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Abstract 

In this paper we examine parallel algorithms for performing a depth-first search (DFS) of a 
directed or undirected graph in sub-linear time. This subject is interesting in part because DFS 
seemed at first to be an inherently sequential process, and for a long time many researchers 
believed that no such algorithms existed. We survey three seminal papers on the subject. The 
first one proves that a special case of DFS is (in all likelihood) inherently sequential; the second 
shows that DFS for planar undirected graphs is in NC; and the third shows that DFS for 
general undirected graphs is in RNC. We also discuss randomized algorithms, P-completeness 
and matching, three topics that are essential for understanding and appreciating the results in 
these papers. 

1 Introduction 

In this paper we examine parallel algorithms for performing a depth-first search (DFS) of a directed 

or undirected graph in sublinear time. This subject is interesting in part because DFS seemed a t  

first to be an inherently sequential process, and for a long time many researchers believed that no 

such algorithms existed. We survey three seminal papers on the subject. The first one proves that  

a special case of DFS is (in all likelihood) inherently sequential; the second shows that DFS for 

planar undirected graphs is in NC; and the third shows that  DFS for general undirected graphs is 

in RNC. We also discuss randomized algorithms, P-completeness and matching, three topics that  

are essential for understanding and appreciating the results in these papers. 

We begin by defining DFS, mentioning some important applications of DFS, and indicating 

where sub-linear DFS algorithms would be useful. 

1.1 Definition of DFS 

We begin with some standard graph-theoretic definitions. A graph G is a set of vertices V and a 

set of edges E, written G = (V, E). We let IVI = n and IE( = m. A directed edge of G is an element 



of V x V; an undirected edge of G is a subset of V of cardinality two. G is directed (undirected) if 

E consists entirely of directed (undirected) edges. The indegree of a vertex T in a directed graph 

G is the number of edges of the form (v,E); the outdegree of a vertex T is the number of edges of 

the form (77, w). A directed (rooted) tree T is a directed graph in which every node except one has 

indegree 1; the remaining node has indegree 0 and is called the root of T. A graph G' = (V', El) 

is a subgmph of a graph G = (V, E )  if V' C V and E' E. A directed tree T is a spanning tree 

of a graph G if T is a subgraph of G and T contains all the vertices of G. A spanning tree T is a 

depth-first search tree of G iff, for all non-tree edges {v, w} (or (v, w) if G is directed), v and w lie 

on the same branch of T [3, 541. 

The depth-first search problem is: given a graph G and a vertex T in G, construct a depth-first 

search tree T of G rooted at T .  T is called a search tree because the standard way to construct 

it is to search G in a depth-first manner, as follows. We begin our search at r ;  T is initially 

empty, and all the vertices of G are marked unvisited. We mark the current vertex v as visited and 

sequentially examine all unexplored edges leaving v (in any order we wish). If there is an unvisited 

vertex w adjacent to v, we make w the current vertex and repeat. If there is no such vertex, we 

backtrack to the last vertex we visited that has at least one such vertex and repeat. We halt when 

we have explored every edge (and visited every vertex) in G. This algorithm has a simple recursive 

description [5] :  

procedure DFS(v) 
begin 

mark v as visited; 
while there is an unmarked vertex w adjacent to v do 

add (v, w) to T;  
DFS(w) 

end { while ) 
end { DFS ) 

The running time of DFS is easy to analyze; it is just O(n + m), since we visit every vertex 

and explore every edge exactly once. Given what we are trying to accomplish, then, this algorithm 

is optimal to  within a constant factor. For this reason, we will frequently equivocate between the 

terms "parallel DFS algorithms" and "sub-linear DFS algorithms" , as only parallel DFS algorithms 

can run in sub-linear time. 

It should be clear that the decision we make at each vertex (i.e., which edge to explore next) has 

a drastic effect on the decisions we make afterwards. This is why so many people conjectured that 

DFS was inherently sequential when the question first arose. The reason why they were mistaken is 



that, loosely speaking, their understanding of DFS as a search problem was not declarative enough. 

1.2 Applications of DFS 

Here are some of the first significant applications of DFS, in chronological order: 

Tarjan used it to  find the strongly connected components of a directed graph, and the bicon- 

nected components of an undirected graph, both in linear time [54]. 

Hopcroft and Karp used it to improve the best-known algorithm for bipartite matching (which 

we will define below) from O(nm) to 0(n1I2m) 1311. 

Tarjan used it to  find dominators in a directed graph in time O(n1og n + m) [55]. 

Hopcroft and Tarjan used it to test the planarity of a graph in linear time 1291. 

Even and Tarjan used it to test vertex connectivity in time 0(n1I2m2) and edge connectivity 

in time 0(n5I3m) [18]. 

DFS is such a fundamental operation on graphs that it would be extremely difficult, if not 

impossible, to list all of the uses researchers have found for it. 

1.3 Usefulness of Parallel DFS Algorithms 

Speeding up any algorithm is always significant in its own right, but there may be certain circum- 

stances in which we would not benefit greatly from doing so. With that in mind, we note that in 

order for us to  benefit from sub-linear DFS algorithms, constructing the graph itself should not be 

more time-consuming than the time required to perform the search. This will be the case when the 

graph is constructed in parallel, for example, or when we need to search a given graph many times 

starting at different vertices. 

The next three sections discuss parallel algorithms, randomized algorithms, and parallel ran- 

domized algorithms, respectively. 

2 Parallel Algorithms 

In this section, we explain the basic idea behind parallel algorithms, describe four popular models 

of parallel computation, and define the class NC. 



2.1 The Basic Idea 

The basic idea behind parallel algorithms is obvious: If we have more than one processor at our 

disposal, we can solve a problem more quickly by dividing it into independent sub-problems and 

solving them at the same time, one on each processor. The running time of the algorithm is then 

the longest running time of any of these processors; more specifically, given input n, the running 

time T(n) on input n is the elapsed time from when the first processor begins executing to when 

the last processor stops executing. 

We say that a parallel algorithm for a given problem is optimal if its processor bound P(n)  

and its time bound T(n) are such that P(n)T(n) = O(S), where S is the running time of the best 

known sequential algorithm for the problem. Thus parallel algorithms should meet at  least two 

criteria: T(n) should be as small as possible, and they should be optimal. 

2.2 Models of Parallel Computation 

There are four popular models of parallel computation: shared memory models, boolean circuits, 

fixed connection networks, and parallel comparison trees [48]. The next four subsections describe 

each of these models in turn. 

2.2.1 Shared Memory Models 

A shared memory model consists of a set of synchronous processors and a shared global memory 

through which they communicate [19]. The processors are random access machines (RAM'S), 

therefore memory accesses and operations on integers take constant time, but integers cannot be 

unreasonably large [13]. There are three conventions regarding whether to permit simultaneous 

reads or writes to the same memory location: EREW (exclusive read, exclusive write), CREW 

(concurrent read, exclusive write), and CRCW (concurrent read, concurrent write). If and when 

read or write conflicts do occur, some sort of priority scheme is used to resolve them. These 

three variations are not equally powerful, but researchers nevertheless consider all of them to be 

"reasonable". 

2.2.2 Boolean Circuits 

A Boolean circuit a with n inputs is a finite directed acyclic graph with nodes labeled as follows 

[14]. There are n input nodes and one output node. The input nodes are labeled with variables 



and their negations; all other nodes are labelled with a Boolean operation such as V or A. There is 

at least one path from every input node to the output node. The fan-in of a is the largest indegree 

of any node, the size of a is the number of gates it contains, and the depth of a is the length of 

the longest path from an input node to  the output node. Let C be a finite alphabet and consider 

a language L & En. We say that a Boolean circuit C accepts L if for all w E En, C outputs 1 on 

w u w E L .  The circuit size complexity of L is the size of the smallest circuit that accepts L. 

Now consider a language L* C*. The circuit size complexity of L* is a function f such that 

f (n)  is the circuit size complexity of Ln = L* n En.  In order to recognize languages in C*, then, 

we need families of Boolean circuits < a ,  > in which each circuit in the family accepts strings of 

a particular length. 

We can easily extend this model by allowing these circuits to have multiple outputs. The 

resulting Boolean circuits can compute arbitrary functions from (0, l), to (0, lIm. The definitions 

of size and depth remain the same. 

We are usually only interested in uniform circuit families, i.e., families < a ,  > such that, given 

n, we can easily construct the specific circuit a,. (See Cook for an justification [14].) Researchers 

have proposed several different uniformity conditions in the past [14], but the one in widest use today 

is log-space uniformity. A circuit family < a, > satisfies this condition if, given n, a deterministic 

Turing machine can generate a description of a, in space O(1og n). 

Boolean circuit families are due to Borodin [8]. They are appealing for several reasons. For 

one thing, they are realistic in the sense that ultimately all computers consist of Boolean circuits. 

Also, the theory of Boolean circuit complexity is interesting in its own right and has a long history 

[13, 141. 

2.2.3 Fixed Connection Networks 

A fixed connection network is a directed graph in which the vertices correspond to processors 

and the edges correspond to connections between pairs of processors. The degree of each node is 

typically either a constant or a slowly increasing function of the number of vertices [48]. 

2.2.4 Parallel  Comparison Trees 

A parallel comparison tree is an ordinary comparison tree in which we can make several comparisons 

simultaneously at each node. This model is due to Valiant [57], and is significantly more powerful 

than the other three. 



2.3 The Class NC 

Let N C ~  be the set of all functions computable by a uniform Boolean circuit family < a, > with 

size no(') and depth 0(log0(') n), and let NC = Uk N C ~ .  Informally, NCis the class of all problems 

we can solve quickly with a reasonable number of processors. 

NC stands for "Nick's Class", after Nicholas Pippenger, who first identified i t  and suggested 

that it contains precisely the problems we think of as having "good" parallel algorithms [45]. NC 

remains the same across a wide variety of machine models, although the subclasses NCI" may vary 

[14]. I t  is easy to  see that NC P, but whether NC = P i s  a famous open problem (see Section 6 

below). 

3 Randomized Algorithms 

In this section, we explain the basic idea behind randomized algorithms, describe some models of 

randomized computation, and explain why randomization is a good idea. 

3.1 The Basic Idea 

There are many algorithms, such as Quicksort, that work well assuming that the inputs to  the 

algorithm have a certain probability distribution, i.e., that they are sufficiently random. Unfortu- 

nately, the validity of this assumption is often highly questionable [47]. Randomized algorithms, 

introduced independently by Rabin [47] and Solovay and Strassen [53], take this idea one step 

further by introducing randomization into the algorithm itself. Simply put, a randomized algo- 

rithm is one in which some of the decisions depend on the outcomes of coin flips. We can think 

of a randomized algorithm as a family of deterministic algorithms, each of which corresponds to a 

particular sequence of coin flips. The goal is to construct algorithms of this sort such that, for any 

input whatsoever, a large fraction of the possible deterministic algorithms will output the correct 

answer quickly, and hence the overall algorithm will output the correct answer quickly with high 

probability. 

Let us formalize this idea by defining a complexity measure for randomized algorithms. We say 

that a resource bound is O( f(n)) if there exists a c E R such that the amount of the resource used 

(on any input of size n)  is no greater than ca f (n) with probability 2 1 - n-a. 



3.2 Types of Randomized Algorithms 

There are two main kinds of randomized algorithms [48]. Some of them will always terminate 

within a certain amount of time but will output the correct answer with a certain probability; 

these are called Monte Carlo algorithms. The others will always output the correct answer, but 

their running time is a random variable whose average value is known; these are called Las Vqas 

algorithms. 

The error of a randomized algorithm can also be of two different kinds [48]. Consider randomized 

algorithms whose output is either yes or no (e.g., for deciding membership in a language). An 

algorithm of this sort is said to have 1-sided error if it is always correct when it answers yes, but 

is correct with high probability when it answers no. If it is correct with high probability in either 

case, it is said to have 2-sided error. 

3.3 The Class RP 

We define the class R P  to  be the set of all problems that have randomized polynomial-time algo- 

rithms. It is clear that P C RP; whether P = RP is another famous open problem. It is tempting 

to try to answer this question purely on philosophical grounds-by asserting that coin flips are 

ultimately of no use when we are seeking a definite yes or no, for example, or by claiming that 

nature is not truly random [14]. It is also worth noting that if P # RP, then randomized algorithms 

cannot work too well on typical computers (even though they seem to), because typical computers 

use pseudo-random numbers, which are generated deterministically [14]. 

3.4 Models of Randomized Computation 

We can easily define models of randomized computation by simply extending the standard models. 

For the RAM model, for example, we simply create a slightly different RAM that has the ability 

to flip an n-sided coin in constant time on inputs of length n. A randomized machine model is said 

to compute a function f if it outputs the correct value of f with probability > 112. 

3.5 The Advantages of Randomized Algorithms 

The first and most obvious advantage of randomized algorithms is that we no longer have to 

assume anything about the distribution of the inputs in order to prove that they run quickly. A 

second advantage is that they need not be any less accurate than deterministic algorithms. This is 



because there is always a non-zero probability that the hardware itself might fail, and if we want 

to, we can always ensure that the probability of our algorithm returning a wrong answer is less 

than this value [2]! Third, randomized algorithms are usually simpler and easier to  understand 

than deterministic algorithms for the same problem with similar running times. And fourth, there 

are many problems for which the best-known randomized algorithm is faster than the best-known 

deterministic algorithm (including DFS, as we will see). In fact, there are at  least two problems 

(primality testing1 and exact matching [42]) that are in the class RNC (defined below) but are not 

known to be in P. 

4 Parallel Randomized Algorithms 

This section is structurally identical to Section 2, in which we discussed deterministic parallel 

algorithms. 

4.1 The Basic Idea 

Because parallelism and randomization are completely different approaches, we can combine them, 

thereby obtaining the advantages of both. Reif was apparently the first to propose this idea and 

demonstrate its effectiveness on a variety of algebraic and graph-theoretic problems [51]. 

The definition of optimality is similar to that of deterministic parallel algorithms: a parallel 

randomized algorithm with processor bound P(n)  and time bound T(n)  is optimal if P(n)T(n) = 

o(s), where S is the running time of the best known sequential algorithm for the same problem. 

4.2 Models of Computation 

If we can randomize models of sequential computation, we can easily randomize models of parallel 

computation too. In the PRAM model, for instance, we simply replace each RAM with a random- 

ized RAM (described above). Similarly, a randomized Boolean circuit is just a Boolean circuit in 

which each node can also do coin flips. As before, a parallel randomized machine model is said to 

compute a function f if it outputs the correct value of f with probability > 1/2. 

Miller has shown that primality testing is in P assuming that the extended Riemann Hypothesis holds [41]; the 
best known deterministic algorithm that does not make this assumption takes time [l]. 



4.3 The Class RNC 

We define the class RNC in much the same way as the class NC. Let R N C ~  be the set of all  

functions computable by a uniform family of randomized Boolean circuits < a, > with size no(') 

and depth O(logo(l) n), and let RNC= Uk R N C ~ .  The intuition is also similar: RNCis the set of 

all problems that have fast parallel randomized algorithms. As with NC, RNC remains the same 

across a wide range of machine models. 

With these definitions in hand, we can now turn our attention to the main subject of this paper. 

In the next section, we present a history of parallel DFS algorithms and show where our three main 

papers fit in this history. After that, we will discuss these three papers in chronological order, 

introducing additional topics as necessary. 

5 History of Parallel DFS Algorithms 

As we stated in the introduction, the history of parallel DFS algorithms is interesting because for 

a long time, many researchers believed that no such algorithms existed. Wyllie was the first to  

suggest that it might be possible to parallelize DFS [58]. After he made this conjecture, several 

researchers examined the problem and concluded that there was no way to do so 115, 49, 501. 

Starting in 1983, however, breakthroughs in this area began to occur. We list those breakthroughs 

below in chronological order, from 1983 to the present. 

Ghosh and Bhattacharjee gave an 0(log2 n) algorithm for DFS in directed acyclic graphs, 

thereby becoming the first to give a sub-linear time algorithm for any special case of DFS 

[23]. Their algorithm has an error which is corrected by Zhang [59]. 

r Reif proved that the lexicographic version of DFS (defined below) is P-complete, thereby 

providing strong evidence for the claim that general DFS is inherently sequential [50]. 

Smith showed that DFS for planar undirected graphs is in NC; his algorithm takes time 

0 (log3 n) [52]. 

r Anderson gave the first sub-linear time algorithm for DFS in general undirected graphs. His 

algorithm is randomized and takes time 0(1/5ElogC n) for some small constant c [7]. 

r Anderson improved the running time of his previous algorithm somewhat, to 0(2~+) [6]. 



a Aggarwal and Anderson gave the first R N C  algorithm for DFS in general undirected graphs. 

The running time of their algorithm is O ( ~ , , ( n ) l o ~ ~  n), where Tmm(n) is the time needed 

to find a minimum weight perfect matching on an n vertex graph with maximum edge weight 

n [3]. Currently Tmm = 6(log2 n) [42], for a bound of 6(log5 n). 

a Kao gave the first N C  algorithm for DFS in planar directed graphs [35]. 

a Goldberg et. al. gave the first sub-linear time deterministic algorithm for undirected graphs; 

their algorithm takes time 0 ( &  log5 n) [25]. 

a Aggarwal et. al. gave the first RNCalgorithm for DFS in general directed graphs. The running 

time of their algorithm is O(log5 n(T,,(n) + log2 n)), where Tmm is as defined above; letting 

Tmm = 0(log2 n), this simplifies to 0(log7 n). They also built on the results in Goldberg 

et. al.'s paper to give the first sub-linear deterministic DFS algorithm for general directed 

graphs, which takes time O(,/Zlogll n) [4]. 

a Hagerup showed how to perform DFS in planar undirected graphs in time O(1ogn). Other 

researchers had previously improved the time (and processor) bounds of Smith's algorithm 

somewhat; see Hagerup's paper for details [28]. 

In the remainder of this paper, we discuss three of the above results in depth: Reif's proof 

that lexicographic DFS is (in all likelihood) difficult to parallelize, Smith's N C  algorithm for planar 

graphs, and Aggarwal and Anderson's RNC algorithm for general undirected graphs. We begin 

with Reif's result, but first we touch on two topics that are crucial to understanding it-namely, 

P-completeness and the parallel computation thesis. 

6 P-Completeness and the Parallel Computation Thesis 

Let us consider non-trivial ways to formally reduce problems in the class P to one another. Obvi- 

ously, we cannot use polynomial-time reduction, as we do for the class NP; we use a space reduction 

instead. 

Let L and L' be languages over a finite alphabet C. We say that L' is log-space reducible to 

L (written LSlogL') if there exists a function f such that f is con~putable on a log-space Turing 

machine and, for each w E C*, w E L' if and only if f (w)  E L. L is P-complete if L E P and, for 

each L' E P ,  L<l,gL'. As with polynomial-time reducibility, we know that log-space reducibility 



is transitive [30]. Therefore, to show that a problem L E P is P-complete, it suffices to show that 

some P-complete problem L' is log-space reducible to L. 

Many problems are known to be P-complete. Cook gave the first P-completeness proof (for 

path systems), although he did not state it as such [12]. Jones and Lasser showed that seven 

important problems (such as the emptiness problem for CFG's) were P-complete, thereby doing 

for P-completeness what Karp did for NP-completeness [33]. Goldschlager et. al. showed that the 

maximum flow problem is P-complete [26]. 

We have not yet said anything about the significance of P-complete problems. On a superficial 

level, all we can conclude about these problems is that, if we could solve one of them in log-space, 

we could solve every problem in P in log-space. It turns out, however, that the P-complete problems 

are precisely the problems in P that are (in all likelihood) not in NC, i.e., the ones that are hard 

to parallelize. Stated another way, if any P-complete problem is in NC, then P = NC. This result 

follows from an important conjecture of theoretical computer science called the parallel computation 

thesis, which states that time-bounded parallel machines and space-bounded sequential machines 

are polynomially related; i.e., for any function T(n), 

U PARALLEL-TIME(T~(~)) = U S P A C E ( T ~ ( ~ ) ) .  
k k 

If we let T(n)  = clog n in this equation (for some constant c), the result follows easily. 

Pratt and Stockmeyer were the first to prove that this thesis held for their model of parallel 

computation, although they did not state it as such [46]. Chandra and Stockmeyer were the first 

to state it explicitly [lo]. Goldschlager provided strong evidence for its validity [27]. Pratt and 

Stockmeyer were not the only ones to prove that the thesis held for their model; see, for example, 

Goldschlager [27] and Fortune and Wyllie [19]. 

There are many obvious similarities between the P-complete problems and the NP-complete 

problems, which we will not bother to list here. One important diflerence between the two classes 

is that NP-complete problems have received far more attention than their counterparts in the 

class P. We believe, however, that the increasing importance of parallel algorithms will rectify this 

imbalance in the near future. 

7 Reif's P-Completeness Proof 

Reif studied a special case of DFS known as lexicographic DFS, and proved that it is P-complete. 

In lexicographic DFS, for each vertex v in G, the order in which we explore v's outgoing edges is 



fixed. (If we use adjacency lists to represent G, [54], we say that G's adjacency lists are fixed.) We 

present the proof below. 

As with all problems, we must convert DFS into a decision problem in order to  analyze its 

complexity. Let (U)DFS-ORDER be the following problem: Given a directed (undirected) graph 

G, a starting vertex s, and two vertices u and v, and assuming that the order in which we visit each 

vertex's outgoing edges is fixed, do we visit u before v in a depth-first search of G starting from s?  

Let us also define the circuit value problem 1501. A Boolean circuit B (not to be confused 

with the Boolean circuits of Section 2.2.2) is a sequence (Bo, Bl , .  . . , B,) such that each Bi is 

either true, fabe, or an expression op(B;, , B;,), where il, i2 < i and op is a binary Boolean op- 

eration. We recursively define value(true) = true, value(false) = false, and value(op(B;, , B;,)) = 

op(value(B;,), vaZue(B;,)). Finally, we define value(B) to be vaZue(B,). The circuit value problem 

is as follows: Given a Boolean circuit B ,  is vaZue(B) = true? 

Ladner proved that the circuit value problem is P-complete 1381. We also have the following 

proposition 1501: 

Proposition 1: The circuit value problem remains P-complete under the restrictions that Bo = 

true and the only Boolean operation in B is NOR, i.e., all non-trivial B;'s have the form B; = 

l(B;, V B;,) where i l , i2 < i. 

Proof: This follows easily from the fact that { NOR ) is a functionally complete set. 

Reif proved that DFS-ORDER is P-complete by reducing this special case of the circuit value 

problem to it. Then he reduced DFS-ORDER to UDFS-ORDER to show that UDFS-ORDER is 

P-complete. We present these two reductions below. 

Theorem 1: DFS-ORDER is P-complete. 

Proof: For each Boolean operation B; = T(B;, VB;,) in B ,  where Bi occurs in subsequent operations 

Bjl , Bj, , . . . , Bjk , we construct the "digraph gadget" G; in Figure 1. For each vertex v in G;, the 

numbers on the edges leaving v indicate the order in which they appear in v's adjacency list. The 

G;'s are linked together; for example, the node Exit(i - I )  is a part of gadget GiP1 and the node 

In(jk, i)  is a part of gadget Gjk. 

Suppose that we are performing a depth-first search of G; starting at Exit(i - I), and we have 

not previously visited either node In(i, il) or node In(i, iz). Then the DFS tree edges for Gi will 



1 

Figure 1: The digraph gadget G; for Boolean operation Bi = 7(B;, V B;,) in B ,  where B; occurs 

in subsequent operations Bjl, Bj2,. . . , Bj,. 

look as they do in Figure 2. Conversely, suppose that we have previously visited either In(i, il) or 

In(i, i2) or both; then the DFS tree edges for G; will look as they do in Figure 3. 

Let G be the graph consisting of the union of all the G;'s, and let Exit(0) be the root of G. We 

have the following lemma. 

Lemma 1: In a depth-first search of G, we visit S(n) before T(n) iff value(B) = true. 

Proof: We prove by induction that, for all i, 1 5 i 5 n, value(Ba) = true iff the DFS tree edges in 

G; are as shown in Figure 2, and value(B;) = false iff they are as shown in Figure 3. 

+: The base case is trivial. Fix an i and assume that B; = T(B;, V B;,) (where i l , i2 < i) and 

the condition holds for all i' < i. If value(B;) = twe, then vakue(B;, ) = value(B;,) = false. By the 

inductive hypothesis, the DFS trees for G;, and Gi2 are as shown in Figure 3, which means that 

we have not already visited either In(i, i l)  or In(i, iz), so the DFS tree for G; must be as shown in 

Figure 2.  Conversely, suppose that vaIue(B;) = false. Then either value(B;,) = true or value(B;,) 

= true, so by the inductive hypothesis, the DFS tree for either G;, or G;, is as in Figure 2, which 

means that we have already visited either In(i, il) or In(i, i2), SO the DFS tree for Gi must be as 

shown in Figure 3. 



Figure 2: The DFS tree edges for G;, assuming we have not previously visited either In(i, il) or 

In(& i2). 

Enter(i) 

T(i) 
Figure 3: The DFS tree edges for G;, assuming we have already visited either In(i, il) or In(i, i2) 

or both. 



e: The argument is similar. 

The lemma follows immediately when we let i = n. 

Given B, a deterministic Turing machine can easily construct G in log-space. This fact, together 

with Lemma 1 and Proposition 1, implies that DFS-ORDER is P-complete. 

Theorem 2: UDFS-ORDER is P-complete. 

Proof: Given the directed graph G = (V, E )  defined above, we create an undirected graph G' = 

(V, El) by replacing every edge (u,v) or (v, u) E E with an undirected edge {u, v) such that the 

following property holds: For each vertex v E V, let EvOut and E,. be the edges in G leaving v In 
and entering v, respectively. In GI, after visiting v we first visit the edges in EwoUt, in exactly the 

same order in which we visited them in G; then we visit the edges in Ewin in any order whatsoever. 

The root of GI is also Exit(0). I t  is easy to see that G and G' have the same DFS trees. Therefore 

Lemma 1 holds for GI as well, and the theorem follows. 

7.1 Implications 

Reif7s proof helped to support the belief that DFS is inherently sequential. There are several 

problems other than DFS, however, whose lexicographic versions are P-complete but whose general 

versions are in either NC or RNC, including the maximal independent set problem [37] and the 

maximal path problem [7] .  Thus it seems that the complexity of a problem's lexicographic version 

does not tell us much about the complexity of its general version. 

8 Smith's NC Algorithm for Planar Graphs 

Smith showed that DFS of undirected planar graphs is in NC. This was the first fast parallel 

algorithm for any significant special case of DFS. We outline his algorithm below, but first we 

present some definitions and preliminary results [52].  

8.1 Definitions and Essential Theorems 

Proposition 2: Let G be a connected graph with biconnected components G; and a given vertex 

x. For each G;, let xi be the articulation point of G; connected to x by the shortest possible path. 

If Ti is a DFS tree of G; rooted at x;, then the union of the Ti's is a DFS tree for G rooted at x. 



Let G be a graph and suppose that P is a simple path in G such that G - P is a disjoint union 

of components {G;) and one end of P is called its m t .  Let e be an edge in G. We say that e 

touches P if precisely one vertex in e is in P. e in inessential for Gi if e touches P but there exists 

another edge e' in G; that touches P at a point farther away from the root than the point at  which 

e touches P; otherwise e is essential for G;. 

Given these definitions, the reduction of G by P is a graph G' that results from deleting all of 

the inessential edges (for the components of G - P )  from G (and not deleting their end vertices). 

G' consists of the union of P ,  the essential edges of G, and the components {G;) of the graph that 

results from deleting all of the vertices of P from G. 

Proposition 3: Let e; be an essential edge for G; connecting G; to  P and let Ti be a DFS tree of 

G; rooted at the end vertex of e; that is in G;. Then the union of P ,  the {e;) and the {T ; )  is a 

DFS tree of G. 

Proof: Let T denote this union. We prove that T satisfies Tarjan's condition for a DFS tree2: if 

we say that vl < 0 2  whenever vz is an ancestor of vl in T, then T is a DFS tree iff for all edges 

(u, v) E E, either u < v or v < u [54]. Consider an edge e in G. If e connects two vertices in some 

tree Ti, then they will be comparable, because the Ti's are DFS trees by assumption. e cannot 

connect two distinct trees T; and Tj because, again by assumption, they are contained in distinct 

components of G - P. Finally, consider the case where e = {vTi,vp) connects a tree T; to  P. e 

is either inessential or essential for G;. If it is inessential, its end vertices are comparable because 

every vertex in Ti is a descendant of u p .  If it is essential, then its end vertices are comparable 

because e and ei both touch P at up, e;'s other vertex is trivially a descendant of vp, and VT, is a 

descendant of e;'s other vertex. 

Let G be a connected graph. Define G,, the solid subgraph, to consist of all the edges in G 

contained in some cycle; define Gt, the treelike subgraph, to consist of all other edges in G. We can 

decompose G into G, and Gt in (parallel) time O(log2 n) [ll]. 

The following theorem is the most significant result in the paper. 

Theorem 3: Let G be a planar, biconnected graph with n vertices. Then there exists a parallel 

algorithm for finding a simple cycle in G with the property that its interior and exterior subgraphs 

have 5 2n/3 vertices. This algorithm runs in time O(log3 n) (and requires O(n4) processors). 

This condition is equivalent to the condition we gave in Section 1.1. 
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Proof: The proof is complicated and is not suitable for presentation in a paper of this nature. 

8.2 Description of the Algorithm 

Here is a high-level description of the algorithm [52]. 

Input: An undirected planar graph G and an entry vertex r. 

Output: A DFS tree T for G rooted at r. 

Met hod: 

1. Embed G in the plane. (See [32] for a description of what this operation involves.) 

2. Find the biconnected components of G. 

3. Find Gs and Gt and add Gt to T. The remainder of the algorithm is performed on Gs. 

4. For each biconnected component C of G,, do in parallel: 

(a) For C,, find a partitioning cycle, as described above. 

(b) Find a path connecting the entry vertex to the partitioning cycle: 

i. Find a spanning tree of C, using the method in [ll]. 

ii. Direct the spanning tree, with the entry vertex as its root, using the Euler tour 

method [56]. 

iii. Delete all branches of the spanning tree that are directed away from the partitioning 

cycle. 

iv. Select a branch of the directed spanning tree that enters the partitioning cycle and 

propagate a marker backwards to the root. This is the path that connects the root 

to the partitioning cycle. 

(c) Delete an edge of the partitioning cycle (found in 4.a.) that is adjacent to the point 

where the path found in 4.b. touches it. Call the resulting path P and add it to T. 

(d) Find the set {C;) of connected components of C - P. 

(e) For each of the Ci's, find the set of all edges that touch P and determine which of them 

are essential. 

(f) Select any one of the essential edges. Let v; be the endpoint of this edge that is not in 

P .  



(g) Apply steps 3 and 4 to each of the C;'s using the v;'s as the entry vertices. 

The correctness of this algorithm follows from Proposition 3. 

8.3 Analysis 

Let us analyze this algorithm step by step. Step 1 can be done in time 0(log2 n) [32]. Step 2 can 

also be done in time 0(log2 n) [56].  Step 4.a. takes time 0(log2 n),  as mentioned above. Step 4.b. 

also takes total time O(log2 n). Step 4.c. takes unit time; step 4.d. takes time O(log2 n) [ l l];  and 

finally, step 4.e. takes time 0 (log n). Therefore one phase of this algorithm takes time O(log2 n). 

Since each of the components we find in step 4.d. has 5 2n/3 vertices, we will only have to repeat 

steps 3 and 4 O(1og n)  times, for a total time bound of O(log3 n). 

Before moving on to  third and final paper, we discuss one more supplementary topic-the 

problem of matching. Matching is easy to think about and has many important applications, as 

we will see. 

9 Matching 

Matching is a problem that many researchers know well but does not appear in most introductory 

algorithms textbooks. Matching algorithms show up as subroutines in many other important 

algorithms, including a DFS algorithm that we will describe below. 

In this section, we define the most common matching problems, list some important applications 

of matching, present a history of matching algorithms, and provide a list of open problems. 

9.1 Definitions 

A matching in a finite undirected graph G = (V, E )  is a set M E such that no vertex in V 

is incident with more than one edge in M. A matching on a bipartite graph is called a bipartite 

matching. Some people say "matching" when they really mean "bipartite matching", thereby 

causing needless confusion. A matching of maximum cardinality is called a maximum matching; 

a matching that includes every vertex in G (when it exists) is called a perfect matching. If every 

edge has a numerical weight, the weight of a set of edges is the sum of the weights of each edge. 

A minimum weight perfect matching is a perfect matching of smallest possible weight; a maximum 

weight perfect matching is a perfect matching of largest possible weight. Each of these kinds of 

matchings defines a particular matching problem, of course. 



9.2 Applications of Matching 

There are many applications of matching, both general and bipartite. matching. Applications of 

bipartite matching seem to outnumber applications of general matching, however, which explains 

why so many researchers have focused on speeding up bipartite matching. 

Applications of bipartite matching include: the assignment problem, finding chain decomposi- 

tions in posets, finding coset representatives in groups, finding systems of distinct representatives, 

finding block-triangular decompositions of sparse matrices [31], and the maximal path problem [7]. 

Applications of general matching include scheduling the tasks of multiprocessor computers and 

scheduling transmissions on packet radio networks [44], and DFS in both directed and undirected 

graphs [3, 41. 

9.3 Relationships Among Matching Problems 

We should note that the various matching problems listed above are not completely independent 

of one another. For example, perfect matching trivially reduces to maximum matching, since every 

perfect matching is maximum; we need only find a maximum matching and then check whether it 

has cardinality n/2. Also, maximum matching reduces to minimum-weight (or maximum-weight) 

perfect matching on an edge-weighted graph in which every edge has weight 0 or 1: Given the 

original graph G, we assign each of its edges a weight of 0, then turn it into a complete graph G1 

by adding extra edges of weight 1. Then a maximum matching on G is clearly a minimum-weight 

perfect matching on GI, and vice-versa [36]. 

9.4 History of Matching Algorithms 

Here are the most significant breakthroughs in matching algorithms (both general and bipartite), 

in chronological order: 

a Edmonds showed that general matching was in P, thereby solving an important open problem 

[16]. He did not formally analyze the running time of his algorithm, but a straightforward 

implementation takes time 0 (n4) [43]. 

a Hopcroft and Karp gave an 0(n1I2rn) algorithm for maximum matching in bipartite graphs 

a Gabow improved the running time of Edmonds7s algorithm to O(n3) [20]. 



Kameda and Munro gave an O(nm) algorithm for general matching [34]. 

r Even and Kariv gave an 0(n5I2) algorithm for general matching [17]. 

Micali and Vazirani gave an 0(n'I2m) algorithm for general matching [40]. Peterson and Loui 

correct a few minor errors in the original paper and give a clear exposition of the algorithm 

[44]. This is still the best known deterministic algorithm for general matching. 

Borodin et. al. showed that the size of a maximum matching in a bipartite graph is in RNC. 

Running time: 0(log2 n) [9]. 

Karp et. al. showed that constructing a perfect matching in a general graph is in RNC. 

Running time: 0 (log3 n) [36]. 

r Galil and Pan improved the processor bound of Karp et. al.'s algorithm by a factor of n4 

without increasing the running time [22]. 

Mulmuley et. al. gave a randomized algorithm for maximum matching in general graphs that 

takes time 0(log2 n) [42]. 

r Gabow and Tarjan gave a deterministic algorithm for bipartite matching whose worst-case 

running time is O(n log2 n) [21]. 

Goldberg, Plotkin and Vaidya gave the first sub-linear deterministic algorithm for maximum 

matchings in bipartite graphs. Running time: 0(n2f3 log3 n) [25]. 

Goldberg, Plotkin, Shmoys, and Tardos gave a deterministic algorithm for bipartite matching 

that runs in time O(fi logk m) for some constant k.  This algorithm is faster than the 

previous one for graphs of low to moderate density [24]. 

9.5 Open Problems 

As the above history indicates, the best known randomized algorithms for bipartite and general 

matching are much faster than their deterministic counterparts. Therefore the only significant open 

problems that remain concern deterministic matching. First, is bipartite matching in NC? And 

second, is there a deterministic algorithm for general matching that runs in quadratic time (or 

better)? 



10 Aggarwal and Anderson's RNC Algorithm 

In this section, we describe the first RNC algorithm for DFS in general undirected graphs, due 

to Aggarwal and Anderson [3]. Their algorithm calls general matching algorithms as subroutines, 

and these subroutines are the costliest parts of the algorithm in terms of both time and processors. 

This algorithm is in RNC because general matching is in RNC; if general matching were in NC, 

this algorithm would be too. 

10.1 Definitions 

A path in a graph G = (V, E )  is an ordered set of distinct vertices p = p1,p2,. . . ,pk with edges 

(p;,p;+l) E E for 1 < i < k. A set Q of vertex disjoint paths is a separator if the largest connected 

component of V - Q has size at most n/2. An initial segment of G is a rooted subtree T' that can 

be extended to some DFS tree T .  

10.2 Overview of the Algorithm 

Here is a high-level description of the algorithm [3]. Given G and r ,  we construct an initial segment 

T' rooted at r such that the largest connected component of V - T' has size at most n/2. Let the 

connected components of V - T' be C1, C2,.  . . , C,. For each C;, there is a unique vertex xi E T' of 

greatest depth that is adjacent to some vertex y; of C;. For each C; (in parallel), we find these two 

vertices, recursively construct a DFS tree for C; rooted at y;, and then connect this tree to T' with 

an edge from xi to y;. The size of the recursive problem is at most half of the size of the original 

problem, so the running time of the algorithm is O(1og n) times the time needed to construct TI. 

To construct an initial segment, we first construct a separator Q such that the number of 

paths in Q is less than a fixed constant (hence Q is a "small separator"), then we construct the 

initial segment from Q. Constructing Q is the most complicated and time-consuming part of the 

algorithm. We discuss each of these two tasks in order below. 

10.3 Constructing a Separator 

We wish to construct a set of vertex disjoint paths Q = {ql, q2,. . . , qk) where k is less than a 

fixed constant and the largest component of V - Q has size at most n/2. To do this, we make use 

of a procedure Reduce(Q) which reduces the number of paths in Q by a constant fraction while 

maintaining the separator property. 



Q is initially just V, and the separator property trivially holds. Each call to  Reduce eliminates 

1/12 of the paths in Q, so we only have to  call it 0 (log n) times to ensure that Q contains no more 

than 11 paths. Then we can use Q to construct an initial segment (see Section 10.6). 

10.4 Reducing the Number of Paths 

We now describe the operation of Reduce [3]. The basic idea is to  find a set of vertex disjoint paths 

between pairs of paths in Q, then merge each of these pairs. We divide the paths in Q into two sets, 

L and S (for Long and Short paths, respectively). Suppose we find a set of vertex disjoint paths 

P, and consider a path p E P that connects a path 1 E L to a path s E S. If the endpoints of p are 

x and y, then l = I'xl" and s = s'ys". Now we would like to  use p to  merge 1 and s. If Is'l 2 I S " \ ,  
then we replace I by l'xs' and replace s by st'; otherwise, we replace I by l'xs" and replace s by sf.  

In either case, we discard lN. We have now decreased the length of s by at least half, and we may 

be able to  merge s completely, thereby eliminating it from S .  Clearly, we merge these (1,s) pairs 

in parallel. Our goal is to  proceed in this way until we have reduced the number of paths in Q by a 

constant fraction. Note that we also want P to satisfy two obvious constraints: first, P should be 

as large as possible; and second, the lengths of the segments we discard (I" in our example) should 

be as large as possible. 

Unfortunately, the process we have described will not necessarily work the way we would like 

it to. There are two things that could go wrong: 

1. Discarding a segment (i.e., 1") might cause two of the connected components of V - Q to 

merge, thereby violating the separator property. 

2. The set of vertex disjoint paths we find might not be large enough to  substantially decrease 

the lengths of the paths in S. 

Let us assume for the moment that neither of these cases arises. If initially IQI = IT, we 

begin by putting h7/4 paths in L and 31114 paths in S ;  then we find a set of vertex disjoint paths 

P = {pl,pz,. . . ,pa). We take constraint 1 to  mean that the number of paths found must not be 

less than 11/12, so we assume that I PI > 11/12, i.e., we can reduce the lengths of at least K / 1 2  

paths in S by at  least half. Since there are 3K/4 paths in S initially, we will only have to find 

and merge paths 9logn times at  the most before S becomes empty. We repeat these steps until 

IQI 5 1111/12. 



If either of these cases arises, it turns out that, as long as P satisfies the constraints listed above, 

we can still reduce the number of paths in Q by a constant fraction. First, we consider case 1. Let 

be the paths in L not joined to  paths in P, s be the paths in S not joined to paths in P, and L* 

be the set of path segments in L that are in danger of being discarded. Finally, let T = V - Q - P 

be the set of vertices not on any path. We have the following lemma: 

Lemma 2: If the largest connected component of T U L* has size at least n/2, then the largest 

connected component of T U ( S  - 3 )  has size less than n/2. 

Proof: Since Q is a separator for G, the largest connected component of T has size at most n/2. 

There cannot be a path from any vertex in L* to any vertex in S U that uses vertices of T; if 

there were, we could have found a different set P with the same cardinality and strictly less cost. 

The induced subgraph on T U L* U ( S  - S) must contain at least 2 connected components. Either 

the components containing vertices of L* or the ones containing vertices of S - must have total 

size at most n/2 since L* and S - s are in different components. We assumed that the largest 

connected component of T U L* has size at least n/2, so the size of the components containing S - 3 
in T U L* U ( S  - S) must be at most n/2. Thus the largest connected component of T U ( S  - 3 )  

has size at most n/2. 

Thus if case 1 arises, we can simply add the paths in S - s to T instead. This will reduce 

the total number of paths in Q by a constant fraction [3]. If case 2 arises, we can show by similar 

reasoning that we can discard either the paths in L - or the paths in S - s without violating 

the separator property; this will also reduce the number of paths in Q by a constant fraction. 

10.5 Finding Sets of Disjoint Paths 

Given L and S, we need to find a set of vertex disjoint paths P = {pl,pz,. . . ,pa) such that a is 

as large as possible and, when we use P to merge L and S ,  the lengths of the paths we discard are 

as small as possible. We do this by reducing the problem to two general matching problems (this 

approach, as opposed to more direct approaches, has a lower processor bound) [3]. 

Lemma 3: The problem of finding a maximum set of disjoint paths can be reduced to  that of 

finding the minimum weight perfect matching in some graph G' in which every edge has a weight 

of 0 or 1 only. 



Lemma 4: The problem of finding a minimum cost set of disjoint paths of a given size can be 

reduced to the problem of finding a minimum weight perfect matching in a graph with at  most 2n 

vertices and edges of weight at most n. 

Proofs: The proofs are fairly difficult and are ignored. 

Given these lemmas, we can find a min-cost maximum matching in two steps: first we apply the 

reduction of Lemma 3 to find the sire of the matching we want, and then we apply the reduction 

of Lemma 4 to find the matching itself. We can do both reductions in O(1og n) time using n2 

processors. 

10.6 Constructing an Initial Segment 

Once we have constructed the small separator Q, we must use it to construct an initial segment T' 

rooted at r such that the largest connected component of V - T' has size at  most n/2. This part 

of the algorithm is straightforward. 

Initially, T is just T. We repeatedly pick a path q E Q and extend T' to contain at  least half 

of q. Since the number of paths in Q is a constant (at most ll), we can perform this operation 

sequentially. Given q, we find the lowest vertex in T' from which there is a path to q. Suppose that 

we find such a vertex x, and the path from x leads to a vertex y E q, i.e., q = q'yq". If q' is at  least 

as long as q", we add the path pyq' to T' and replace q by q", otherwise we add the path pyq" to 

T' and replace q by q'. Either way, we reduce the length of q by at least half, so we will repeat this 

process at most 11 log n times. 

We need to show that this algorithm constructs an initial segment with the desired properties. 

To show that we can extend T' to a DFS tree, it suffices to show that there are no paths between 

separate branches of T' whose interior vertices are all in TJ -TI, but this condition holds throughout 

the execution of the algorithm because we extend T' from the lowest possible vertex. Also, the 

largest connected component of V - T' has size at most n/2, because T' consists entirely of paths 

in Q and Q is a separator. 

10.7 Pseudo-Code and Run-Time Analysis 

We can describe the algorithm more formally with the following pseudo-code [3]: 

procedure DFS(G, r)  
T' t Initial-Segment(G, T); 



for each connected component C of G - T' do 
Recursively compute a DFS tree for C ;  
Add this tree to T'; 

end { for } 
end 

procedure Initial-Segment(G, T )  

Q + v ;  
while IQ( > 11 do 

Reduce(Q); 
end { while ) 
Build the initial segment from Q; 

end 

procedure Reduce(Q) 
K + I Q I ;  
Divide Q into two sets L and S, where IL( = 1114 and IS1 = 31114; 
while [ & I  > l l K / 1 2  do 

Find mincost disjoint paths P = {pl , .  . . ,pa) between L and S;  
if a < K/12 then 

if Icc(T U ( S  - 3))  < n/2  then 
Q +  L U S U P ;  

else 
Q + S U ~ U P ;  

return 
else if lcc(T U L*) > n/2  then 

Q + L U ~ U P ;  
return 

else 
Extend the paths of i. Suppose p joins 1 and s, x and y are the endpoints of p 
and 1 = l 'zlN,x = s'ys". If Is'l 2 Isl'I then 1 t I'ps' and s t s N ;  
otherwise, 1 t l'psf' and s t s'. In both cases, I" is discarded. 

end { while } 
end 

Let us analyze the running time of this algorithm. The running time of DFS is O(1og n )  times 

the running time of Initial-Segment, which is O(1ogn) times the running time of Reduce, which is 

O(1og n )  times the time needed to find mincost disjoint paths. Thus the running time is 0(log3 n )  

times the time needed to  find mincost disjoint paths. We reduced this last step to two successive 

matching problems. The best known algorithm for matching takes time 0(log2 n)  [42], so the entire 

algorithm takes time 0(log5 n).  



11 Conclusion 

We have discussed three important papers in the history of parallel DFS algorithms. The result of 

the first one seemed to  imply that DFS was inherently sequential. The second one established that 

an important special case of DFS, namely DFS in planar undirected graphs, is in NC. The third 

one showed that DFS in general undirected graphs is in RNC. We have also discussed several other 

peripheral topics, including P-completeness, the parallel computation thesis, and matching. 

The two most important open problems for DFS are these: Is DFS for either directed or 

undirected graphs in NC? Also, since the complexity of Aggarwal and Anderson's algorithm depends 

so strongly on the complexity of general matching, we would like to know: Is general matching in 

NC? 

Research on parallel DFS algorithms (and on parallel matching algorithms) has progressed 

rapidly in the last few years. It would not be unrealistic to expect an answer to one or more of 

these problems sometime in the near future. 
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