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APPENDIX A 

A SUMMARY OF 

INTERPOLATION METHODS, 

INCLUDING B-SPLINES 

The interpolation of motion between keyframes and the smoothing 

or 11 phrasing 11 of motions at transitions from one motion to another 

require the fitting of smooth curves to the motion variables. To 

facilitate control of the motion, these curves must be easily 

manipulated by the user. Thus the choice of interpolation method is of 

considerable importance. The following discussion considers several 

important interpolation techniques and briefly describes some of their 

advantages and disadvantages in the context of interpolation for 

animation. 

Polynomial Interpolation 

The most straight- forward method of fitting a curve to a set of 

data points is polynomial interpolation. To fit n data points, a 

polynomial of order n is constructed using coefficients chosen so that 

each data point is on the curve. (The 11 order 11 of a polynomial is 

defined as the degree plus one. Thus a cubic polynomial is of order 

4.} The brute-force method involves constructing the polynomial in 

the form 

and substituting the n data points to generate n equations in n 

unknowns. For large values of n, this is rather inefficient, and there 

are two other forms which are more commonly used: the Lagrange form 

and the Newton form. The Lagrange form is shown in Figure Al; the 

expression for the polynomial can be written down directly from the 
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data points. Although this form is very easy to generate, it is not so 

easy to evaluate; the number of multiplications and divisions required 

can become rather large, so that the difficulty in evaluation soon 

comes to outweigh the efficiency in generating the expression for the 

polynomial. 

Lagrange Form 
n 

n X X· _J 

xi xi J = 1 
J ~ i 

n 

p(x) L Yi C (x) 
1 = 1 

Example 
X y 

0 0 p(x) 0 

1 1 +1 (x-0 )(x- 8)(x-2 7) 
( 1-0)( 1-8)( 1-27) 

8 2 +2 (X-O)(X- 1 )(X-2 7) 
(~-0)(~-1 )(~-27) 

27 3 +3 (x-O)(x-1 )(x-6) 
(2 7 -0)(2 7 -1)(2 7 -8) 

Figure Al: The Lagrange Form of Polynomial Interpolation. 
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Newton Form 
n-1 

p(x) = 2: cxi(x-x 1)(x-x 2) ••• (x-xi) 
1=0 

e.g., for n = 4, 

p(x) = cx 0 +cx 1 (x-x ) +cx 2(x-x )(x-x ) 

+ 0<3 (X- X ) ( X- X ) (X- X ) 

The <X 1 are calculated using ·divided differences.· 

Example 
Y ~cxo 

-0----t-0-~ cxl 
~ 0<? 

1-0 = 1 / ... 
1-0 l - 1 / 0<3 

1 1 7 
6-0 = - 1 07 \ 

- 0035-- 107 = 0038 
_1 - 1 27 - 0 . 
19 7 = - 003 5 
2 7-1 

X 

2-1 1 - =-
8-1 7 

8 2 
3-2 1 -=-

27-8 19 

27 3 
So p(x) = 0 + 1 (x-0) + -.1 07(x-O)(x-1) 

+ .0038(x-O)(x-1 )(x-8) I 
Figure A2: The Newton Form of Polynomial Interpolation. 
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The Newton form is shown in Figure A2; although it is somewhat 

more complex to generate the polynomial in this form than in the 

Lagrange form, the result is much easier to evaluate, using a method 

which is similar to Horner's Rule. For most purposes, the Newton form 

of polynomial interpolation strikes a very good balance between ease 

of generation and ease of evaluation. 

Problems with Polynomial Interpolation 

Polynomial interpolation has several problems, however. Large 

slopes and multiple-valued functions (desirable, for instance, to model 

two-dimensional or three-dimensional paths in space) cannot be 

expressed in terms of polynomials. (See Figure A3 for examples.) 

This problem can be solved by the use of parametric interpolation, in 

which the dependent variable is expressed as a function of some 

parameter other than the original independent variable. Arc lengths 

and angles are two common choices for these parameters. 

Large Slope Multiple-valued 
Function 

Figure A3: Curves Not Easily Expressed Using Polynomial Interpolation 

Another difficulty with polynomial interpolation, and one that is 

less easily solved, is that higher-order polynomials have a tendency 
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to oscillate, and the tendency increases with increasing order of the 

polynomial. Figure A4 shows an example of the severe oscillations 

associated with high- degree polynomials. This difficulty makes 

polynomial interpolation quite unacceptable for a large class of 

problems, including the animation problem dealt with in this paper. 

Figure A4: Oscillations Can Occur with Polynomial Interpolation. The 
interpolant here is a polynomial of degree 9; it osci1lates wildly 
between data values. 

One way to avoid the problems of oscillation when using 

polynomial interpolation is to keep the order of the polynomial 

sufficiently low. (The 11order11 of a polynomial is one more than its 

degree; thus a cubic function is considered to be of order 4.) However, 

a single polynomial of order n can interpolate only n data points, 

assuming we want the interpolant to actually pass through the data 

points. One solution is to find a best- fit polynomial of low order. 

This method is often unsatisfactory, as it results in an interpolant 

which does not actually pass through the data points. 
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Piecewise Polynomials 

Another solution is to use not one single interpolant, hut a 

number of them, each of low order. This method is called 11 piecewise 

polynomial interpolation11
• If we use a different polynomial for each 

interval from one data point to the next, and if we can make the 

polynomials join each other in a reasonable way, we derive the 

computational benefits of polynomial interpolation (ease of generating 

and evaluating the interpolant) without the disadvantages of 

oscillations. Figure A5 shows an example using nine different 

polynomials to interpolate the same data points as shown in Figure A4. 

Figure AS: Piecewise Polynomial Interpolation Reduces Oscillations. 
The same data points as in Figure A4 are shown here, but the 
interpolant is actually nine different polynomials, one for each 
interval between data points. 

In piecewise polynomial interpolation, each individual polynomial 
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is defined over a limited domain, or "span11
• The x-values at the end 

points of these spans are called "knots11 or "break points11 
(

11 knots11 

because it is at the knots that the individual pieces are tied together; 

"break points" because it is at the break points that we break from 

using one polynomial and begin using the next). In Figure AS, the 

knots are identical with the x-values of the data points; that is, each 

individual polynomial interpolates the span from one data point to the 

next. This is not a necessary feature of piecewise polynomials; it is 

certainly possible (and sometimes desirable) to define the polynomials 

in such a way that the knots fall in between the data points. 

There are several different ways to choose the individual 

polynomials which will interpolate our data points. We need to choose 

both the order of the polynomials to be used, and how they are to be 

joined to each other. For many purposes cubic polynomials have been 

found to be quite satisfactory: they are of low enough order that they 

show little tendency to oscillate, and of high enough order that they 

can be controlled to fit both the data and each other in a reasonable 

way. There are times, of course, when other choices will be 

appropriate, but in the following discussion of how the polynomials 

are to be specified, we will assume the use of cubic polynomials. 

One way of determining the polynomial pieces to be used, called 

Hermite interpolation, requires us to specify both the value and the 

first derivative at each data point. Each polynomial piece is then 

required to fit four conditions (two at each end point), and this 

completely determines a cubic polynomial. This method provides the 

user with control over both the value and the slope of the curve at 

each data point. If control over slope is desired, Hermite 

interpolation is a good choice. However, this control is often 

undesirable; if no reliable information is available about the value of 

the derivative at the data points, Hermite interpolation should be 

avoided. Another disadvantage of hermite interpolation is that the 

interpolant is discontinuous in the second derivative at each data 

point; for many applications this discontinuity is perceptible and 

therefore unacceptable. 
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Spline Interpolation 

A second method of piecewise polynomial interpolation is 

everywhere continuous in the function itself and in its first two 

derivatives. This method provides the maximum smoothness possible 

for the order of the polynomials used; it is called "spline" 

interpolation after the draftsman's spline (a thin flexible strip which 

the draftsman can bend to create a smooth curve passing through a 

number of points). In cubic spline interpolation (that is, piecewise 

polynomial interpolation using cubic polynomial pieces which are 

continuous in the second derivative where they join), each piece must 

pass through the two data points which mark the beginning and end of 

that piece, and both the first and second derivatives of the piece must 

match the corresponding derivatives of the adjacent pieces at the data 

points. 

Let us analyze the number of conditions needed to completely 

determine the cubic pieces which interpolate n data points. Since n-1 

pieces are required, and each piece is defined by four coefficients, a 

total of 4n-4 conditions are needed. Each piece must pass through the 

two data points which mark its beginning and end; this requirement 

supplies 2n-2 of the conditions. We require continuity of two 

derivatives at each of n- 2 internal data points; this requirement 

supplies 2n-4 conditions. Thus we are only two conditions short. We 

can specify the additional two conditions in any of several different 

ways. A discussion of some commonly used conditions follows. 

End conditions 

The remaining two conditions which we must supply to determine 

our piecewise cubic polynomial are commonly called end conditions, 

because they are most commonly specified at one end or another of the 

interpolant. (In fact, they could instead be specified at some internal 

point, if desired.) One common method is to specify the value of either 
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the first or second derivative at one end or the other. Since any 

combination of two conditions will do, we could specify the first 

derivative at the beginning and the second derivative at the end, or 

the second derivative at the beginning of the interpolant and the first 

derivative at some point internal to the interpolant, or any other 

combination we desire. 

If there is any information available about derivatives at the end 

points of the spline, that information should be used to establish 

appropriate end conditions. It is commonly the case that such 

information is not available, and we are left with the problem of 

generating two end conditions without any satisfactory basis for 

making our choice. Several alternatives present themselves. he could 

specify a zero second derivative at both ends of the spline; the spline 

thus generated is often called a "natural" spline. In the absence of 

any justification for this choice, it is actually likely to distort the 

curve and give less satisfactory results than can be otherwise 

achieved. [DeBo78, p. 55] A better choice in the absence of any actual 

information about end point derivatives is the not- a- knot condition, 

in which we force the first and last polynomial pieces each to 

interpolate two spans. (Figure AS above is actually a spline 

interpolant generated using not-a- knot end conditions.) 

Basis Functions 

Any given polynomial can be expressed in a number of different 

ways. The normal "power" form, the Lagrange form, and the Newton 

form are three examples. In each case, a polynomial of order k is 

expressed as the sum of k linearly independent terms, with each term 

consisting of a coefficient multiplied by some polynomial function of 

the independent variable. These linearly independent polynomial 

functions (of order less than or equal to k) are called "basis" 

functions, since they form a satisfactory basis for expressing any 

polynomial of the appropriate order. (Note that if the functions are 

linearly independent, at least one of them must be of order k.) Several 
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different sets of basis functions which can be used to express cubic 

polynomials are shown in Figure A6; formulas for the individual 

functions making up each basis are shown in Figure A7. 

Power Basis Hermite Basis 

Bernstein Basis - Spline Basis 

Figure A6: Four Sets of Basis Functions. The functions are all defined 
on the domain (0, 1); they may readily be adjusted for other domains. 
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