire of the matching we want, and then we apply the reduction

of Lemma 4 to find the matching itself. We can do both reductions in O(1og n) time using n2

processors.

10.6 Constructing an Initial Segment

Once we have constructed the small separator Q, we must use it to construct an initial segment T'

rooted at r such that the largest connected component of V - T' has size at most n/2. This part

of the algorithm is straightforward.

Initially, T is just T. We repeatedly pick a path q E Q and extend T' to contain at least half

of q. Since the number of paths in Q is a constant (at most ll), we can perform this operation

sequentially. Given q, we find the lowest vertex in T' from which there is a path to q. Suppose that

we find such a vertex x, and the path from x leads to a vertex y E q, i.e., q = q'yq". If q' is at least

as long as q", we add the path pyq' to T' and replace q by q", otherwise we add the path pyq" to

T' and replace q by q'. Either way, we reduce the length of q by at least half, so we will repeat this

process at most 11 log n times.

We need to show that this algorithm constructs an initial segment with the desired properties.

To show that we can extend T' to a DFS tree, it suffices to show that there are no paths between

separate branches of T' whose interior vertices are all in TJ -TI, but this condition holds throughout

the execution of the algorithm because we extend T' from the lowest possible vertex. Also, the

largest connected component of V - T' has size at most n/2, because T' consists entirely of paths

in Q and Q is a separator.

10.7 Pseudo-Code and Run-Time Analysis

We can describe the algorithm more formally with the following pseudo-code [3]:

procedure DFS(G, r)
T' t Initial-Segment(G, T);

for each connected component C of G - T' do
Recursively compute a DFS tree for C ;
Add this tree to T';

end { for }
end

procedure Initial-Segment(G, T)

Q + v ;
while IQ(> 11 do

Reduce(Q);
end { while)
Build the initial segment from Q;

end

procedure Reduce(Q)
K + I Q I ;
Divide Q into two sets L and S, where IL(= 1114 and IS1 = 31114;
while [& I > l l K / 1 2 do

Find mincost disjoint paths P = {pl , . . . ,pa) between L and S;
if a < K/12 then

if Icc(T U (S - 3)) < n/2 then
Q + L U S U P ;

else
Q + S U ~ U P ;

return
else if lcc(T U L*) > n/2 then

Q + L U ~ U P ;
return

else
Extend the paths of i. Suppose p joins 1 and s, x and y are the endpoints of p
and 1 = l 'zlN,x = s'ys". If Is'l 2 Isl'I then 1 t I'ps' and s t s N ;
otherwise, 1 t l'psf' and s t s'. In both cases, I" is discarded.

end { while }
end

Let us analyze the running time of this algorithm. The running time of DFS is O(1og n) times

the running time of Initial-Segment, which is O(1ogn) times the running time of Reduce, which is

O(1og n) times the time needed to find mincost disjoint paths. Thus the running time is 0(log3 n)

times the time needed to find mincost disjoint paths. We reduced this last step to two successive

matching problems. The best known algorithm for matching takes time 0(log2 n) [42], so the entire

algorithm takes time 0(log5 n).

11 Conclusion

We have discussed three important papers in the history of parallel DFS algorithms. The result of

the first one seemed to imply that DFS was inherently sequential. The second one established that

an important special case of DFS, namely DFS in planar undirected graphs, is in NC. The third

one showed that DFS in general undirected graphs is in RNC. We have also discussed several other

peripheral topics, including P-completeness, the parallel computation thesis, and matching.

The two most important open problems for DFS are these: Is DFS for either directed or

undirected graphs in NC? Also, since the complexity of Aggarwal and Anderson's algorithm depends

so strongly on the complexity of general matching, we would like to know: Is general matching in

NC?

Research on parallel DFS algorithms (and on parallel matching algorithms) has progressed

rapidly in the last few years. It would not be unrealistic to expect an answer to one or more of

these problems sometime in the near future.

References

[I] L. Adleman, C. Pomerance, and R. S. Rumley. On distinguishing prime numbers from com-

posite numbers. Annals of Math, 117:173-206, January 1983.

[2] Leonard Adleman and Kenneth Manders. Reducibility, randomness, and intractibility. In

Proc. 9th ACM Symposium on Theory of Computing, pages 151-163, 1977.

[3] Alok Aggarwal and Richard J. Anderson. A random NC algorithm for depth first search.

Combinatorica, 8(1):1-12, 1988.

[4] Alok Aggarwal, Richard J. Anderson, and Ming-Yang Kao. Parallel depth-first search in

general directed graphs. SIAM Journal on Computing, 19(2):397-409, April 1990.

[5] A. U. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, MA, 1974.

[6] R. J. Anderson. A parallel algorithm for depth-first search. 1986. Extended Abstract, Mathe-

matical Science Research Institute (1986).

[7] R. J. Anderson. A parallel algorithm for the maximal path problem. Combinatorica, 7(4):315-

326, 1987.

[8] Allan Borodin. On relating time and space t o size and depth. SIAM Journal on Computing,

6:733-744, 1977.

[9] Allan Borodin, Joachim von zur Gathen, and John Hopcroft. Fast parallel matrix and GCD

computations. Information and Control, 52:241-256, 1982.

[lo] A. K. Chandra and L. J. Stockmeyer. Alternation. In Proc. 17th IEEE Annual Symposium

on the Foundations of Computer Science, pages 98-108, October 1976.

[ll] F. Y. Chin, J. Lam, and I. Chen. Optimal parallel algorithms for connected-component prob-

lems. In Proc. 1981 Conference on Parallel Processing, pages 170-175, 1981.

[12] Stephen A. Cook. An observation on time-storage trade off. Journal of Computer and System

Sciences, 9:308-316, 1974.

[13] Stephen A. Cook. An overview of computational complexity. Communications of the ACM,

26(6):401-408, June 1983.

[14] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and

Control, 64:2-22, 1985.

[15] D. Eckstein and D. Alton. Parallel graph processing using depth first search. In Proc. of the

Conference on Theoretical Computer Science at the University of Waterloo, pages 21-29, 1977.

[16] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449-467, 1965.

[17] S. Even and 0. Kariv. An O(n2.5) algorithm for maximum matching in general graphs. In

Proc. 16th IEEE Annual Symposium on the Foundations of Computer Science, pages 100-112,

1975.

[18] Shimon Even and R. Endre Tarjan. Network flow and testing graph connectivity. SIAM

Journal on Computing, 4(4):507-518, December 1975.

[19] Steven Fortune and James Wyllie. Parallelism in random-access machines. In Proc. 10th ACM

Symposium on Theory of Computation, pages 114-118, 1978.

[20] Harold N. Gabow. An efficient implementation of edmonds's algorithm for maximum matching

on graphs. Journal of the ACM, 23(2):221-234, April 1976.

[21] Harold N . Gabow and Robert E. Tarjan. Almost-optimum speedups of algorithms for bipartite

matching and related problems. In Proc. 20th ACM Symposium o n Theory of Computing,

pages 514-527, 1988.

[22] Z . Galil and V. Pan. Improved processor bounds for combinatorial problems in RNC. Combi-

natorica, 8(2):18%200, 1988.

[23] Ratan K . Ghosh and G. P. Bhattacharjee. A parallel search algorithm for directed acyclic

graphs. BIT , 24:134-150, 1984.

[24] Andrew V . Goldberg, Serge A. Plotkin, David B. Shmoys, and ~ v a Tardos. Interior-point

methods in parallel computation. In Proc. 30th IEEE Annual Symposium on the Foundations

of Computer Science, pages 350-355, 1989.

[25] Andrew V . Goldberg, Serge A. Plotkin, and Pravin M. Vaidya. Sublinear-time parallel al-

gorithms for matching and related problems. In Proc. 29th IEEE Annual Symposium on the

Foundations of Computer Science, pages 174-185, 1988.

[26] L. M. Goldschlager, R. A. Shaw, and J. Staples. The maximum flow problem is log-space

complete for P. Theoretical Computer Science, 21:105-111, 1982.

[27] Leslie M . Goldschlager. A unified approach to models of synchronous parallel machines. In

Proc. 10th Annual A C M Symposium on the Theory of Computing, pages 89-94, 1978.

[28] Torben Hagerup. Planar depth-first search in O(1og n) parallel time. SIAM Journal o n Com-

puting, 19(4):678-704, August 1990.

[29] J . E. Hopcroft and R. M. Karp. Efficient planarity testing. Journal of the ACM, 21(4):549-568,

October 1974.

[30] J . E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Compu-

tation. Addison-Wesley, Reading, MA, 1979.

[31] John E. Hopcroft and Richard M. Karp. An n5I2 algorithm for maximum matching in bipartite

graphs. SIAM Journal on Computing, 2(4):225-231, December 1973.

[32] Joseph Ja' Ja' and Janos Simon. Parallel algorithms in graph theory: planarity testing. SIAM

Journal on Computing, 11(2):314-328, May 1982.

[33] Neil D. Jones and William T. Laaser. Complete problems for deterministic polynomial time.

Theoretical Computer Science, 3:105-117, 1977.

[34] T. Kameda and I. Munro. An O(IV(. I E 1) algorithm for maximum matching of graphs. Com-

puting, 12:91-98, 1974.

[35] Ming-Yang Kao. All graphs have cycle separators and planar directed depth-first search is in

DNC. In Proc. 3rd Aegean Workshop on Computing, Corfu, Greece, 1988. Springer-Verlag

Lecture Notes in Computer Science 319, pp. 53-63.

[36] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random NC.

Combinatorica, 6(1):35-48, 1986.

[37] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set

problem. Journal of the ACM, 32:762-773, 1985.

[38] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT News, 7(1):18-20,

1975.

[39] Richard J . Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM

Journal on Applied Mathematics, 36(2):177-189, April 1979.

[40] S. Micali and V. Vazirani. An o(&E) algorithm for finding maximum matching in general

graphs. In Proc. 21st IEEE Annual Symposium on the Foundations of Computer Science,

pages 17-27, 1980.

[41] Gary L. Miller. Riemann's hypothesis and tests for primality. Journal of Computer and System

Sciences, 13:300-317, 1976.

[42] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix

inversion. Combinatorica, 7(1):105-113, 1987.

[43] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complex-

ity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[44] Paul A. Peterson and Michael C. Loui. The general maximum matching algorithm of Micali

and Vazirani. Algorithmica, 3:511-533, 1988.

[45] Nicholas Pippenger. On simultaneous resource bounds (preliminary version). In Proc. 20th

IEEE Symposium on Foundations of Computer Science, pages 307-311, 1979.

[46] Vaughan R. Pratt and Larry J. Stockmeyer. A characterization of the power of vector mxhines.

Journal of Computer and System Sciences, 12:198-221, 1976.

[47] Michael 0. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Complexity,

pages 21-36, Academic Press, New York, 1976.

[48] Sanguthevar Rajasekaran and John H. Reif. Randomized parallel computation. In Proc. Inter-

national Conference o n Fundamentals of Computation Theory, Kazan, June 1987. Springer-

Verlag Lecture Notes in Computer Science 278, pp. 364-376.

[49] Eshrat Reghbati and D. G. Corneil. Parallel computations in graph theory. SIAM Journal o n

Computing, 7(2):230-237, May 1978.

[50] John H . Reif. Depth-first search is inherently sequential. Information Processing Letters,

20:229-234, 1985.

[51] John H . Reif. On synchronous parallel computations with independent probabilistic choice.

SIAM Journal on Computing, 13(1):46-56, 1984.

[52] Justin R. Smith. Parallel algorithms for depth-first searches I. planar graphs. SIAM Journal

o n Computing, 15(3):814-830, August 1986.

[53] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal o n Com-

puting, 6:84-85, 1977.

[54] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of Computing,

1(2):146-160, June 1972.

[55] Robert Tarjan. Finding dominators in directed graphs. SIAM Journal o n Computing, 3(1):62-

89, March 1974.

[56] Robert E. Tarjan and Uzi Vishkin. Finding biconnected components and computing tree

functions in logarithmic parallel time. In Proc. 25th IEEE Annz~al Symposium on Foundations

of Computer Science, pages 12-20, 1984.

[57] L. G. Valiant. Parallelism in comparison problems. SIAM Journal of Computing, 14:348-355,

1985.

[58] J. C. Wyllie. The Complexity of Pamllel Computation. PhD thesis, Cornell University, Ithaca,

NY, 1979. Also available as Technical Report 79-387.

[59] Y. Zhang. Pamllel algorithms for problems involving directed graphs. PhD thesis, Drexel

University, Philadelphia, PA, 1986.

	Parallel Algorithms for Depth-First Search
	Recommended Citation

	Parallel Algorithms for Depth-First Search
	Abstract
	Disciplines
	Comments

	tmp.1187102995.pdf.xassQ

