
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

2-27-2014

A Linear/Producer/Consumer Model of Classical Linear Logic A Linear/Producer/Consumer Model of Classical Linear Logic

Jennifer Paykin
jpaykin@gmail.com

Stephan A. Zdancewic
University of Pennsylvania, stevez@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Jennifer Paykin and Stephan A. Zdancewic, "A Linear/Producer/Consumer Model of Classical Linear
Logic", . February 2014.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-14-03.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/991
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_reports%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_reports%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/991
mailto:repository@pobox.upenn.edu

A Linear/Producer/Consumer Model of Classical Linear Logic A Linear/Producer/Consumer Model of Classical Linear Logic

Abstract Abstract
This paper defines a new proof- and category-theoretic framework for classical linear logic that separates
reasoning into one linear regime and two persistent regimes corresponding to ! and ?. The resulting
linear/producer/consumer (LPC) logic puts the three classes of propositions on the same semantic
footing, following Benton's linear/non-linear formulation of intuitionistic linear logic. Semantically, LPC
corresponds to a system of three categories connected by adjunctions that reflect the linear/producer/
consumer structure. The paper's metatheoretic results include admissibility theorems for the cut and
duality rules, and a translation of the LPC logic into the category theory. The work also presents several
concrete instances of the LPC model, including one based on finite vector spaces.

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-14-03.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/991

https://repository.upenn.edu/cis_reports/991

A Linear/Producer/Consumer model of Classical Linear Logic

Jennifer Paykin Steve Zdancewic
University of Pennsylvania

MS-CIS-14-03

February 27, 2014

Abstract

This paper defines a new proof- and category-theoretic framework for classical linear logic that sepa-
rates reasoning into one linear regime and two persistent regimes corresponding to ! and ?. The resulting
linear/producer/consumer (LPC) logic puts the three classes of propositions on the same semantic footing,
following Benton’s linear/non-linear formulation of intuitionistic linear logic. Semantically, LPC corre-
sponds to a system of three categories connected by adjunctions that reflect the linear/producer/consumer
structure. The paper’s metatheoretic results include admissibility theorems for the cut and duality rules,
and a translation of the LPC logic into the category theory. The work also presents several concrete
instances of the LPC model, including one based on finite vector spaces.

1 Introduction

Since its introduction by Girard in 1987, linear logic has been found to have a range of applications in
logic, proof theory, and programming languages. Its notion of “resource consciousness” sheds light on
topics as diverse as proof search (Liang and Miller 2009), memory management (Ahmed et al. 2007), alias
control (Hicks et al. 2004), computational complexity (Gaboardi 2007), and security (Zdancewic and Myers
2002), among many others.

Linear logic’s power stems from its ability to carefully manage resource usage: it makes a crucial distinc-
tion between linear (used exactly once) and persistent (unrestricted use) hypotheses, internalizing the latter
via the ! connective. From a semantic point of view, the literature has converged (following Benton (1995))
on an interpretation of ! as a comonad given by ! = F ◦G where F a G is a symmetric monoidal adjunction
between categories L and P arranged as shown below:

LP >

G

F

Here, L (for “linear”) is a symmetric monoidal closed category and P (for “persistent”) is a cartesian
category. This is, by now, a standard way of interpreting intuitionistic linear logic (for details, see the
discussion in Melliès’ article (Melliès 2009)).

If, in addition, the category L is ∗-autonomous, then the structure above is sufficient to interpret classical
linear logic, where the monad ? is determined by ? = (Fop (Gop (−⊥)))⊥. While sound, this situation is not
entirely satisfactory because it essentially commits to a particular implementation of ? in terms of Pop,
which, as we show, is not necessary.

With that motivation, this paper defines a proof- and category-theoretic framework for full classical linear
logic that uses two persistent categories: one corresponding to ! and one to ?. The resulting categorical

1

L

P C

a ad−e b−c

FP FC

(−)⊥

(−)∗

(−)∗

Figure 1: Categorical model with linear, producing and consuming categories.

structure is shown in Figure 1, where P now takes the place of the “producing”, category, in duality with C
as the “consuming” category. This terminology comes from the observations that:

!A ` 1 !A ` A !A ` !A ⊗ !A
⊥ ` ?A A ` ?A ?A ` ?A ` ?A

Intuitively, the top row means that !A is sufficient to produce any number of copies of A and, dually, the
bottom rows says that ?A can consume any number of copies of A.

Contributions. In Section 2 we survey Benton’s linear/non-linear presentation of intuitionistic linear
logic (Benton 1995). Section 3 defines a linear/producer/consumer (LPC) presentation of classical linear logic
which, extending Benton’s work, syntactically exhibits the decomposition of ! and ? into their constituent
functors. We prove that cut and duality rules are admissible in the logic, and that LPC is consistent.

Section 4 develops the categorical model for LPC, relates it to other models from the literature, and
considers how to interpret judgments of the LPC logic as morphisms in the appropriate categories. Section 5
presents several concrete example instances of the LPC categorical framework, and, in particular, gives an
example in which C is not just Pop.

We conclude the paper with a discussion of related work.

2 Linear/Non-Linear Logic

This section introduces the Linear/Non-Linear (LNL) model of intuitionistic linear logic presented by Benton
(1995, 1994). In traditional presentatons of linear logic, the exponential !A is a linear proposition with
persistance. This means linearlity is the default state of the system, and persistance the exception. In
the larger context of term calculi, it often is more natural to have two kinds of variables and propositions
depending on whether the variable will be used linearly or persistantly (Barber 1996). This linear/non-
linear or linear/persistent paradigm shifts the balance of power by placing linearity and persistance on equal
footing. Categorically, such a relationship can be modelled as a symmetric monoidal adjunction between a
cartesian (non-linear) category P and a symmetric monoidal closed (linear) category L:

LP >

G

F

This categorical axiomatization will be revisited in Section 4.

2

The LNL logic is made up of a pair of sequents—one linear and one persistent. There are two classes of
propositions, as follows:

A,B := I | A ⊗ B | A(B | F X

X ,Y := 1 | X × Y | X → Y | G A

The linear sequent may reference either linear propositions A or persistent propositions X in order to prove
a linear proposition; thus sequents are of the form Θ; Γ `L A where Θ ranges over persistent propositions
and Γ ranges over linear propositions. Meanwhile non-linear sequents are of the form Θ `P X , meaning that
they may refer to only persistent propositions in order to prove a persistent proposition.

One of the principle properties of linear logic is that every hypothesis is used exactly once in a derivation.
Consequently, the so-called “linear” rules for axioms, ⊗, ×, (and → always partition contexts instead of
duplicating them. However, the expected behavior for non-linear propositions is that they can be used any
number of times. This behavior is encoded explicitly by means of the weakening and contraction rules, which
are applicable for non-linear propositions in either the linear or non-linear sequents:

Θ,X ,X ; Γ `L A

Θ,X ; Γ `L A
CL

Θ; Γ `L A

Θ,X ; Γ `L A
WL

Θ,X ,X `P Y

Θ,X `P Y
CC

Θ `P Y

Θ,X `P Y
WC

The only way to move in between the linear and non-linear sequents is by passing through the F and G
functors:

Θ,X ; Γ `L A

Θ; F X ,Γ `L A
F-L

Θ `P X

Θ `L F X
F-R

Θ; A,Γ `L A

Θ,G A; Γ `L A
G-L

Θ `L A

Θ `P G A
G-R

There are three forms of the cut rule, depending on the type of the cut term and sequent. These have
the following form:

Θ1; Γ1 `L A Θ2; A,Γ2 `L B

Θ1,Θ2; Γ1,Γ2 `L B
CutLL

Θ1 `P X X ,Θ2; Γ `L A

Θ1,Θ2; Γ `L A
CutPL

Θ1 `P X X ,Θ2 `P Y

Θ1,Θ2 `P Y
CutPC

We will see in Section 3 that the form of these rules carries over to the LPC logic defined in that section.
In LNL, the formulation of these rules stems from the syntactic separation between linear and persistent
propositions; linear sequents prove linear propositions and persistent sequents prove persistent propositions.
The LPC cut rules follow the same pattern of linear versus persistent sequents, but the structural necessity
of this formulation is less apparent in that context. Nevertheless, the formulation is semantically necessary
with regards to cut admissibility in LPC.

3

3 Linear/Producer/Consumer Logic

The syntax of the LPC logic is made up of three syntactic forms for propositions (as opposed to Benton’s
two): linear propositions A, producer propositions P and consumer propositions C .

A ::= 0 | A1 ⊕ A2 | > | A1 & A2

| 1L | A1 ⊗ A2 | ⊥L | A1 ` A2

| F! P | F? C
P ::= 1P | P1 ⊗ P2 | dAe
C ::= ⊥C | C1 ` C2 | bAc

The syntactic form of a proposition is called its mode—linear L, producing P or consuming C. The meta-
variable X ranges over propositions of any mode, and the tagged meta-variable X m ranges over propositions
of mode m. The term persistent refers to propositions that are either producers or consumers.

LPC replaces the usual constructors ! and ? with two pairs of connectives: F! and d−e as well as F?

and b−c. If A is a linear proposition, dAe is a producer and bAc is a consumer. On the other hand, a
producer proposition P may be “frozen” into a linear proposition F! P , effectively discarding its persistent
characteristics. Similarly for a consumer C , F? C is linear. The linear propositions !A and ?A are encoded
in this system as F! (dAe) and F? (bAc) respectively.

The syntax does not include duality operators. Later on in this section we will define duality as a
meta-operation on propositions and prove that duality rules are admissible in the logic.

The inference rules of the logic are given in Figures 2 to 5. There two sequent relations: the linear sequent
Γ ` ∆ and the persistent sequent Γ ∆. In the linear sequent, the contexts Γ and ∆ may be made up of
propositions of any mode: linear, producing, or consuming. In the persistent sequent, however, the contexts
may contain only persistent propositions. The denotation ΓP refers to contexts containing only producer
propositions, and ∆C refers to contexts containing only consumer propositions.

The linear inference rules in Figures 2 and 3 encompass rules for the units and the linear operators ⊕,
&, ⊗ and `. It is worth noting that the multiplicative product ⊗ is defined only on linear and producer
propositions, while the multiplicative sum ` is defined only on linear and consumer propositions.

The structural inference rules are given in Figure 4. Weakening and contraction apply only for producers
on the left and consumers on the right. The rules for the operators F!, F?, d−e and b−c are more interesting
as they must be able to encode dereliction and promotion. On the left, the F! and d−e rules can be applied
freely to transform linear propositions into producers and vice versa. These rules emulate the dereliction
rule for linear logic:

Γ,A ` ∆

Γ, !A ` ∆ versus

Γ,A ` ∆

Γ, dAe ` ∆
d−e-L

Γ, F! dAe ` ∆
F!-L

On the right however, these rules can only be applied when the contexts are persistent and of the correct
form, as in the ! introduction rule in linear logic:

Γ! ` ∆?,A

Γ! ` ∆?, !A versus

ΓP ` ∆C,A

ΓP ∆C, dAe
d−e-R

ΓP ` ∆C, F! dAe
F!-R

The F? and b−c rules are dual to those of F! and d−e.

3.1 Displacement

The commas on the left-hand-side of both the linear and persistent sequents intuitively correspond to the
multiplicative product ⊗, and the commas on the right correspond to the multiplicative sum `. This
correspondence motivates the context restriction of the rules that move between the linear and persistent

4

X ` X
Ax`

m ∈ {L,C}
⊥m ` ·

⊥`-L
Γ ` ∆ m ∈ {L,C}

Γ ` ∆,⊥m
⊥`-R

Γ,A ` ∆

Γ,A & B ` ∆
&
`
L -L1

Γ,B ` ∆

Γ,A & B ` ∆
&
`
L -L2

Γ ` ∆,A1 Γ ` ∆,A2

Γ ` ∆,A1 & A2
&
`
L -R Γ ` ∆,>

>`L -R

Γ, 0 ` ∆
0`L -L

Γ,A1 ` ∆ Γ,A2 ` ∆

Γ,A1 ⊕ A2 ` ∆
⊕`L -L

Γ ` ∆,A

Γ ` ∆,A ⊕ B
⊕`L -R1

Γ ` ∆,B

Γ ` ∆,A ⊕ B
⊕`L -R2

Γ,X1
m,X2

m ` ∆ m ∈ {L,P}
Γ,X1

m ⊗ X2
m ` ∆

⊗`-L
Γ1 ` ∆1,X1

m Γ2 ` ∆2,X2
m m ∈ {L,P}

Γ1,Γ2 ` ∆1,∆2,X1
m ⊗ X2

m ⊗`-R

Γ ` ∆ m ∈ {L,P}
Γ, 1m ` ∆

1`-L
m ∈ {L,P}
· ` 1m

1`-R

Γ1,X1
m ` ∆1 Γ2,X2

m ` ∆2 m ∈ {L,C}
Γ1,Γ2,X1

m ` X2
m ` ∆1,∆2

``-L Γ ` ∆,X1
m,X2

m m ∈ {L,C}
Γ ` ∆,X1

m ` X2
m ``-R

Figure 2: Linear Inference Rules for Linear Sequent

P P
Ax

P C C
Ax

C

Γ,P1,P2 ∆

Γ,P1 ⊗ P2 ∆
⊗
P -L

Γ1 ∆1,P1 Γ2 ∆2,P2

Γ1,Γ2 ∆1,∆2,P1 ⊗ P2
⊗
P -R

Γ ∆

Γ, 1P ∆
1P -L · 1P

1P -R

Γ1,C1 ∆1 Γ2,C2 ∆2

Γ1,Γ2,C1 ` C2 ∆1,∆2
`
C -L

Γ ∆,C1,C2

Γ ∆,C1 ` C2
`
C -R

⊥C ·
⊥

C -L
Γ ∆

Γ ∆,⊥C
⊥

C -R

Figure 3: Linear Inference Rules for Persistent Sequent

5

Γ ` ∆

Γ,P ` ∆
W`-L

Γ ` ∆

Γ ` ∆,C
W`-R

Γ ∆

Γ,P ∆
W-L

Γ ∆

Γ ∆,C
W-R

Γ,P ,P ` ∆

Γ,P ` ∆
C`-L

Γ ` ∆,C ,C

Γ ` ∆,C
C`-R

Γ,P ,P ∆

Γ,P ∆
C-L

Γ ∆,C ,C

Γ ∆,C
C-R

Γ,P ` ∆

Γ, F! P ` ∆
F!-L

ΓP ∆C,P

ΓP ` ∆C, F! P
F!-R

ΓP,C ∆C

ΓP, F? C ` ∆C
F?-L

Γ ` ∆,C

Γ ` ∆, F? C
F?-R

Γ,A ` ∆

Γ, dAe ` ∆
d−e-L

ΓP ` ∆C,A

ΓP ∆C, dAe
d−e-R

ΓP,A ` ∆C

ΓP, bAc ∆C
b−c-L

Γ ` ∆,A

Γ ` A, bAc
b−c-R

Figure 4: Structural Inference Rules

Γ1 ` ∆1,A A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
Cut`L

ΓP
1 ∆C

1 ,P P ,Γ2 ` ∆2

ΓP
1 ,Γ2 ` ∆C

1 ,∆2
Cut`P

ΓP
1 ∆C

1 ,P P ,Γ2 ∆2

ΓP
1 ,Γ2 ∆C

1 ,∆2
Cut

P

Γ1 ` ∆1,C C ,ΓP
2 ∆C

2

Γ1,ΓP
2 ` ∆1,∆C

2

Cut`C
Γ1 ∆1,C C ,ΓP

2 ∆C
2

Γ1,ΓP
2 ∆1,∆C

2

Cut
C

Figure 5: Cut Inference Rules

6

regimes. The restriction ensures that almost all of the propositions have the “natural” mode—producers
on the left and consumers on the right. We say almost because the principle formula in each of these rules
defies this classification. We will call such propositions displaced.

Definition 1. In a derivation of Γ ∆, a producer P is displaced if it appears in ∆. A consumer C is
displaced if it appears in Γ.

Lemma 2 (Displacement). For any LPC derivation D of Γ ∆, D contains exactly one displaced propo-
sition.

Proof. By straightforward induction on D.
If D is a producer axiom, then the proposition on the right is displaced; if D is a consumer axiom, then

the proposition on the left is displaced.
If the last rule in D is a left tensor rule then then principle formula is not displaced, so the inductive

hypothesis applies directly to prove there is exactly one displaced formula in D. Similarly, weakening and
contraction occur only for non-displaced propositions.

If D is the 1P right rule then 1P occurs in a displaced position with no other propositions in the contexts.
Suppose the last rule in D is a ⊗-R rule as follows:

D =

D1

Γ1 ` ∆1,P1

D2

Γ2 ` ∆2,P2

Γ1,Γ2 ` ∆1,∆2,P1 ⊗ P2

⊗`P -R

The inductive hypotheses for D1 and D2 state that there is exactly one displaced formula in each of these
derivations. Since P1 is displaced in D1, none of the formulas in Γ1 or ∆1 may be displaced, and similarly
for D2. Therefore the only displaced formula in D itself is P1 ⊗ P2.

Suppose the last rule in ∆ is a d−e-R rule:

D =

D′

ΓP ` ∆C,A

ΓP ` ∆C, dAe
d−e-R

By construction, none of the propositions in ΓP or ∆C are displaced, although dAe is.
The cases for ⊥C, ` and b−c are similar.

3.2 Cut Rules

This section presents the cut rules of Figure 5 and proves they are admissible in LPC. These rules are
perhaps unintuitive—a simpler cut formulation might include the following pair of rules:

D1

Γ1 ` ∆1,P

D2

Γ2,P ` ∆2

Γ1,Γ2 ` ∆1,∆2

CutP-Bad1

D1

Γ1 ` ∆1,P

D2

Γ2,P ∆2

Γ1,Γ2 ` ∆1,∆2

CutP-Bad2

Notice that these rules could not be structured to produce persistent judgments when at least one of the
hypotheses are linear, because linear propositions are not possible in persistent judgments. To see why these
rules are inadmissible in LPC, consider the simple derivations

D1 =

· ` 1P
1`P -R

1L ` 1P
1`L -L

and D2 =

· ` 1L
1`L -R

1P ` 1L
1`P -L

1P d1Le
d−e-R

7

Γ1 ` ∆1,A A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
Cut+`L

ΓP
1 ∆C

1 ,P (P)n,Γ2 ` ∆2

ΓP
1 ,Γ2 ` ∆C

1 ,∆2
Cut+`P

ΓP
1 ∆C

1 ,P (P)n,Γ2 ∆2

ΓP
1 ,Γ2 ∆C

1 ,∆2
Cut+

P

Γ1 ` ∆1, (C)n C ,ΓP
2 ∆C

2

Γ1,ΓP
2 ` ∆1,∆C

2

Cut+`C
Γ1 ∆1, (C)n C ,ΓP

2 ∆C
2

Γ1,ΓP
2 ∆1,∆C

2

Cut+
C

Figure 6: Cut+ Inference Rules

Then the cut rule would postulate a derivation of 1L ` d1Le. But there is no cut-free method of constructing
this derivation as it is impossible to introduce a term of the form d−e on the right-hand-side of a linear
sequent.

The next logical step is to restrict the propositions in D1 to persistent ones when the cut term is a
producer—this way the resulting cut could produce a persistent judgment as well. So consider the following
rule:

D1

ΓP
1 ` ∆C

1 ,P

D2

Γ2,P ` ∆2

ΓP
1 ,Γ2 ` ∆C

1 ,∆2

CutP-Bad3

D1

ΓP
1 ` ∆C

1 ,P

D2

Γ2,P ∆2

ΓP
1 ,Γ2 ∆C

1 ,∆2

CutP-Bad4

Consider then the derivations

D1 =

· ` 1P
1`P -R

1L ` 1P
1`L -L

d1Le ` 1P
d−e-L

and D2 =

⊥C ⊥C
Ax

⊥C, 1P ⊥C
1
P -L

Then the desired cut sequent would be of the form d1Le,⊥C ⊥C, which is not provable in LPC without
Cut.

Admissibility

To show admissibility of the Cut rules, it is sufficient to show admissibility of an equivalent set of rules, called
Cut+, which are given in Figure 6. For linear cut terms, the Cut+ rule is identical to the corresponding
Cut rule. For persistent cut terms, Cut+ uses the observation that when a persistent proposition is not
displaced in a sequent, it can be replicated any number of times. That is, for any n the derivations

Γ, (P)n ` ∆

Γ,P ` ∆ and

Γ ` ∆, (C)n

Γ ` ∆,C

are admissible in LPC, and similarly for the persistent derivation. It is easy to see that the Cut and Cut+
rules are equivalent in strength.

Lemma 3 (Cut+ Admissibility). The Cut+ rules in Figure 6 are admissible in LPC.

Proof. Let D1 and D2 be the hypotheses of one of the cut rules. We proceed by induction on the cut term
primarily and the sum of the depths of D1 and D2 secondly.

1. Suppose D1 or D2 ends in a weakening rule on the cut term. In the case where the cut term is a
producer and D2 is a linear judgment, we have

D1

ΓP
1 ∆C

1 ,P and

D′2
Γ2, (P)n ` ∆2

Γ2, (P)n+1 ` ∆2

W-L

8

By the inductive hypothesis on P , D1 and D′2, there exists a cut-free derivation of ΓP
1 ,Γ2 ` ∆C

1 ,∆2.
The persistent judgment and consumer cases are similar.

2. Suppose D1 or D2 ends in a contraction rule on the cut term. Again, if the cut term is a producer and
D2 is a linear judgment, then

D1

ΓP
1 ∆C

1 ,P and

D′2
Γ2, (P)n+2 ` ∆2

Γ2, (P)n+1 ` ∆2

C-L

By the inductive hypothesis on P , D1 and D′2, there exists a derivation of ΓP
1 ,Γ2 ` ∆C

1 ,∆2. The
persistent judgment and consumer cases are similar.

3. If D1 or D2 is an axiom, the case is trivial.

4. Suppose the cut term is the principle formula in both D1 and D2. It suffices to exclude weakening and
contraction rules, as these have already been covered.

(&)

D1 =

D11

Γ1 ` ∆1,A1

D12

Γ1 ` ∆1,A2

Γ1 ` ∆1,A1 & A2

&`L -R
and D2 =

D′2
Γ2,A1 ` ∆2

Γ2,A1 & A2 ` ∆2

&`L -L1

By the inductive hypothesis on A1, D11 and D′2 there exists a derivation of Γ1,Γ2 ` ∆1,∆2 as
desired.

(1L)

D1 = · ` 1L
1`L -R

and D2 =

D′2
Γ2 ` ∆2

Γ2, 1L ` ∆2

1`L -L

Then D′2 itself is the desired derivation.

(⊗L)

D1 =

D11

Γ11 ` ∆11,A1

D12

Γ12 ` ∆12,A2

Γ11,Γ12 ` ∆11,∆12,A1 ⊗ A2

⊗`L -R
and D2 =

D′2
Γ2,A1,A2 ` ∆2

Γ2,A1 ⊗ A2 ` ∆2

⊗`L -L

By the inductive hypothesis on A2, D12 andD′2, there exists a derivation E of Γ12,Γ2,A1 ` ∆12,∆2.
By the inductive hypothesis on A1, D11 and E we can then obtain the desired derivation of
Γ11,Γ12,Γ2 ` ∆11,∆12,∆2.

(⊗P)

D1 =

D11

ΓP
11 ∆C

11,P1

D12

ΓP
12 ∆C

12,P2

ΓP
11,Γ

P
12 ∆C

11,∆
C
12,P1 ⊗ P2

⊗
P -R

and D2 =

D′2
Γ2, (P1 ⊗ P2)n,P1,P2 ` ∆2

Γ2, (P1 ⊗ P2)n+1 ` ∆2

⊗`P -L

First of all, the inductive hypothesis on P1 ⊗ P2, D1 itself and D′2 gives us a derivation

E
ΓP
11,Γ

P
12,Γ2,P1,P2 ` ∆C

11,∆
C
12,∆2

9

Multiple applications of the inductive hypothesis give the following derivation:

D11

ΓP
11 ∆C

11,P1

D12

ΓP
12 ∆C

12,P2

E
ΓP
11,Γ

P
12,Γ2,P1,P2 ` ∆C

11,∆
C
12,∆2

ΓP
12,Γ

P
11,Γ

P
12,Γ2,P1 ` ∆C

12,∆
C
11,∆

C
12,∆2

IH(P2)

ΓP
11,Γ

P
12,Γ

P
11,Γ

P
12,Γ2 ` ∆C

11,∆
C
12,∆

C
11,∆

C
12,∆2

IH(P1)

Because the replicated contexts are made up exclusively of non-displaced propositions, it is possible
to apply contraction multiple times to obtain the desired sequent.

(F!)

D1 =

D′1
ΓP
1 ∆C

1 ,P

ΓP
1 ` ∆C

1 , F! P
F!-R

and D2 =

D′2
Γ2,P ` ∆

Γ2, F! P ` ∆
F!-L

Because of the form of the F!-R rule, D′1 has an acceptable form for which to apply the inductive
hypothesis.

(d−e)

D1 =

D′1
ΓP
1 ` ∆C

1 ,A

ΓP
1 ∆C

1 , dAe
d−e-R

and D2 =

D′2
Γ2,A ` ∆2

Γ2, dAe ` ∆2

d−e-L

The desired derivation is given by the inductive hypothesis applied to A, D′1 and D′2.

5. Suppose the cut term is not the principle formula in D1.

(0-L)

D1 = Γ1, 0 ` ∆1,A
0`L -L

and

D2

Γ2,A ` ∆2

The desired derivation of Γ1, 0,Γ2 ` ∆1,∆2 can be obtain by a direct application of the 0-L rule.

(⊕-L)

D1 =

D11

Γ1,A1 ` ∆1,B

D12

Γ1,A2 ` ∆1,B

Γ1,A1 ⊕ A2 ` ∆1,B
⊕`L -L

and

D2

Γ2,B ` ∆2

The inductive hypothesis on B , D11 and D2 asserts the existence of a derivation E ′1 of Γ1,A1,Γ2 `
∆1,∆2 and similarly the inductive hypothesis for A2, D12 and D2 gives a derivation E ′2 of
Γ1,A2,Γ2 ` ∆1,∆2. The desired derivation is given by application of the ⊕-L rule:

E1
Γ1,A1,Γ2 ` ∆1,∆2

E2
Γ1,A2,Γ2 ` ∆1,∆2

Γ1,A1 ⊕ A2,Γ2 ` ∆1,∆2

⊕`L -L

(⊕-R)

D1 =

D′1
Γ1 ` ∆1,A1,B

Γ1 ` ∆1,A1 ⊕ A2,B
⊕`L -R1

and

D2

Γ2,B ` ∆2

The inductive hypothesis on B , D′1 and D2 gives a derivation E of Γ1,Γ2 ` ∆1,A1,∆2, from which
we can obtain

E
Γ1,Γ2 ` ∆1,A1,∆2

Γ1,Γ2 ` ∆1,A1 ⊕ A2,∆2

⊕`L -R1

10

(1P -L)

D1 =

D′1
Γ1 ∆1,P

Γ1, 1P ∆1,P
1
P -L

As in the previous examples, application of the constructor commutes with application of the
inductive hypothesis.

(⊗
P -L)

D1 =

D′1
Γ1,P1,P2 ∆1,Q

Γ1,P1 ⊗ P2 ∆1,Q
⊗

P -L
and

D2

Γ2, (Q)n ` ∆2

By the inductive hypothesis on Q , D′1 andD2, there exists a derivation E of Γ1,P1,P2,Γ2 ` ∆1,∆2.
From this we can apply the ⊗-L rule to obtain

E
Γ1,P1,P2,Γ2 ` ∆1,∆2

Γ1,P1 ⊗ P2,Γ2 ` ∆1,∆2

⊗`P -L

(⊗`L -R)

D1 =

D11

Γ11 ` ∆11,A1

D12

Γ12 ` ∆12,A2,B

Γ11,Γ12 ` ∆11,∆12,A1 ⊗ A2,B
⊗`L -R

and

D2

Γ2,B ` ∆2

The inductive hypothesis on B , D12 and D2 asserts the existence of a derivation E of Γ12,Γ2 `
∆12,A2,∆2. Application of the ⊗-R rule on D11 and E gives the desired derivation.

(·) If the cut term is a producer, then D1 is a persistent judgment so it cannot be the case that the
last rule of D1 is a F! rule or a d−e-L or b−c-R rule. But it also cannot be the case that the last
rule in D1 is a in a d−e-R or b−c-L rule because there is a non-principle formula—namely, the
cut formula—which is in a displaced position.

(F!-L)

D1 =

D′1
Γ1,P ` ∆1, (C)n

Γ1, F! P ` ∆1, (C)n
F!-L

and

D2

ΓP
2 ,C ∆C

2

Then the inductive hypothesis on C , D′1 and D2 states that there exists a derivation E of
Γ1,P ,Γ

P
2 ` ∆1,∆

C
2 from which we can obtain

E
Γ1,P ,Γ

P
2 ` ∆1,∆

C
2

Γ1, F! P ,ΓP
2 ` ∆1,∆

C
2

F!-L

(F!-R)

D1 =

D′1
ΓP
1 ∆C

1 , (C)n,P

ΓP
1 ` ∆C

1 , (C)n, F! P
F!-R

and

D2

ΓP
2 ,C ∆C

2

Then by the inductive hypothesis on C , D′1 and D2 there exists a derivation E of ΓP
1 ,Γ

P
2

∆C
1 ,P ,∆

C
2 . From this we may construct the following derivation:

E
ΓP
1 ,Γ

P
2 ∆C

1 ,P ,∆
C
2

ΓP
1 ,Γ

P
2 ` ∆C

1 , F! P ,∆C
2

F!-R

11

(d−e-L)

D1 =

D′1
Γ1,A ` ∆1,B

Γ1, dAe ` ∆1,B
d−e-L

and

D2

Γ2,B ` ∆2

The inductive hypothesis on B , D′1 and D2 gives a derivation of Γ1,A ` ∆1,∆2, to which the left
d−e rule can be applied as usual.

(d−e-R)

D1 =

D′1
ΓP
1 ` ∆C

1 ,A, (C)n

ΓP
1 ∆C

1 , dAe, (C)n
d−e-R

and

D2

ΓP
2 ,C ∆C

2

By the inductive hypothesis on P , D′1 and D2, there is a derivation E of ΓP
1 ,Γ

P
2 ` ∆C

1 ,A,∆
C
2 .

Because the contexts in D2 were undisplaced, it is possible to apply the d−e-R rule to E to obtain

E
ΓP
1 ,Γ

P
2 ` ∆C

1 ,A,∆
C
2

ΓP
1 ,Γ

P
2 ∆C

1 , dAe,∆C
2

d−e-R

(W-L)

D1 =

D′1
ΓP
1 ∆C

1 ,Q

ΓP
1 ,P ∆C

1 ,Q
W-L

and

D2

Γ2, (Q)n ` ∆2

Weakening can be applied to any context, so here it commutes with the inductive hypothesis.
The case for contraction is similar.

Corollary 4 (Cut Admissibility). The Cut rules in Figure 5 are admissible in LPC.

3.3 Duality

Looking again at the LPC inference rules, it is easy to see that every rule has a dual. We take advantage of
this implicit duality in our proofs to cut down the number of cases we have to consider, but we have not yet
made this notion formal. Unlike standard presentations of linear logic, LPC does not consist of an explicit
duality operator (−)⊥, nor a linear implication (with which to encode duality. Instead, we will define
(−)⊥ to be a meta-operation on propositions and prove the following duality rules are admissible in LPC:

Γ ` ∆,A

Γ,A⊥ ` ∆
(−)⊥-L

Γ,A ` ∆

Γ ` ∆,A⊥
(−)⊥-R

In fact, we define three versions of the duality operation: (−)⊥ for linear propositions, (−)∗ for producers
and (−)∗ for consumers. These operators have the property that for a linear proposition A, A⊥ is linear, but
for a producer P , P∗ is a consumer, and for a consumer C , C∗ is a producer. The duality rules are given in
Figure 7.

12

Γ ` ∆,A

Γ,A⊥ ` ∆
(−)⊥-L

Γ,A ` ∆

Γ ` ∆,A⊥
(−)⊥-R

Γ ` ∆,P

Γ,P∗ ` ∆
(−)∗

`
-L

Γ,P ` ∆

Γ ` ∆,P∗
(−)∗

`
-L-R

Γ ∆,P

Γ,P∗ ∆
(−)∗

-L

Γ,P ∆

Γ ∆,P∗
(−)∗

-R

Γ ` ∆,C

Γ,C∗ ` ∆
(−)∗

`
-L

Γ,C ` ∆

Γ ` ∆,C∗
(−)∗

`
-R

Γ ∆,C

Γ,C∗ ∆
(−)∗

-L

Γ,C ∆

Γ ∆,C∗
(−)∗

-R

Figure 7: Duality inference rules

We define these duality operations as follows:

1⊥L := ⊥L

(A ⊗ B)⊥ := A⊥ ` B⊥

⊥⊥L := 1L

(A ` B)⊥ := A⊥ ⊗ B⊥

>⊥ := 0

(A & B)⊥ := A⊥ ⊕ B⊥

0⊥ := >
(A ⊕ B)⊥ := A⊥ & B⊥

(F! P)⊥ := F? P∗

(F? C)⊥ := F! C∗

1∗P := ⊥C

(P ⊗ Q)∗ := P∗ ` Q∗

dAe∗ := bA⊥c
⊥C∗ := 1P

(C `D)∗ := C∗ ⊗D∗
bAc∗ := dA⊥e

Lemma 5. The following axioms hold in LPC:

A,A⊥ ` · P ,P∗ · C ,C∗ ·

Proof. We proceed by mutual induction on A, P and C .

• If A = 0 then the derivation of 0,> ` · is given by the 0-L rule.

• If A = A1 ⊕ A2 then the inductive hypotheses give us derivations D1 of A1,A1
⊥ ` · and D2 of

A2,A2
⊥ ` ·. The desired derivation can then be constructed as follows:

D1

A1,A1
⊥ ` ·

A1,A1
⊥

& A2
⊥ ` ·

&
`
L -L1

D2

A2,A2
⊥ ` ·

A2,A1
⊥

& A2
⊥ ` ·

&
`
L -L2

A1 ⊕ A2,A1
⊥

& A2
⊥ ` ·

⊕`L -L

• If A = 1L then the following is a valid derivation of 1L,⊥L ` ·:

⊥L ` ·
⊥`L -L

1L,⊥L ` ·
1`L -L

13

• If A = A1 ⊗ A2 then the inductive hypotheses postulate the derivations D1 of A1,A1
⊥ ` · and D2 of

A2,A2
⊥ ` ·. From these it is possible to obtain the following:

D1

A1,A1
⊥ ` ·

D2

A2,A2
⊥ ` ·

A1,A2,A1
⊥ ` A2

⊥ ` ·
``L -L

A1 ⊗ A2,A1
⊥ ` A2

⊥ ` ·
⊗`L -L

• If A = F! P then the inductive hypothesis for P gives a derivation D of P ,P∗ ·. We then have

D
P ,P∗ ·

P , F? P∗ ` ·
F?-L

F! P , F? P∗ ` ·
F!-L

• If P = dAe then the inductive hypothesis provides a derivation D of A,A⊥ ` ·. Consider

D
A,A⊥ ` ·
dAe,A⊥ ` ·

d−e-L

dAe, bA⊥c ·
b−c-L

The other cases are similar.

An isomorphic proof shows that · ` A,A⊥, · P ,P∗ and · C ,C∗ are axioms as well. This proof
does not extend to the case of persistent propositions in a linear sequent, but it is nevertheless possible to
construct proofs of P ,P∗ ` · and · ` P ,P∗ as follows:

P∗ ` P∗
Ax`

P ,P∗ ·
P ,P∗ ` ·

Cut`C
· P ,P∗ P ` P

Ax`

· ` P ,P∗
Cut`P

Theorem 6 (Admissibility of Duality). The duality inference rules given in Figure 7 are admissible in LPC.

Proof. The linear rules can be encoded using cut and the lemmas above.

Γ ` ∆,A A,A⊥ ` ·
Γ,A⊥ ` ∆

Cut`L
· ` A,A⊥ Γ,A ` ∆

Γ ` ∆,A⊥
Cut`L

Next, consider the producer duality rule for persistent sequents. The right rule can be implemented by
means of a cut, but when applying cut for the left rule, the mode of the contexts are restricted, as follows:

ΓP ∆C,P P ,P∗ ·
ΓP,P∗ ∆C

Cut
P

By the displacement theorem this restriction is actually redundant; P is the only displaced proposition in
any derivation of Γ ∆,P .

The same restrictions on the cut rules lead to the following left duality rule for producers in linear
sequents, which is not equivalent to the one in Figure 7:

ΓP ∆C,P P ,P∗ ` ·
ΓP,P∗ ` ∆C

Cut`P

14

In this case the hypothesis and conclusion are different types of sequent, and the restrictions exclude the
occurrence of any linear terms in the contexts. We can avoid these restrictions by proving the more general
form of the rule directly. Let D be any derivation of Γ ` ∆,P . We will prove by induction on D that there
is a derivation of Γ,P∗ ` ∆.

• If P is not the principle formula in D then we can apply the inductive hypothesis directly to obtain
the desired sequent.

• If D is an axiom, then the desired sequent has the form P ,P∗ ` ·, which we constructed above.

• The last rule in D cannot be the d−e right rule because D is a linear sequent.

• If D is the 1P right rule then the desired sequent is ⊥C ` ·, which is simply the ⊥C left rule.

• Finally, if

D =

D1

Γ1 ` ∆1,P1

D2

Γ2 ` ∆2,P2

Γ1,Γ2 ` ∆1,∆2,P1 ⊗ P2

⊗`P -R

then the inductive hypotheses for D1 and D2 give us derivations D′1 of Γ1,P1
∗ ` ∆1 and D′2 of

Γ2,P2
∗ ` ∆2. From this we can obtain

D′1
Γ1,P1

∗ ` ∆1

D′2
Γ2,P2

∗ ` ∆2

Γ1,Γ2,P1
∗ ` P2

∗ ` ∆1,∆2

``C -L

The formulation of duality rules for consumers in linear sequents is similar.

3.4 Consistency

Using the cut and duality rules we can prove that LPC is consistent. Define the negation of a linear
proposition to be ¬A := A⊥ ` 0.

Lemma 7 (Consistency). There is no proposition A such that A and ¬A are both provable in LPC.

Proof. Suppose there were such an A, along with derivations D1 of · ` A and D2 of · ` A⊥ ` 0. Then we
construct a derivation of · ` 0 as follows:

D2

· ` A⊥, 0

D1

· ` A

A⊥ ` ·
(−)⊥-L

· ` 0
Cut`L

However, there is no cut-free proof of · ` 0 in LPC, which contradicts cut admissibility.

4 Categorical Model

In this section we will describe a categorical axiomatization of LPC based on the three-category picture in
Figure 1. We start by defining each of the three categories and the necessary adjunctions between them. Then
we show LPC’s equivalence to other semantic models in the literature. Finally we define an interpretation
of the logic into the category theory and demonstrate some properties about the interpretation.

15

4.1 The LPC Model

Monoidal Structures

We start with some basic definitions about symmetric monoidal structures.

Definition 8. A symmetric monoidal category is a category C equipped with a bifunctor ⊗, an object 1, and
the following natural isomorphisms:

αA1,A2,A3 : A1 ⊗ (A2 ⊗ A3)→ (A1 ⊗ A2) ⊗ A3

λA : 1 ⊗ A→ A

ρA : A ⊗ 1→ A

σA,B : A ⊗ B → B ⊗ A

These must satisfy the following coherence diagrams:

A1 ⊗ (A2 ⊗ (A3 ⊗ A4))

(A1 ⊗ A2) ⊗ (A3 ⊗ A4)

αA1,A2,A3⊗A4

((A1 ⊗ A2) ⊗ A3) ⊗ A4

αA1⊗A2,A3,A4

A1 ⊗ ((A2 ⊗ A3) ⊗ A4)
idA1 ⊗ αA2,A3,A4

(A1 ⊗ (A2 ⊗ A3)) ⊗ A4

αA1,A2⊗A3,A4

αA1,A2,A3
−1 ⊗ idA4

A1 ⊗ (1 ⊗ A2) (A1 ⊗ 1) ⊗ A2

αA1,1,A2

A1 ⊗ A2

idA1
⊗ λA2

ρA1
⊗ idA2

A1 ⊗ (A2 ⊗ A3) (A1 ⊗ A2) ⊗ A3

αA1,A2,A3

A3 ⊗ (A1 ⊗ A2)
σA1⊗A2,A3

A1 ⊗ (A3 ⊗ A2)

idA1
⊗ σA2,A3

(A1 ⊗ A3) ⊗ A2αA1,A3,A2

(A3 ⊗ A1) ⊗ A2
σA1,A3

⊗ idA2

αA3,A1,A2

A ⊗ B

B ⊗ A

σA,B

A ⊗ B

idA⊗B

σB,A

1 ⊗ A A ⊗ 1
σ1,A

A

λA ρA

16

Definition 9. Let (C,⊗, 1, α, λ, ρ, σ) and (C′,⊗′, 1′, α′, λ′, ρ′, σ′) be symmetric monoidal categories. A sym-
metric monoidal functor F : C ⇒ C′ is a functor along with a map mF

1 : 1′ → F 1 and a natural transformation
mF

A,B : F (A) ⊗′ F (B)→ F (A ⊗ B) that satisfy the following coherence conditions:

(F (A1) ⊗′ F (A2)) ⊗′ F (A3)

F (A1 ⊗ A2) ⊗′ F (A3)

mF
A1,A2

⊗′ idF (A3)

F ((A1 ⊗ A2) ⊗ A3)

mF
A1⊗A2,A3

F (A1) ⊗′ (F (A2) ⊗′ F (A3))
α′A1,A2,A3

F (A1) ⊗′ F (A2 ⊗ A3)

idF (A1) ⊗
′ mF

A2,A3

F (A1 ⊗ (A2 ⊗ A3))

mF
A1,A2⊗A3

F (αA1,A2,A3
)

1′ ⊗′ F (A) F (A)
λ′F (A)

F (1) ⊗′ F (A)

mF
1 ⊗′ idF (A)

F (1 ⊗ A)
mF

1,A

F (λA)

F (A) ⊗′ 1′ F (A)
ρ′F (A)

F (A) ⊗′ F (1)

idF (A) ⊗′ mF
1

F (A ⊗ 1)
mF

A,1

F (ρA)

F (A) ⊗′ F (B) F (B) ⊗′ F (A)
σ′F (A),F (B)

F (A ⊗ B)

mF
A,B

F (B ⊗ A)
F (σA,B)

mF
B,A

A functor F : C ⇒ C′ is symmetric comonoidal if it is equipped with a map nF1 : 1′ → F 1 and natural
transformation nFA,B : F (A ⊗ B)→ F (A) ⊗′ F (B) such that the appropriate (dual) diagrams commute.

Definition 10. Let F and G be symmetric monoidal functors F,G : C ⇒ C′. A monoidal natural transfor-
mation τ : F→ G is a natural transformation satisfying

F (A) ⊗′ F (B) F (A ⊗ B)
mF

A,B

G (A) ⊗′ G (B)

τA ⊗′ τB

G (A ⊗ B)

τ(A⊗B)

mG
A,B

F (1) G (1)
τ1

1′

mF
1 mG

1

For F and G symmetric comonoidal functors, a natural transformation τ : F → G is comonoidal if it
satisfies the appropriate dual diagrams.

Definition 11. A symmetric (co-)monoidal adjunction is an adjunction F a G between symmetric (co-)
monoidal functors F and G where the unit and counit of the adjunction are symmetric (co-)monoidal natural
transformations.

17

Linear Category

The linear category should interpret the inference rules from Figure 2 as well as the linear duality. Tradition-
ally this fragment of linear logic is modeled by a *-autonomous category, where multiplicative product ⊗ and
linear implication (are the primitive operators. In LPC however, the primitive multiplicative operators
are ⊗ and `, while linear implication (is derived as A(B := A⊥ ` B . Therefore the linear category in
the LPC axiomatization is a linearly distributive category, introduced by Cockett and Seely (1997), where
the two monoidal structures are the primitive components.

Definition 12. Let L be a category with two symmetric monoidal structures: (⊗, 1, α⊗, λ⊗, ρ⊗, σ⊗) and
(`,⊥, α`, λ`, ρ`, σ`). Let δA1,A2,A3

: A1 ⊗ (A2 ` A3) → (A1 ⊗ A2) ` A3 be a natural transformation in L.
We can derive the following variations on δ:

A1 ⊗ (A2 ` A3) A1 ⊗ (A3 ` A2) (A3 ` A2) ⊗ A1 (A2 ` A3) ⊗ A1

(A1 ⊗ A2) ` A3 A3 ` (A1 ⊗ A2) A3 ` (A2 ⊗ A1) (A2 ⊗ A1) ` A3

δL,L = δ δL,R δR,R δR,L

id ⊗ σ` σ⊗ σ` ⊗ id

σ` id ` σ⊗ σ`

Then L is a symmetric linearly distributive category if the following coherence conditions are satisfied:
Distribution and Unit

1 ⊗ (A ` B) (1 ⊗ A) ` B

A ` B

δL,L

λ⊗ ρ⊗ ⊗ id

Distribution and Associativity

A1 ⊗ (A2 ⊗ (A3 ` A4))

A1 ⊗ ((A2 ⊗ A3) ` A4)

(A1 ⊗ (A2 ⊗ A3)) ` A4

(A1 ⊗ A2) ⊗ (A3 ` A4)

((A1 ⊗ A2) ⊗ A3) ` A4

id ⊗ δL,L

δL,L

α⊗

α⊗ ` id

δL,L

Distribution and Distribution

(A1 ` A2) ⊗ (A3 ` A4)

A1 ` (A2 ⊗ (A3 ` A4))

A1 ` ((A2 ⊗ A3) ` A4)

((A1 ` A2) ⊗ A3) ` A4

(A1 ` (A2 ⊗ A3)) ` A4

δR,R δL,L

id ` δL,L δR,R ` id

α`

18

Coassociativity and Distribution

A1 ⊗ (A2 ` (A3 ` A4))

A2 ` (A1 ⊗ (A3 ` A4))

A2 ` ((A1 ⊗ A3) ` A4)

A1 ⊗ ((A2 ` A3) ` A4)

(A1 ⊗ (A2 ` A3)) ` A4

(A2 ` (A1 ⊗ A3)) ` A4

id ⊗ α`

δL,R

id ` δL,L

δL,L

δL,R ` id

α`

In addition, all of the above diagrams must hold when translated through the following symmetries:1

[op’] reverses the arrows and swaps ⊗ and `, as well as 1 and ⊥.

δL,L ↔ δR,R

δL,R 7→ δL,R

δR,L 7→ δR,L

α⊗ 7→ (α`)−1

λ⊗ 7→ (λ`)−1

ρ⊗ 7→ (ρ`)−1

σ⊗ 7→ (σ`)−1

α` 7→ (α⊗)−1

λ` 7→ (λ⊗)−1

ρ` 7→ (ρ⊗)−1

σ` 7→ (σ⊗)−1

⊗′ swaps the arguments of the tensor ⊗:

δL,L ↔ δR,L

δL,R ↔ δR,R

α⊗ 7→ (α⊗)−1

λ⊗ ↔ ρ⊗

σ⊗ 7→ (σ⊗)−1

`′ swaps the arguments of the cotensor `:

δL,L ↔ δL,R

δR,L ↔ δR,R

α` 7→ (α`)−1

λ` ↔ ρ`
σ` 7→ (σ`)−1

The details of these symmetries are described in more detail by Cockett and Seely (1997).

Definition 13. A symmetric linear distributive category L is said to have negation if there exists a map
(−)⊥ on objects of L, and families of maps

γ⊥A : A⊥ ⊗ A→ ⊥ γ1A : 1→ A ` A⊥

inducing maps

γ⊥A
′

: A ⊗ A⊥
σ⊗
A,A⊥−−−−→ A⊥ ⊗ A

γ⊥A−−→ ⊥

γ1A
′

: 1
γ1
A−→ A ` A⊥

σ
À,A⊥−−−−→ A⊥ ` A

which satisfy the following diagrams under the symmetries op’, ⊗′ and `′:
1When not specified, the symmetry is the identity.

19

A ⊗ 1 A ⊗ (A⊥ ` A) (A ⊗ A⊥) ` A ⊥ ` A

A

idA ⊗ γ1A⊥
′

δL,L γ⊥A⊥
′ ` idA

ρ⊗A λÀ

A⊥ ⊗ 1 A⊥ ⊗ (A ` A⊥) (A⊥ ⊗ A) ` A⊥ ⊥ ` A⊥

A⊥

idA⊥ ⊗ γ1A δL,L γ⊥A ` idA⊥

ρ⊗
A⊥ λÀ⊥

Lemma 14 (Cockett and Seely (1997)). Symmetric linearly distributive categories with negation correspond
to *-autonomous categories.

As a corollary, (−)⊥ extends to a contravariant involutive functor which is both monoidal and comonoidal.
To encode the additives, we require that the linear category has finite products & with unit >, and finite

coproducts ⊕ with unit 0.

The Persistent Categories

The producer and consumer categories must model weakening and contraction, but they must also be related
via a categorical duality that respects the monoidal structures.

Definition 15. Two symmetric monoidal categories (P,⊗) and (C,`) are in duality with each other if there
exist contravariant functors (−)∗ : P ⇒ C, which is comonoidal, and (−)∗ : C ⇒ P, which is monoidal, and
natural isomorphisms

ε∗∗C : (C∗)
∗ → C and η∗∗P : P → (P∗)∗

where ε∗∗ is comonoidal and η∗∗ is monoidal.

Definition 16. Let (P,⊗, 1P) be a symmetric monoidal category. A commutative comonoid in P is an object
P in P along with two morphisms e⊗ : P → 1P and d⊗ : P → P ⊗ P such that the following commuting
diagrams are satisfied:

P

P ⊗ P

d⊗

P ⊗ P

d⊗

σP,P

P P ⊗ P
d⊗

1P ⊗ P

λP
−1 e⊗ ⊗ idP

P

P ⊗ P
d⊗

P ⊗ P
d⊗

P ⊗ (P ⊗ P)
idP ⊗ d⊗

(P ⊗ P) ⊗ P
d⊗ ⊗ idP

αP,P,P

20

Dually, a commutative monoid in a symmetric monoidal category (C,`,⊥C) is an object C along with
morphisms e` : ⊥C → C and d` : C ` C → C such that the appropriate diagrams commute.

The LPC model

Definition 17. A linear/producing/consuming (LPC) model consists of the following components:

1. A symmetric weakly distributive category (L,⊗,`) with negation (−)⊥, finite products & and finite
coproducts ⊕.

2. Symmetric monoidal categories (P,⊗) and (C,`), in duality with each other by means of contravariant
functors

(−)∗ : P ⇒ C and (−)∗ : C ⇒ P.

3. Monoidal natural transformations

e⊗P : P → 1P and d⊗P : P → P ⊗ P

in P, and comonoidal natural transformations

eC̀ : ⊥C → C and dC̀ : C ` C → C

in C, interchanged under duality, such that

(a) for every object P in P, (P , d⊗P , e
⊗
P) forms a commutative comonoid; and

(b) for every object C in C, (C , dC̀ , eC̀) forms a commutative monoid.

4. Symmetric monoidal functors

d−e : L ⇒ P and F! : P ⇒ L

and symmetric comonoidal functors

b−c : L ⇒ C and F? : C ⇒ L

that respect the dualities in that

(F! P)⊥ ' F? (P∗) and dAe ' bA⊥c

and that form monoidal/comonoidal adjunctions

d−e a F! and F? a b−c.

We can make a few observations about the LPC characterization:

• The monoidal components mF! of the F! functor are necessarily isomorphisms, whose inverses are as
follows:

(mF!
1L

)−1 = nF!
1L

: F! 1P
F!m

d−e
1L−−−−−→ F! d1Le

ε1L−−→ 1L

(mF!

P,Q)−1 = nF!

P,Q : F! (P ⊗ Q)
F! (ηP⊗ηQ)−−−−−−−→ F! (dF! Pe ⊗ dF! Qe)
F! (m

d−e
F! P,F! Q

)

−−−−−−−−−→ F! dF! P ⊗ F! Qe
εF! P⊗F! Q−−−−−−→ F! P ⊗ F! Q

Thus F! is both monoidal and comonoidal, and similarly for F?.

• The condition that every object in P forms a commutative comonoid is equivalent to the condition that
P is cartesian. The long form of the definition here highlights the fact that the comonoid structures
in P induce the respective structures in L for the comonad !. Similarly, Condition 3(b) is equivalent
to stating that C is cocartesian.

21

4.2 LPC and other models of linear logic

As LPC is inspired by Benton’s linear/non-linear paradigm, we would like to formalize the relationship
between LPC and LNL.

Definition 18 (Melliés (2003)). A linear/non-linear (LNL) model consists of

1. a symmetric monoidal closed category L;

2. a cartesian category P; and

3. functors G : L ⇒ P and F : P ⇒ L that form a symmetric monoidal adjunction F a G.

The LNL model given by Benton (1995) has the added condition that the cartesian category be cartesian
closed.

Lemma 19. Every LPC model is an LNL model.

A ∗-autonomous category in a linear/non-linear model induces the consumer category in LPC:

Lemma 20. If the category L in an LNL model is *-autonomous, then the categories (L,P,Pop) form an
LPC model.

Next we prove that every LPC model contains a classical linear category as defined by Schalk (2004).

Definition 21. A comonad (!, µ, ν) consists of a functor ! and natural transformations

νA : !A→ A and µA : !A→ !!A

such that the following diagrams commute:

!A !!A

!!A !A

µA

µA
id!A

ν!A

! νA

!A !!A

!!A !!!A

µA

µA µ!A

!µA

Definition 22. A comonad (!, µ, ν) is monoidal if ! is a monoidal functor and µ and ν are monoidal natural
transformations.

Definition 23. A symmetric monoidal category L has a linear exponential comonad if it has a monoidal
comonad (!, µ, ν) such that

1. There exist monoidal natural transformations e!A : !A → A and d!A : !A → !A ⊗ !A such that for every
object A in L, (!A, e!A, d

!
A) forms a commutative comonoid.

2. The morphisms e!A and d!A are coalgebra morphisms, meaning that they satisfy

!A !!A

!A ⊗ !A !!A ⊗ !!A !(!A ⊗ !A)

µA

! d!Ad!A

µA ⊗ µA m!
!A,!A

!A !!A

1L !1L

µA

! e!Ae!A

m!
1L

22

3. Every morphism µA is a morphism of comonoids, meaning that it satisfies

!A

!!A 1L

e!AµA

e!!A

!A !A ⊗ !A

!!A !!A ⊗ !!A

d!A

µA ⊗ µAµA

d!!A

Definition 24 (Schalk (2004)). A category L is a model for classical linear logic if and only if it

1. is *-autonomous;

2. has finite products & and thus finite coproducts ⊕;

3. has a linear exponential comonad ! and thus a linear exponential monad ?.

Theorem 25. The category L from the LPC model is a model for classical linear logic.

Proof. Lemma 14 states that L is *-autonomous, so it suffices to show that L has a linear exponential
comonad. The proof is similar to that of Benton (1994), so we will simply provide a proof sketch here.

The adjunction F! a d−e is known to form a comonad F! d−e in L with components

νA := F! dAe
εA−→ A and µA := F! dAe

F! ηdAe−−−−→ F! dF! dAee

where ε is the unit of the adjunction, and η the counit. The comonad is monoidal because both functors,
unit and counit are monoidal.

The monoid’s components come from the monoid in P passed through the adjunction:

e!A := F! dAe
F! edAe−−−−→ F! 1P

n
F!
1L−−→ 1

d!A := F! dAe
F! ddAe−−−−→ F! (dAe ⊗ dAe)

n
F!
dAe,dAe−−−−−→ F! dAe ⊗ F! dAe

These natural transformations form a commutative comonoid because of the fact that F! is a monoidal
functor and because (P , eP , dP) forms a commutative monoid in P.

To show that e!A is a coalgebra morphism, we can expand out the diagram as follows:

F! dAe F! dF! dAee

F! 1P F! dF! 1Pe F! dF! 1Pe

1L F! 1P F! d1Le

F! ηdAe

F! edAe F! dF! edAee

(mF!
1L

)−1

mF!
1L

idF! 1P

F! η1P

F!m
d−e
1L

idF! dF! 1Pe

F! d(mF!
1L

)−1e
F! dmF!

1L
e

23

The rectangle commutes by the naturality of η, and the bottom parallelogram commutes because η is
monoidal. Meanwhile, the two lower triangles are due to the fact that nF!

1L
is the inverse of mF!

1L
.

The proof that d!A is a coalgebra morphism is similar.
Finally, the fact that µA forms a morphism of comonoids stems easily from the facts that e, d, and mF!

are natural transformations.

4.3 Interpretation of the Logic

We define an interpretation of the LPC logic that maps propositions to objects in either L, P or C, and
derivations to morphisms. For objects, the J−KL interpretation function is defined on all propositions,
but J−KP and J−KC are defined only on persistent propositions. On the linear units and combinators, the
interpretations act as expected. On the adjoint functors, the behavior is as follows:

JF! PKL = F! JPKP JF? C KL = F? JC KC
JPKL = F! JPKP JC KL = F? JC KC

JdAeKP = dJAKLe JbAcKC = bJAKLc

Finally, for persistent propositions of the opposite mode, we use duality to interpret the propositions:

JC KP = (JC KC)∗ JPKC = (JPKP)∗

Contexts can be interpreted with the comma as either the tensor or cotensor in the linear category, though
in the producer category there is no cotensor and vice versa for the consumer category.

J·K⊗L = 1L JX ,ΓK⊗L = JX KL ⊗ JΓK⊗L
J·KL̀ = ⊥L JX ,ΓKL̀ = JX KL ` JΓKL̀
J·KP = 1P JX ,ΓKP = JX KP ⊗ JΓKP
J·KC = ⊥C JX ,ΓKC = JX KC ` JΓKC

Recall that a context is an unordered collection of propositions, while its interpretation is an ordered mapping.
The interpretation function is well-defined up to isomorphism because all three categories are symmetric
monoidal, but for a more rigorous treatment of the interpretation function, the isomorphisms should be
made explicit.

A linear derivation D of the form Γ ` ∆ will be interpreted as a morphism JDKL : JΓK⊗L → J∆KL̀ , but this
will not suffice for persistent derivations Γ ∆. When mapped into P, the codomain cannot be interpreted
as a `-separated list. We proved in Section 3.1 that every persistent derivation D contains exactly one
displaced proposition. This means that D is either of the form ΓP ∆C,P or ΓP,C ∆C. In the category
P, this derivation will be interpreted as a morphism

JDKP : JΓPKP ⊗ J∆CKP → JPKP or JDKP : JΓPKP ⊗ J∆CKP → JC KP,

respectively. Similarly, in the category C, the derivation will be interpreted as a morphism

JDKC : JPKC → J∆CKC ` JΓPKC or JDKC : JC KC → J∆CKC ` JΓPKC.

The interpretation is defined by mutual induction on the derivations.
Interpreting weakening and contraction in the persistent sequent is straightforward using the monoid in

C and comonoid in P. For weakening in the linear sequent, suppose we have the following derivation:

D =

D′

Γ ` ∆

Γ,P ` ∆
W`-L

24

The interpretation of D inserts the comonoid in P into the linear category.

JDKL : JΓK⊗L ⊗ F! JPKP
JDKL⊗F! e

⊗
−−−−−−−−→ J∆KL̀ ⊗ F! 1P

id⊗(mF!)−1

−−−−−−−−→ J∆KL̀ ⊗ 1L

ρ⊗−−→ JQKP

In the producer sequent, suppose we have a derivation

D =

D′

ΓP ∆C,Q

ΓP,P ∆C,Q
W-L

The interpretation in P is defined as follows:

JDKP : (JΓPKP ⊗ JPKP) ⊗ J∆CKP
(id⊗e⊗)⊗id−−−−−−−−→ (JΓPKP ⊗ 1P) ⊗ J∆CKP
ρ⊗⊗id−−−−→ JΓPKP ⊗ J∆CKP
JD′KP−−−→ JQKP

The case for contraction is similar. For a linear derivation with contraction such as

D =

D′

Γ,P ,P ` ∆

Γ,P ` ∆
C`-L

it is possible to construct the morphim

JDKL : JΓK⊗L ⊗ F! JPKP
id⊗F! d

⊗
−−−−−−→ JΓK⊗L ⊗ F! (JPKP ⊗ JPKP)

id⊗(mF!)−1

−−−−−−−−→ JΓK⊗L ⊗ (F! JPKP ⊗ F! JPKP)

JD′KL−−−→ J∆KL̀

Next we move on to the rules for the adjoint functors. The F!-L and F?-R rules are interpreted directly
by the inductive hypothesis; the F!-R and F?-L rules are a bit more complicated. Suppose D is the following
derivation:

D =

D′

ΓP ∆C,P

ΓP ` ∆C, F! P
F!-R

The inductive hypothesis provides a morphism JD′KP : JΓPKP ⊗ J∆CKP → JPKP. It is necessary to undo this
duality transformation for interpretation in the linear category. Notice that for any persistent context Γ,
there is an isomorphism π : JΓK⊗L ∼= F! JΓKP given by the monoidal components of F!. Furthermore, there

25

is an isomorphism τ between (JΓKL̀)⊥ and F! JΓKP given by the isomorphism (F? C)⊥ ∼= F! C∗. Using these
morphisms we define the interpretation of D:

JDKL : JΓPK⊗L
ρ⊗−−→ JΓPK⊗L ⊗ 1L

id⊗γ1

−−−−→ JΓPK⊗L ⊗ ((J∆CKL̀)⊥ ` J∆CKL̀)

π⊗(τ`id)−−−−−−→ F! JΓPKP ⊗ (F! J∆CKP ` J∆CKL̀)

δL,L

−−−→ (F! JΓPKP ⊗ F! J∆CKP) ` J∆CKL̀
mF!`id−−−−−→ F! (JΓPKP ⊗ J∆CKP) ` J∆CKL̀
F! JD′KP`id−−−−−−−→ F! JPKP ` J∆CKL̀
σ`−−→ J∆CKL̀ ` JF! PKL

The d−e-L rule uses the unit of the adjunction in its interpretation. Suppose

D =

D′

Γ,A ` ∆

Γ, dAe ` ∆
d−e-L

Then its interpretation can be defined as

JDKL : JΓK⊗L ⊗ F! (dJAKLe)
id⊗ε−−−→ JΓK⊗L ⊗ JAKL
JD′KL−−−→ J∆KL̀

The d−e-R rule uses the counit of the adjunction, along with the isomorphisms π and τ defined previously.
Let

D =

D′

ΓP ` ∆C,A

ΓP ∆C, dAe
d−e-R

Its interpretation is defined as follows:

JDKP : JΓPKP ⊗ J∆CKP
η⊗η−−−→ dF! JΓPKPe ⊗ dF! J∆CKPe
md−e−−−→ dF! JΓPKP ⊗ F! J∆CKPe
dπ−1⊗τ−1e−−−−−−−→ dJΓPK⊗L ⊗ (J∆CKL̀)⊥e
dJD′KL⊗ide−−−−−−−→ d(J∆CKL̀ ` JAKL) ⊗ (J∆CKL̀)⊥e
dδR,Le−−−−→ d(J∆CKL̀ ⊗ (J∆CKL̀)⊥) ` JAKLe
γ⊥`id−−−−→ d⊥L ` JAKLe
dλ`e−−−→ dJAKLe = JdAeKP

26

Admissible Rules

The admissible duality and cut rules from the LPC logic should correspond with the expected notions of
duality and cut in the categorical model. In the simplest case, suppose a derivation D has the form

D1

Γ ` A

D2

A ` ∆

Γ ` ∆
Cut`L

Property 26. JDKL = JD2KL ◦ JD1KL.

We will sketch some of the cases from the cut admissibility proof to demonstrate that the property holds.
First, suppose

D1 = · ` 1L
1`L -R D2 =

D′2
· ` ∆

1L ` ∆
1`L -L

By the definition of cut, we have D = D′2. So our goal is to show that JD′2KL = JD2KL ◦ JD1KL which holds
because JD2KL = JD′2KL and JD1KL = id1L .

Next, suppose A has the form A1 & A2 and that

D1 =

D11

Γ ` A1

D12

Γ ` A2

Γ ` A1 & A2

&`L -R D2 =

D′2
A1 ` ∆

A1 & A2 ` ∆
&`L -L

By the definition of cut, D is equal to the inductive derivation

D =

D11

Γ ` A1

D′2
A1 ` ∆

Γ ` ∆
Cut`L

while we have

JD1KL : JΓK⊗L
JD11KL&JD12KL−−−−−−−−−−→ JA1 & A2KL

JD2KL : JA1 & A2KL
π1−→ JA1KL

JD′2KL−−−→ J∆KL̀

Finally, consider the case where A is not the principle formula in D1, and instead we have

D1 =

D′1
Γ,B ` A

Γ, dBe ` A
d−e-L

Working through the interpretation function, we know

JD1KL : JΓK⊗L ⊗ F! dJBKLe
id⊗ε−−−→ JΓK⊗L ⊗ JBKL
JD′1KL−−−→ JAKL

In addition, since

D =

D′1
Γ,B ` A

D2

A ` ∆

Γ,B ` ∆
Cut`L

Γ, dBe ` ∆
d−e-L

27

by definition we have

JDKL : JΓK⊗L ⊗ F! dJBKLe
id⊗ε−−−→ JΓK⊗L ⊗ JBKL
JD′1KL−−−→ JAKL
JD2KL−−−→ J∆KL̀

5 Examples

This section provides some concrete instances of the LPC model. The following chart summarizes the three
examples and their LPC categories:

L P C
Vectors FinVect FinSet FinSetop

Relations Rel Set Setop

Boolean Algebras FinBoolAlg FinPoset FinLat

5.1 Vector Spaces

The ⊗, (−)⊥ and & operators of linear logic are easily interpreted by the notions of tensor product, duality
and direct product for vector spaces. However, the exponentials ! and ? are not induced from the usual
structures of linear algebra. In this section we will expand on this intuition to develop the category of
finite-dimensional vector spaces (over a finite field) as the linear component of an LPC model.

We start with some preliminaries about vector spaces. For the entirety of this example, fix F to be a
finite-dimensional field of dimension q.

Definition 27. Let FinVect(F) be the category of finite-dimensional vector spaces over the finite field F.
That is, the objects of FinVect(F) are vector spaces and the morphisms are linear transformations.

Definition 28. The free vector space Free (X) of a finite set X over F is the vector space with vectors the
formal sums α1x1 + · · ·+ αnxn, addition defined pointwise, and scalar multiplication defined by distribution
over the xi’s.

A basis for Free (X) is the set {δx | x ∈ X} where δx is the free sum x .
The tensor product ⊗ is defined in terms of quotients of a free vector space.

Definition 29. The tensor product of two vector spaces U and V is U ⊗ V = Free (U × V)/W where W
is the subspace generated by the following elements:

(u1, v) + (u2, v)− (u1 + u2, v) α (u, v)− (α u, v)

(u, v1) + (u, v2)− (u, v1 + v2) α (u, v)− (u, α v)

The equivalence class of (u, v) is denoted u ⊗ v . Notice that if B1 is a basis for U and B2 is a basis for V
then B ⊗ B2 is a basis for U ⊗ V . The unit 1L of the tensor is the one-dimensional vector space generated
by the basis {1V }.

The tensor product of two linear maps f1 : U1 → V1 and f2 : U2 → V2 is

f1 ⊗ f2 (u1 ⊗ v1) = f1 (u1) ⊗ f2 (u2)

Since there is no traditional interpretation for ` in linear algebra, we define ` to be exactly ⊗.

Definition 30. The dual of a vector space V over F is the set V⊥ of linear maps from V to F.

28

For any vector v ∈ V , we can define v ∈ V⊥ to be the linear map acting on basis elements x ∈ B in the
following way:

v [x] =

{
1 x = v

0 x 6= v

Addition and scalar multiplication are defined pointwise. Then the set {x | x ∈ B} is a basis for V⊥.
The additives & and ⊕ are embodied by the notions of the direct product and direct sum, which in the

case of finite-dimensional vector spaces, coincide.

Lemma 31. The category FinVect(F) is a symmetric linearly distributive category with negation, products
and coproducts.

Proof. Since ⊗ and ` overlap, the natural transformation δ is simply associativity. The coherence diagrams
for linear distribution then depend on the commutativity of tensor, associativity, and swap morphisms. To
show the category has negation, we define γ⊥ and γ1 as follows, where B is a basis for A:

γ⊥A : A⊥ ⊗ A→ ⊥L γ1A : 1L → A ` A⊥

γ⊥A (δu ⊗ v) = δu [v] · 1 γ1A (1) =
∑
v∈B

v ⊗ v

It suffices to check that
λ ◦ (γ⊥ ⊗ id) ◦ α ◦ (id ⊗ λ) = ρ.

So FinVect will take the place of the linear category. The producer category will be the category
FinSet of finite sets and functions, and the consumer category will be its opposite category FinSetop of
finite sets and inverse functions. It is not hard to see that the cartesian product in FinSet along with unit
{∅}, is symmetric monoidal, and that the category admits the commutative comonoid, as follows:

eX : X → {∅} dX : X → X × X

eX (x) = ∅ dX (x) = (x , x)

Finally, we present the adjunctions. For now we will address only one of the adjunctions; the other can
be inferred from the opposite category. Define d−e : FinVect⇒ FinSet to be the forgetful functor, which
takes a vector space to its underlying set of vectors, and a linear map to the corresponding function. As a
monoidal functor, it has the following components:

m
d−e
1L

: 1P → d1Le m
d−e
A,B : dAe × dBe → dA ⊗ Be

m
d−e
1L

(∅) = d1e m
d−e
A,B (due, dve) = du ⊗ ve

On objects, the functor F! : FinSet⇒ FinVect takes a set X to the free vector space generated by X.
For a morphism f : X1 → X2 in FinSet, we can define

F! f : Free (X1)→ Free (X2)

F! f (δx) = δf (x)

This is a monoidal functor, with components

mF!
1L

: 1L → F! 1L mF!

X1,X2
: F!X1 ⊗ F!X2 → F! (X1 × X2)

mF!
1L

(1) = δ∅ mF!

X1,X2
(δx1 ⊗ δx2) = δ(x1,x2)

Lemma 32. The functors d−e and F! form a symmetric monoidal adjunction d−e a F!.

29

Proof. We define the unit and counit of the adjunction as follows:

εA : F! dAe → A ηP : P → dF! Pe
εA (δdve) = v ηP (x) = dδx e

By simply unfolding the definitions, we can see that these families of morphisms are natural transforma-
tions. They form an adjunction because dεAe ◦ ηdAe is the identity on FinSet:

dεAe ◦ ηdAe (dve) = dεAe (dδdvee) = dve,

and because εF! P ◦ F! (ηP) is the identity on FinVect:

εF! P ◦ F! (ηP) (δx) = εF! P (δηP (x)) = εF! P (δdδx e) = δx .

Finally, ε and η are both monoidal natural transformations. For ε, we must show that the following two
diagrams commute:

F! dAe ⊗ F! dBe F! (dAe ⊗ dBe)
mF!

dAe,dBe
F! dA ⊗ Be

F!m
d−e
A,B

A ⊗ B

εA ⊗ εB

A ⊗ B

ε(A⊗B)

idA⊗B

F! d1Le

F! 1P

F!m
d−e
1L

1L
ε1L

1L
mF!

1L

id1L

Working out these definitions, we see that

εA⊗B ◦ F!m
d−e
A,B ◦ m

F!

dAe,dBe (δdue ⊗ δdve) = εA⊗B ◦ F!m
d−e
A,B (δ(due,dve))

= εA⊗B (δ
m
d−e
A,B (due,dve))

= εA⊗B (δdu⊗ve)

= u ⊗ v

= εA ⊗ εB (δdue ⊗ δdve)

and

F!m
d−e
1L
◦ mF!

1L
(1) = F!m

d−e
1L

(δ∅) = δ
m
d−e
1L

(∅) = δd1e = ε1L (1)

Similarly, η is a monoidal transformation. The following diagrams must commute:

P × Q P × Q
idP ×Q

dF! Pe × dF! Qe

ηP × ηQ

dF! P ⊗ F! Qe
m
d−e
F! P,F! Q dF! (P × Q)e

ηP ×Q

dmF!

P,Qe

1P

1P

id1P

dF! 1Pe
η1P

d1Le
m
d−e
1L

dmF!
1L
e

30

These diagrams are witnessed by the following computations:

dmF!

P,Qe ◦ m
d−e
F! P,F! Q

◦ ηP × ηQ (x , y) = dmF!

P,Qe ◦ m
d−e
F! P,F! Q

(dδx e, dδye)

= dmF!

P,Qe (dδx ⊗ δye)

= dmF!

P,Q (δx ⊗ δy)e
= dδ(x ,y)e = ηP ×Q (x , y)

dmF!
1L
e ◦ md−e1L

(∅) = dmF!
1L
e (d1e) = dmF!

1L
(1)e

= dδ∅e = η1P (∅)

Corollary 33. FinVect, FinSet, and FinSetop together form an LPC model.

5.2 Relations

Let Rel be the category of sets and relations, and let Set be the category of sets and functions. (Notice
that the sets in either category here may be infinite, unlike in the FinVect case.) It is easy to see that Rel
is linearly distributive where the tensor and the cotensor are both cartesian product, and distributivity is
just associativity. The unit is a singleton set; for concreteness assume 1L = ⊥L = ∅. Furthermore, negation
on Rel is the identity on objects, along with the maps

γ⊥A : A⊥ ⊗ A→ ⊥L γ1A : 1L → A ` A⊥

γ⊥A = {((x , x), ∅) | x ∈ A} γ1A = {(∅, (x , x)) | x ∈ A}

Set is cartesian and its opposite category Setop, cocartesian. The F! and F? functors are the forgetful
functors which interpret a function as a relation. The d−e functor takes a set to its powerset. Suppose R is
a relation between A and B . Then dRe : dAe → dBe is defined as

dRe(X) = {y ∈ B | ∃x ∈ X, (x , y) ∈ R}

with monoidal components

m
d−e
1L

: 1L → d1Le m
d−e
A,B : dAe × dBe → dA × Be

m
d−e
1L

(∅) = ∅ m
d−e
A,B (X1, X2) = X1 × X2

The dual notion b−c is just the inverse.

5.3 Boolean Algebras and the Birkhoff Duality

Next we examine an example of the LPC categories where P and C are related by a non-trivial duality. The
relationship is based on Birkhoff’s representation theorem (Birkhoff 1937), which can be interpreted as a
duality between the categories of finite partial orders and order-preserving maps (P) on the one hand, and
finite distributive lattices with bounded lattice homomorphisms (C) on the other hand.

The linear category is the category L of finite boolean algebras with bounded lattice homomorphisms.
This L is symmetric weakly distributive where the products overlap with the coproducts, meaning that the
model is somewhat degenerate. For the monoidal structure, the units are both the singleton lattice ∅, and
the tensors A ⊗ B and A ` B are the boolean algebra with base set A × B and lattice structure as follows:

⊥ = (⊥,⊥)

(x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∨ y2)

¬(x , y) = (¬x ,¬y)

> = (>,>)

(x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∧ y2)

31

Given a partially ordered set (P ,≤), a subset X ⊆ P is called lower if it is downwards closed with
respect to ≤. The set of all lower sets of P forms a lattice with > = P , ⊥L = ∅, meet as union and join and
intersection. Let P∗ refer to this lattice.

Meanwhile, given a lattice C , an element x is join-irreducible if x is neither ⊥L nor the join of any two
elements less than x . That is, x 6= y ∨ z for y , z 6= x . Let C∗ be the partially ordered set with base set the
join-irreducible elements of C , with the ordering

x ≤ y iff x = y ∧ x

The operators (−)∗ and (−)∗ extend to functors that form a duality between P and C. For the details of
that categorical duality, refer to Stanley (2011).

The monoidal structure on P is given by the cartesian product with the following ordering:

(x1, y1) ≤ (x2, y2) iff x1 ≤ x2 and y1 ≤ y2

The unit is the singleton order {∅}. For every poset P in P, the following components form a commutative
comonoid:

e⊗P : P → 1P

e⊗P (x) = ∅
d⊗P : P → P ⊗ P

d⊗P (x) = (x , x)

Next, finite distributive lattices have a monoidal structure with the unit the singleton lattice {∅} and the
tensor C1 ` C2 the lattice where the base set is C1 × C2 and the lattice structure is given by

⊥ = (⊥,⊥)

(x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∨ y2)

> = (>,>)

(x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∧ y2)

For every lattice C in C there exists a commutative monoid with the following components:

eC̀ : ⊥C → C

eC̀ (∅) = ⊥

dC̀ : C ` C → C

dC̀ (x , y) = x ∧ y

The natural transformations e⊗ and e`, and d⊗ and d` are in fact interchanged under the Birkhoff
duality.

Next we define the symmetric monoidal functors. Define

d−e : L ⇒ P and b−c : L ⇒ C

to be forgetful functors.
For a finite partial order P , define F! P to be the boolean algebra with base set P(P), and with top,

bottom, join, meet and negation corresponding to P , ∅, union, intersection and complementation respectively.
For a morphism f : P1 → P2, define F! f : F! P1 → F! P2 to be

F! f (X) = {f (x) | x ∈ X}.

Similarly, for a finite distributive lattice C , define F? C to be the boolean algebra with base set C with
the same structure as above. For morphisms f : C1 → C2 define F? f : F? C1 → F? C2 to again be

F? f (X) = {f (x) | x ∈ X}.

These functors must respect the dualities in that

(F! P)⊥ ' F? P∗ and dAe∗ ' bA⊥c

We will prove the first of these here. For any element x in a poset P , define x ∈ P∗ to be the downward
closed set {y | y ≤ x}. Notice that for any x ,

∨
x = x and for any independently downward closed set X,∨

X = X.

32

Define a morphism f : (F! P)⊥ → F? P∗ by

f (X) = {x | x ∈ ¬X}

and define g : F? P∗ → (F! P)⊥ by

g (X) = ¬{
∨
Y | Y ∈ X}

It is easy to check that these are both bounded lattice homomorphisms. To verify that f ◦ g ' idF? P∗ and
g ◦ f ' id(F! P)⊥ , consider the following computations:

f ◦ g (X) = f (¬{
∨
Y | Y ∈ X})

= {x | x ∈ ¬(¬{
∨
Y | Y ∈ X})}

∼= {x | x ∈ {
∨
Y | Y ∈ X}}

= {
∨
Y | Y ∈ X} = {Y | Y ∈ X} = X

g ◦ f (X) = g ({x | x ∈ ¬X})

= ¬{
∨
Y | Y ∈ {x | x ∈ ¬X}}

= ¬{
∨

x | x ∈ ¬X}

= ¬{x | x ∈ ¬X} = ¬(¬X) ∼= X

To construct the adjunction F! a d−e, it suffices to show a bijection of homomorphism sets Hom(F! P ,A) ∼=
Hom(P , dAe). Suppose f : F! P → A in L. Then define f] : P → dAe by

f] (x) = f ({z ∈ X | z ≤ x})

This morphism is in fact order-preserving. Next, for g : P → dAe define g[: F! P → A as follows:

g[(X) =
∨
x∈X

g (x)

Again it is easy to check that g[is a lattice homomorphism. To show F! a d−e it suffices to show that
(f])[= f and (g[)] = g . Let f : F! P → A be a bounded lattice homomorphism of boolean algebras. Then

(f])[(X) =
∨
x∈X

f] (x)

=
∨
x∈X

f ({z | z ≤ x})

= f (
∨
x∈X
{z | z ∨ x = x})

= f (
∨
x∈X
{x} ∪ {z | z ∨ x = x})

= f (
∨
x∈X
{z ∨ x | z ∨ x = x})

= f (
∨
x∈X
{x}) = f (X)

Let g : P → dAe be an order-preserving map. Then

(g[)] (x) = g[({z | z ≤ x})

=
∨
z≤x

g (z) = g (x)

33

From these definitions, the unit and counit of the adjunction are as follows:

εA : F! dAe → A

εA (X) = id[dAe (X) =
∨
x∈X

iddAe (x) =
∨
X

ηP : P → dF! Pe
ηP (x) = (idF! P)] (x) = {z | z ≤ x}

To show the adjunction is monoidal, it suffices to prove ε and η are monoidal natural transformations.
The proof of the monoidal adjunction b−c a F? is similar.

6 Related Work

Girard (1987) first introduced linear logic to mix the constructivity of intuitionistic propositional logic with
the duality of classical logic. Partly because of this constructivity, there has been great interest in the
semantics of linear logic in both the classical and intuitionistic fragments. Consequently, there exist several
categorical frameworks for its semantic models.

One influential framework is Benton et al.’s linear category (Benton et al. 1993), consisting of a symmetric
monoidal closed category with products and a linear exponential comonad !. Other characterizations include
the Seely category (Seely 1987), based on a distribution morphism between !A ⊗ !B and !(A & B). Wadler
(1992) and Bierman (1994) proved that there was a disconnect between Seely’s category and the popular
term calculus due to Abramsky (1993). Bierman’s response was a new Seely category, sound with respect to
Abramsky’s term language, which adds a symmetric monoidal adjunction between a Seely category and its
co-Kleisli category.

Except for Seely’s original formulation, these works deal with the intuitionistic fragment of linear logic.
The multiplicative fragment (restricted to ⊗ and `) of classical linear logic is usually modeled by a *-
autonomous category, introduced by Barr (1991). Schalk (2004) adapted linear categories to the classical
case by requiring that the symmetric monoidal closed category be *-autonomous. The coproduct ` and
coexponential ? are then induced from the duality.

Cockett and Seely (1997), seeking to study ⊗ and ` as independent structures unobscured by duality,
introduced linearly distributive categories, which make up the linear category in the LPC model. The
authors extended this motivation to the exponentials by modeling ! and ? as linear functors (Cockett and
Seely 1999), meaning that ? is not derived from ! and (−)⊥. The LPC model reflects that work by allowing
! and ? to have different adjoint decompositions.

Other variations of classical linear logic, notably Girard’s Logic of Unity (Girard 1993), distinguish linear
propositions from persistent ones. The sequent Γ; Γ′ ` ∆′; ∆ is meant to be seen as a derivation where Γ′

and ∆′ are persistent and admit weakening and contraction. In Γ and ∆ every proposition is purely linear.
Ramifying LU’s separation (in the intuitionistic case), Benton (1995) developed the linear/non-linear

logic and categorical model described in Section 2. Barber used this model as the semantics for a term
calculus called DILL (Barber 1996). A Lafont category (Lafont 1988) is a canonical instance of an LNL
model where !A is the free commutative comonoid generated by A. This construction automatically admits
an adjunction between automatically forms an adjunction between a linear category L and the category
of commutative comonoids over L. However, the LNL and LPC models have an advantage over Lafont
categories by allowing a much greater range of interpretations for the exponential—Lafont’s construction
excludes traditional models of linear logic like coherence spaces and the category Rel.

References

S. Abramsky. Computational interpretations of linear logic. Theoretical Computer Science, 111:3–57, 1993.

34

A. Ahmed, M. Fluet, and G. Morrisett. L3: A linear language with locations. Fundam. Inf., 77(4):397–449,
2007. ISSN 0169-2968.

A. Barber. Dual intuitionistic linear logic. Technical report, 1996.

M. Barr. *-autonomous categories and linear logic. Mathematical Structures in Computer Science, 1(2):
159–178, 1991.

N. Benton, G. M. Bierman, J. M. E. Hyland, and V. de Paiva. A term calculus for intuitionistic linear logic.
In Proceedings of the International Conference on Typed Lambda Calculi and Applications, pages 75–90.
Springer-Verlag LNCS 664, 1993.

P. N. Benton. A mixed linear and non-linear logic: proofs, terms and models (preliminary report). Technical
Report 352, Computer Laboratory, University of Cambridge, September 1994.

P. N. Benton. A mixed linear and non-linear logic: proofs, terms and models. In Proceedings of Computer
Science Logic (CSL ’94), Kazimierz, Poland., pages 121–135. Springer-Verlag, 1995.

G. M. Bierman. On intuitionistic linear logic. PhD thesis, University of Cambridge, Computer Laboratory,
1994.

G. Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, 1937.

J. Cockett and R. Seely. Weakly distributive categories. Journal of Pure and Applied Algebra, 114(2):133 –
173, 1997. ISSN 0022-4049. doi: http://dx.doi.org/10.1016/0022-4049(95)00160-3.

J. Cockett and R. Seely. Linearly distributive functors. Journal of Pure and Applied Algebra, 143(13):155 –
203, 1999. ISSN 0022-4049.

M. Gaboardi. Linearity: an Analytic Tool in the study of Complexity and Semantics of Programming
Languages. PhD thesis, Universita degli Studi di Torino-Institut National Polytechnique de Lorraine,
2007.

J.-Y. Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.

J.-Y. Girard. On the unity of logic. Annals of pure and applied logic, 59(3):201–217, 1993.

M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience with safe manual memory-management in Cy-
clone. In ISMM ’04: Proceedings of the 4th international symposium on Memory management, pages 73–84,
New York, NY, USA, 2004. ACM. ISBN 1-58113-945-4. doi: http://doi.acm.org/10.1145/1029873.1029883.

Y. Lafont. The linear abstract machine. Theoretical Computer Science, 59:157–180, 1988. Corrections in
vol. 62, pp. 327–328.

C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical
Computer Science, 410(46):4747–4768, 2009.

P. A. Melliés. Categorical models of linear logic revisited. 2003.

P.-A. Melliès. Categorical semantics of linear logic. Panoramas et Syntheses, 27, 2009.

A. Schalk. Whats is a categorical model of linear logic. Technical report, University of Manchester, 2004.

R. A. Seely. Linear logic, *-autonomous categories and cofree coalgebras. 1987.

R. P. Stanley. Enumerative combinatorics, volume 49. Cambridge university press, 2011.

P. Wadler. There’s no substitute for linear logic. In 8th International Workshop on the Mathematical
Foundations of Programming Semantics, 1992.

S. Zdancewic and A. C. Myers. Secure information flow via linear continuations. Higher Order and Symbolic
Computation, 15(2/3):209–234, 2002.

35

	A Linear/Producer/Consumer Model of Classical Linear Logic
	Recommended Citation

	A Linear/Producer/Consumer Model of Classical Linear Logic
	Abstract
	Disciplines
	Comments

	tmp.1396456439.pdf.PY9mA

