
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

October 1989

Timed Atomic Commitment Timed Atomic Commitment

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Victor Wolfe
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Susan B. Davidson, Insup Lee, and Victor Wolfe, "Timed Atomic Commitment", . October 1989.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-80.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/712
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F712&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/712
mailto:repository@pobox.upenn.edu

Timed Atomic Commitment Timed Atomic Commitment

Abstract Abstract
In a large class of hard-real-time control applications, components execute concurrently on distributed
nodes and must coordinate, under timing constraints, to perform the control task. As such, they perform a
type of atomic commitment. Traditional atomic commitment differs, however, because there are no
timing constraints; agreement is eventual. We therefore define timed atomic commitment (TAC) which
requires the processes to be functionally consistent, but allows the outcome to include an exceptional
state, indicating that timing constraints have been violated. We then present centralized and decentralized
protocols to implement TAC and a high-level language construct that facilitates its use in distributed real-
time programming.

Keywords Keywords
distributed real-time systems, language constructs, fault-tolerance, atomic commitment, distributed
protocols

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-80.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/712

https://repository.upenn.edu/cis_reports/712

Timed Atomic
Commitment

MS-CIS-88-80
GRASP LAB 156

Susan Davidson
Insup Lee

Victor Wolfe

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

Revised October 1989

Timed Atomic Commitment *

Susan Davidson, Insup Lee, and Victor Wolfe
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19 104

October 12, 1989

Abstract

In a large class of hard-real-time control applications, components execute concurrently
on distributed nodes and must coordinate, under timing constraints, to perform the control
task. As such, they perform a type of atomic commitment. Traditional atomic commitment
differs, however, because there are no timing constraints; agreement is eventual. We there-
fore define timed atomic commitment (TAC) which requires the processes to be functionally
consistent, but allows the outcome to include an exceptional state, indicating that timing
constraints have been violated. We then present centralized and decentralized protocols to
implement TAC and a high-level language construct that facilitates its use in distributed
real-time programming.

Index Terms: Distributed Real-Time Systems, Language Constructs, Fault-Tolerance, Atomic
Commitment, Distributed Protocols.

*This research was supported in part by ARO DAA6-29-84-k-0061, ONR N000014-89-J-1131 and NSF CCR87-
16975.

Davidson, Lee & Wolfe

1 Introduction

In a large class of hard-real-time control applications, components execute concurrently on

distributed nodes and must coordinate, under timing constraints, to perform the control task.

The application is often such that all or none of the components must perform correctly within
timing constraints for the system to be consistent. If only some of the components perform

correctly, then the system will be left in an inconsistent state that violates system requirements.

The problem of coordinating all or nothing behavior under timing constraints is called timed
atomic commitment.

As a simple example, consider a plant where containers of chemicals are processed on a

conveyer belt. Occasionally, a defective container is detected which has to be carefully removed

and discarded, preferably without stopping the belt. To do this, two robot arms, which are also

servicing the belt in other capacities, must coordinate to perform the task within ten seconds

of detecting the defective container. Before a container is lifted, each arm must have grasped

the container and must know that operating conditions will allow it to lift the container within

the deadline; if these conditions cannot be met, then the conveyer belt can be safely stopped,

the container removed without timing restrictions, and the belt reset. Using the terminology

of atomic commitment: if both arms complete the lift by the deadline, then the system has

committed; if neither arm lifts and the belt stops, then the system has aborted. If one or both

arms have only partially lifted within 10 seconds (perhaps due to electrical or mechanical failure),

a hazardous situation may occur, such as a spill or collision with the next container on the belt;

the system is in an exception state calling for emergency actions.

In this application, the robot arm processes must perfonn a type of atomic commitment.

However, traditional atomic commitment only requires that all processes eventually either commit

or abort. There is no deadline by which the decision and action must be completed. We therefore

introduce a new notion for distributed real-time computing called timed atomic commitment which

enforces a deadline on the decision and performance of commitment actions. Similar notions

have been called for in [1,2,3] and many discussions allude to the benefits of being able to time

constrain traditional atomic commitment [4,5], but timed atomic commitment remains without a

clear definition or implementation.

Unfortunately, it is impossible to place a deadline on traditional atomic commitment if

processor failure or message loss can occur. If a processor fails before a decision has been

reached and remains down until after the deadline, it may be impossible for any processor to

reach a decision. Furthermore, if a processor fails before completing the decided upon action,

Davidson, Lee & WoIfe 3

it may be down until after the deadline and obviously cannot complete the action. Even if

processors don't fail, message loss alone causes timed atomic commitment to be impossible.

This fact follows easily from the "Two General's Paradox" [4], which states that there can be no
fixed length protocol for non-trivial agreement between two or more processes if messages can

be lost. Since reasonable distributed operating environments include message loss and processor

failure, traditional atomic commitment cannot be extended to observe a deadline. We therefore

allow the outcome of timed atomic commitment to be either 1) all actions were performed

within the deadline (COMMIT), 2) no actions were performed (ABORT), or 3) the system is

in an exceptional state indicating that a fault may have caused timing constraints to be violated

(EXCEPTION).

The distinction between ABORT and EXCEPTION is important. In the coordinating robots

example, if the outcome is ABORT, then neither arm has lifted; nothing "wrong" has happened,

and the belt can merely be stopped for long enough for the container to be successfully lifted.

However, if the outcome is EXCEPTION, then the container may be only partially lifted which

may cause it to spill or to interfere with the next container on the belt. In general, EXCEPTION

indicates that the system may be in an undesirable state, requiring recovery actions. However,

regardless of the number of faults, we still require that the processes are functionally consistent,

i.e., no process commits if some process aborts. Note that since it is provably impossible

for any atomic commitment to solve the problem of ensuring an "all-abort" or "all-commit"

outcome within a deadline in the presence of faults, timed atomic commitment is defined to

detect inconsistencies through the exceptional outcome and provide the opportunity for recovery.

Our goal is to define timed atomic commitment, devise protocols to implement it in a real-

istic operating environment, and show its usefulness though an example. The rest of this paper

is organized as follows: Section 2 defines timed-atomic commitment. In Section 3, necessary

requirements for the operating environment are discussed and centralized and decentralized pro-

tocols for timed atomic commitment are presented. Section 4 introduces programming constructs

for timed atomic commitment and illustrates their use in the coordinating robots example. Sec-

tion 5 draws conclusions on the effectiveness of timed atomic commitment and when it should

be used.

2 Definition of Timed Atomic Commitment

Atomic commitment is a problem that has been extensively studied, has a clean definition,

and has a range of provably correct protocols for its implementation [5] . An especially clean

Davidson, Lee & Wolfe

received mssage

sent message

local-stat

Figure 1: FSM Model of a Participant in TAC

statement of the problem can be found in [5] , and it is this definition that we adapt to include a

deadline.

There are N processes, called participants, that are to perform timed atomic commitment

(TAC). When the TAC commences, a global clock is initiated to measure the deadline for

completion, D. Each participant goes through three phases, as shown in Figure 1: a vote

phase, at the end of which it produces a vote of YES or NO; a decision phase, at the end of

which it produces the decision, COMMIT or ABORT, and a performance phase, during which it

performs the decided-upon action and records the outcome in its local state. The vote indicates

the participant's perception of its ability to commit: a YES vote is a promise to commit if the

decision is made to commit; a NO vote means it cannot promise to commit. The local state of

a participant is initially EXCEPTION, and cannot be altered after the TAC ends at D.

Informally, in a "perfect" operating environment, the goal of TAC is to guarantee that, at

D , either all participants have local states of COMMIT, or all participants have local states of

ABORT. Furthermore, a COMMIT outcome is preferable to an ABORT outcome. To reach a

COMMIT outcome, every participant must vote YES and decide to COMMIT; additionally, the

commit actions must be successfully performed by D. To reach an ABORT outcome, some

participant must vote NO, and thus all participants decide to ABORT; aborting (which may

include performing restoring actions) must also be successfully performed by D.

Unfortunately, actual operating environments are not perfect and include faults. For example,

local clocks may be skewed, messages may be delayed or even lost, processes may not be able to

execute when they need to, and execution may take longer than expected. Any of these factors

Davidson, Lee & Wolfe 5

may cause some participant to have a local state of EXCEPTION after the TAC, i.e., be unable to

vote, decide, or perform the decided-upon action by D. However, most operating environments

offer "guarantees": for example, local clocks are synchronized to within a constant, and delivery

time of messages has an upper bound. If the operating environment does not maintain a stated

guarantee, we say that a fault has occurred. When faults occur we allow the TAC to indicate an

EXCEPTION outcome.

2.1 TAC Correctness Criteria

We now specify what it means to perform correct timed atomic commitment.

TACl All participants that reach a decision reach the same one.

TAC2 The decision is to commit only if all participants vote YES.

TAC3 At D , a participant's local state either reflects the participant's completed action or is

EXCEPTION.

TAC4 If there are no faults, then

a) all participants reach a decision;

b) if all participants vote YES, then the decision is to commit;

c) all participants complete the decided-upon action by D; and

d) at D, a participant's local state reflects the participant's completed action.

Criteria TACl and TAC2 define functional consistency of TAC, while TAC3 requires the local

state to be determined at D. TAC4 defines minimal "success" requirements: TAC4b requires

the decision to be COMMIT if there are no faults and all participants vote YES; this invalidates

trivial protocols that arbitrarily force the decision to be ABORT. TAC2 and TAC4a together

imply that a decision must be made to ABORT rather than remaining EXCEPTION if there are

no faults and some participant votes NO; this eliminates trivial protocols that allow a process to

remain undecided. TAC4c and TAC4d require that, in the absence of faults, the decided-upon

action must be successfully completed and recorded in the local state by D.
Note that in addition to the "all-commit" or "all-abort" outcomes of traditional atomic com-

mitment, there are three other combinations of local states in a TAC: 1) all exceptional; 2) some

committed, some exceptional; and 3) some aborted, some exceptional. This increased number

of outcomes is due to the distinction between the EXCEPTION state and the ABORT state. In

Davidson, Lee & Wolfe 6

an ABORT state, the participant returns to its original state. In the example, an ABORT state

implies that neither robot arm lifted and the container is in the position it was before the TAC.

In an EXCEPTION state, the participant may have partially performed commit or abort actions;

e.g., one arm may have only partially lifted by the deadline while the other one has completely

lifted. The EXCEPTION state indicates that the system may be inconsistent, and that recovery

should be performed.

To see the difference between TAC and traditional atomic commitment, consider the case

where there is no deadline, i.e., D = oo. In the absence of faults, the correctness criteria require

that all participants eventually reach a decision and perform the decided-upon action. Therefore

the result of TAC with D = oo will be either "all-abort" or "all-commit". No participant will

ever terminate in the EXCEPTION local state, and this definition agrees with that of traditional

atomic commitment in [5] . However, if faults occur, the correctness criteria pose no requirements

on whether a decision will ever be reached. This contrasts with the traditional definition which

states that if faults do not occur for sufficiently long, a decision will eventually be reached. The

reason for this discrepancy is that, in the absence of further assumptions about the operating

environment (such as the number, time of occurrence, and frequency of faults), it is impossible

to state how large a fault-free window of time between the start of TAC and D is needed to

allow a participant to reach a decision.

2.2 Calling Process Extension.

In practice, it is not enough that the participants establish their own local states by D; some

other process must know all of the local states by D so that it can determine what action

to take. Furthermore, it is natural to assume that this process initiates the TAC by sending

start messages, and "embodies" the global clock by measuring D. In the coordinating robots

example, if the outcome is ABORT, the belt should be stopped and the lift retried. If the

outcome is EXCEPTION, some form of recovery should be taken. We therefore extend the

definition of timed atomic commitment with a calling process that initiates the TAC by sending

out the start messages, measures D on its clock, and establishes the outcome of the TAC by D.

The outcome of the TAC is represented by a global state vector. The global state vector entry

for each participant is initially EXCEPTION and is changed when the caller determines each

participant's local state. To ensure that the caller correctly establishes the outcome of the TAC

by D, we replace TAC3 and TAC4d in the timed correctness criteria with:

Davidson, Lee & Wolfe

TAC3' At D, a participant's local state either reflects the participant's completed

action or is EXCEPTION. Furthermore, the participant's global state vector entry is

either its local state or is EXCEPTION.

TAC4d' at D, a participant's local state reflects the participant's completed action.

Furthermore, the participant's global state vector entry is the same as its local state.

The protocols and language constructs we present for TAC are based on this extended definition.

Protocols For Timed Atomic Commitment

One's initial reaction in building a timed atomic commit protocol is to merely add a deadline to

the end of the performance phase of a "favorite" traditional (untimed) atomic commit protocol. If

D expires at any phase of the participant's execution, the participant merely makes a transition

to the EXCEPTION local state (see Figure 1 in the previous section). However, this simple

solution violates the correctness criterion TAC4 since an EXCEPTION state may be reached

with no faults occurring. For example, at some point in any atomic commitment protocol, the

participant must reach a decision; this decision can be made just before D, not leaving enough

time for the decided-upon action to be completed. Furthermore, the participant may not reach

a decision at all before D expires; no faults have occurred, but again the participant enters an

EXCEPTION local state. In light of these types of anomalies, we must develop slightly more

complex protocols and carefully state what we require of the operating environment.

3.1 Operating Environment

In devising a correct TAC protocol, the guarantees made by the operating environment must

be carefully considered. For example, if the operating environment makes no guarantees about

message delivery, then message loss is not a fault. As argued in the introduction, there can be no

correct TAC protocol for this environment. Since the definition of TAC relies on the definition

of faults, any protocol must describe what its assumed operating environment is, including what

guarantees it makes and what faults can occur. Our assumed operating environment makes

guarantees about processors, schedulers, clocks, and communication.

The assumed computation system is a collection of distributed processors that communicate

with each other via messages over a network. A processor fault occurs when a processor goes

down. While the processor is down, no process that is assigned to the processor performs any

computation. Each processor has its own local clock. A clock fault occurs if two clocks drift

Davidson, Lee & Wolfe 8

too far apart, i.e., there is an assumed upper bound on clock drift, called c. We assume that no

malicious faults occur.

Communication is asynchronous. The time from executing send to arrival of the message

at the recipient process's message queue is guaranteed not to exceed A. There are two forms

of communication faults: lost messages, where a message is never delivered from the sender to

the receiver, and late messages, where messages take longer than the guaranteed upper bound

on delivery. We assume that messages never arrive out of order.

Finally, each processor has a collection of time-shared processes that are subject to pre-

emption. We assume that scheduling is fair: each process is guaranteed to execute for at least

rT time units within r p time units of becoming ready to execute. Processors use a resource
manager to allocate and schedule resources such as the CPU and devices. The resource manager

is assumed to be capable of guaranteeing resources for a duration of time within a given time

interval [6,7,8]. A scheduling fault occurs either when the fairness assumption is violated, or

the resource manager promises resources but fails to deliver them within the promised time. We

assume that the execution time bounds are accurate, i.e., a process never requests too little time

from a resource manager, and that the resource manager responds to guarantee requests within

a fixed amount of time.

3.2 Notation

To facilitate the description of the protocols, we introduce the following notation. Firstly, we

express time dependent behavior using the temporal scope language construct. We outline only

the aspects of temporal scopes used in this paper; further details can be found in [9]. A temporal

scope consists of (optionally) a start time and a deadline, statements that are to be performed in

the interval defined by the start time and deadline, and an exception handler. If the start time

is not specified, it is assumed to be immediate; if the deadline is missing, it is assumed to be

infinite. The structure of a temporal scope is as follows:

before (start-time) by (deadline) do
(statements-1)

except
when ESTART do (statements2) end when
when EDEADLINE do (statements3) end when

end before

If (statements-1) are not started by the specified (start-time), then (statements2) are executed. If

the (statements-1) are not completed by (deadline), then execution of (statements-1) is terminated

(statements-3) are executed.

Davidson, Lee & Wolfe 9

Secondly, we describe how processes reserve resources. A process must be able to reserve

resources to be able to complete the decided-upon action by deadline. For simplicity, we assume

that the only required resource is the CPU, although in general it could include other resources

such as memory or devices. A system call, Reserve(e, [low,high]), returns true if e execution

time units within the interval [low, high] are guaranteed by the resource manager to the invoking

process; otherwise, false is returned.

Thirdly, we describe communication. The send primitive, send(process, message), takes -r,

units of local processing time (included in the assumed bound A). We also assume a non-

interruptible broadcast version of send(process,message) called send-all(process-list,message).

By non-interruptible we mean that it is not possible to interrupt a send-all for a temporal scope

deadline violation. The send-all primitive has a bound of A*, of which r b is local processing

time. The receive primitive, receive (process-list, message), blocks until a message arrives from

any of the specified processes.

3.3 Centralized TAC Protocol

This section adapts a centralized two-phase commit protocol1 to TAC by incorporating inter-

mediate deadlines; the result is the centralized timed two-phase commit protocol (CT2PC). In

CT2PC, an extra "coordinator" process is added to collect votes from the participants, and make

and distribute the decision. For simplicity, we assume that the calling process is the coordinator,

i.e., the caller sends out the start messages, acts as coordinator during the TAC, and establishes

the global state vector at the end of the TAC.

In the TAC, let S be the absolute start time and D be the absolute deadline. For a participant

Pi, let ti be the maximum execution time needed to receive a pending decision message, carry

out the commit or abort action, and send a completion message, measured on its clock. The

largest of all the ti's is called T,,,. For the coordinator, let r d be the maximum execution time

needed to receive N waiting vote messages, process them, and make a decision; and ~f be the

maximum execution time needed to receive N pending completion messages and compute the

result of a TAC. Recall that E is the maximum clock drift, A is the bound on execution of send,

T, is the local processing time for send, A* is the bound on execution of send-all, and rb is the

local processing time for send-all.

Intermediate Deadlines. Each phase of the CT2PC consists of a message exchange between

the coordinator and the participants as shown in Figure 2. The following intermediate de:idlines

'For an overview of centralized two-phase commit protocols see [5,4].

Davidson, Lee & Wolfe

V LST 9,

S IX D
wait for votes determine

Figure 2: Messages in a CT2PC Protocol

and decide

are added to the phases:

result ,

D, = D - A - r j - E : deadline for sending a completion message by a participant. In

the absence of faults, each participant must complete the decided-upon action and send

the completion message (at most A time units) so that the coordinator has time to process

it (at most rf time units) before D on the coordinator's clock (skewed by at most E).

COORDINATOR

b
generate perform

vote actions PARTICIPANT

D E C = D, - T,,, - A* - e: deadline for sending a decision by the coordinator. For a

participant with T,,, execution time to guarantee completion of the decided-upon action

by D, in the absence of faults, it must start executing the action by D, - T ~ , , on its

clock. The coordinator must then interpret this time on its own clock using the worst

case assumption on clock skew, and allowing maximum message delay for the broadcast

decision to arrive at the participant.

V = DEC - A - rd - E: deadline for a participant to vote. The participant must vote

in time for the vote message to arrive at the coordinator and be processed before DEC

expires on the coordinator's clock.

[LST;, D,]: the interval of time during which Pi requests a guarantee of ti time units of

resources needed to perform the decided-upon action. There are several choices for LST;,

ranging from LSTi = DEC + A* + E to LSTi = D, - ti. Choosing an earlier LST;

allows Pi to vote YES more frequently since the guarantee is more likely to be granted.

Choosing the later LSTi can better tolerate a tardy decision message.

To understand why the assumption of fair scheduling has been imposed, consider the follow-

ing scenario: Suppose that the co-ordinator sends START messages to the participants, and that

Davidson, Lee & Wolfe 11

the messages are delivered within A* time units. If no assumption is made about scheduling,

some participant could be ready to receive the message, but not be scheduled to execute until

after the deadline, D. This will cause the coordinator to conclude that the outcome is EXCEP-

TION in the absence of any faults, violating TAC4c. However, if participants are guaranteed

to execute for long enough to send a COMPLETION message to the coordinator before D,
indicating that they have automatically aborted, this problem is avoided. Thus, T, must at least

be long enough for the participant to null-abort, that is, allow enough time for the participant

to receive a waiting START message, query the resource manager, and send a COMPLETION

message to the coordinator. Furthermore, T, must be given after the start message is delivered

and before D,. This can be guaranteed if the participant is given T, units within ~p time units

of being ready, in which rp < Dp - S - A*.

CT2PC Protocol. Figure 3 outlines the coordinator. Before starting a TAC, the coordinator

ensures that D is sufficiently long to allow each participant to receive a START message and

return a COMPLETION message in time for the coordinator to determine the result. The

coordinator also reserves r d and rf units of execution so that it can send a decision message

by DEC and determine the result by D. If the reservations are denied, the TAC is not started.

Otherwise, the coordinator commences the TAC by sending START messages. The coordinator

then waits to receive vote messages from the participants. When it receives all votes, or any

NO vote, it decides and sends the decision to the participants. However, if DEC expires before

it decides, it decides to abort and sends the ABORT decision to the participants. After sending

the decision, it receives COMPLETION messages and updates the corresponding global state

vector entries. If D expires before all COMPLETION messages have been received, the result

is EXCEPTION.

Figure 4 outlines a participant Pi. When a START message is received, the participant

attempts to reserve ti units of execution within [LST;, D,]. If the reservation succeeds, it

determines its vote and tries to send the vote by V. When the participant receives a decision

from the coordinator, it performs the decided-upon action and sends a COMPLETION message

by DP.
Note that steps taken for vote determination are application dependent. For the coordinating

robots example described in the introduction, a robot must grasp the container before voting YES

to ensure that it can lift it correctly. Thus if the robot votes YES, but the decision is ABORT,

the robot must release the container in its ABORT action.

If the participant cannot receive a reservation, or receives an ABORT message without a prior

Davidson, Lee & Wolfe

process Caller(S,D) I* S= start time, D= deadline */
begin

D,:= D - A - 7 - f - E
D E C :=Dp - A* - Tmaz - E

V : = D E C - A - E - 7 - d
i f (D , - S 2 A * + r T) a n d (D , - S - A * > r p)

and Reserve (rd + r b , [DEC - rd ,DEC+ rb])
and Reserve (T ~ , [D - 7-f , Dl) then
Initialize global state vector entries to EXCEPTION.
decision := ABORT
by D E C do

send-all ([PI , . . . , PN], START, D,, DEC, V)
while (not received all N votes) and (no NO votes received) do

receive ([P I , . . . , PN], vote)
end while
if all YES votes then decision := COMMIT end if
send-all ([P I , . . . , PN], decision)

except
when EDEADLINE do

send-all ([P I , . . . , PN], decision)
end when

end by /* D EC */
by D do

while not received all COMPLETION messages do
receive ([PI , . . . , PN], COMPLETION)
Update global state vector entry.

end while
end by

end if
end process

Figure 3: Coordinator (Caller) Process for CT2PC

Davidson, Lee & Wolfe

process Pi /* i th Participant Process */
begin

receive (Caller, STARTIABORT, Dp, D EC, V)
by D, do

if received ABORT then
send (Caller, COMPLETION) /* null abort */

else /* received START message */
LST; := D EC + A* + c
if Reserve (t i , [LST;, D,]) then

by V do
compute vote (YESINO)
send (Caller, vote)

end by /* V */
receive (Caller, decision)
case decision of

COMMIT: user-specified commit statements
ABORT: user-specified abort statements

end case
end if
send (Caller, COMPLETION)

end if
except

when EDEADLINE do exception statements end when
end by /* D, */

end process

Figure 4: Participant Process for CT2PC

Davidson, Lee & Wolfe

START message, the participant null-aborts and sends a COMPLETION message. A null-abort
indicates that the participant has taken no steps in determining its vote that need to be undone

during an ABORT.

3.4 Correctness of CT2PC

To show that CT2PC is correct, we now prove a series of lemmas corresponding to the correctness

criteria of Section 2.1. We assume that the TAC was initiated, i.e., the coordinator has received

its requested guarantees, the deadline was far enough away to initiate the protocol, and start

messages were sent to the participants.

Lemma 1 (TAC2) The decision is COMMIT only ifall participants vote YES.

Proof: Follows immediately from the fact that a participant decides to commit only if the
coordinator sends a COMMIT message, which is done only if all the votes are YES.

Lemma 2 (TAC1) All participants that reach a decision reach the same one.
Proof: First, recall that send-all is non-interruptible, so the coordinator sends out the same

decision message to every participant. The only case in which a participant makes a decision

without explicitly receiving it from the coordinator is if the participant aborts. In this case, the

coordinator cannot decide to commit since the aborting participant will not send a YES vote. It

follows from Lemma 1 that the decision in this case cannot be COMMIT.

In the following two lemmas, we assume that there are no faults. They are used to show

that CT2PC satisfies the minimum goodness requirements, TAC4.

Lemma 3 Ifthere are no faults, any message thatprocess Pi sends to process Pi at time t on Pj's

clock is guaranteed to arrive by t + A + e on Pi's clock. Furthermore, if process Pi broadcasts

a message at time t , then it will arrive by t + A* + e on any recipient Pi's clock.
Proof: Follows from the definitions of A, A' and E .

Lemma 4 I f there are no faults and the participant Pi is not guaranteed its execution times, then
it meets TAC4.

Pro08 The fair scheduling assumption and definitions of T, and TP ensure that Pi will send a
COMPLETION message by D, (TAC4a,c). Using Lemma 3 and the fact that D - D, includes

~f time to receive and process all COMPLETION messages, TAC4dt holds. TAC4b is trivially

satisfied because Pa does not vote YES.

Davidson, Lee & Wolfe 15

We now complete the proof of TAC4 by restricting our attention to participants who have

received a guarantee of ,their execution times.

Lemma 5 If there are no faults, then the decision message arrives at each participant Pi by

LST;, measured on Pi's clock.
Proof: It is enough to show that in the absence of faults the decision message is broadcast by

DEC, because Lemma 3 ensures that it arrives at Pi by DEC + A* + E = LST; on Pi's clock.

Suppose that the decision message has not been broadcast before DEC. Since the coordinator

has reserved T~ + r b execution time during [DEC - rd, DEC + rb], the coordinator is guaranteed

to start executing the exception handler at DEC and have enough local processing time for a

send-all (rb); hence the decision message is sent at DEC according to the coordinator clock in

the worst case.

Lemma 6 (TAC4a) If there are no faults, then all participants reach a decision.

Proof: By Lemma 5, the decision message arrives at Pi by LST;. Since Pi has received a

guarantee of ti during [LST;, D,], and ti includes execution time to receive the decision, Pi is

guaranteed to reach a decision.

Lemma 7 (TAC4b) If there are no faults and all participants vote YES, then the decision is to

commit.
Proof: Since there are no faults and each participant votes YES, each participant must have sent

its vote message by V measured on its clock. Due to Lemma 3, every vote message must arrive

at the coordinator by V + A + E = DEC - r d , measured on the coordinator's clock. Since the

coordinator has reserved r d units of execution during [DEC - rd, DEC], it is guaranteed to be

able to receive all vote messages and decide to commit by DEC. By Lemma 6 , all participants

must also decide to commit.

Lemma 8 (TAC4c) If there are no faults, then all participants complete their decided-upon ac-

tion by D.
Proof: By Lemma 5 , the decision message arrives at Pi by LST,. Since Pi has reserved ti

execution time during [LST;, D,], then by the definition of ti Pi completes the decided-upon

action and sends a COMPLETION message by D,. Note that we have proved something stronger

than required, namely that the COMPLETION message is also sent by D,.

Lemma 9 (TAC4d') If there are no faults, then at D, each participant's local state and global

state vector entry reject the participant's completed action.

Davidson, Lee & Wolfe 16

Proof: As noted in the proofs of Lemmas 4 and 8, each participant sends a COMPLETION

message by D,. By Lemma 3, the COMPLETION messages must arrive at the caller by

D, + A + e = D - T ~ . Since the coordinator has reserved rf execution time in [D - r j , Dl, it
must receive all COMPLETION messages and update the global state vector by D.

Lemma 10 (TAC3') At D, each participant either has its local state and global state vector

entry reflect its completed action or its global state vector entry is EXCEPTION.
Proofi The global state vector is initially EXCEPTION for each participant, and is changed only

when a COMPLETION message is received from a participant. A COMPLETION message is

only sent if the participant has completed the decided-upon action and (implicitly) changed its

local state to reflect completion of the decided-upon action.

Using the above lemmas, we conclude that CT2PC is correct:

Theorem 1 CT2PC shown in Figures 3 and 4 is correct with respect to the TAC Correctness

Criteria.

3.5 A Decentralized TAC Protocol

This section adapts a decentralized two-phase commit protocol that requires each participant to

receive a vote from every other participant, make its own decision, and perform the appropriate

action in time to let the caller know its local state by D.

For a participant Pi, let r d be the maximum execution time needed to receive N vote

messages, process them, and make a decision; let ti be the maximum execution time needed

carry out its commit or abort action and send its local state message; and let T,,, be the largest

of all the ti's. As in CT2PC, let ~f be the maximum execution time needed for the caller to

receive N completion messages and compute the result of the TAC. Recall that E is the maximum

clock drift, A is the bound on execution of send, T, is the local processing time for send, A* is

the bound on execution of send-all, and r b is the local processing time for send-all.

Intermediate Deadlines. Participants execute as shown in Figure 5. The intermediate deadlines

are:

D, = D - A - rf - c: deadline for sending a completion message by a participant.

V = D, - A* - T,,, - ~d - e: deadline for a participant to vote. Let P be a participant

with T,,, expected execution time. To guarantee that P can meet D,, each participant

Davidson, Lee & Wolfe

S D determine

-
votes

result,

CALLER
wait for votes

vote
Figure 5: Messages in a DT2PC Protocol

and decide

must broadcast its vote by V to ensure that its vote arrives at P by D, - rm,, - 7-d on

P ' s clock.

,
perform

[LST,, D,]: the interval of time during which Pi requests a guarantee of t i time units

of resources needed to perform the decided-upon action. LST; can range from LSTi =

D, - T,,, to LST, = D, - ti. The former is the latest time that Pi receives all votes

if no fault occurs, whereas the latter is the latest time that Pi must start executing its

decided-upon action to complete by a pessimistic interpretation of D, on its clock. The

tradeoffs are similar to those discussed in the CT2PC protocol.

actions PARTICIPANT
other LST w

We now reiterate what is required of the fair scheduling assumption: T, must be long enough

to null-abort, which in this case involves receiving a waiting START message, querying the

resource manager, broadcasting a NO vote, and sending an ABORT message to the caller.

Furthermore, all votes must arrive at each participant before LST;, forcing TP < V - S - A*.

DT2PC Protocol. Figure 6 outlines the caller in DT2PC. It first checks that D is sufficiently

long to allow each participant to receive a START message, send NO votes to other participants,

and send ABORT to the caller. It then attempts to guarantee that it can receive r j execution

time in order to receive the local-state messages (COMMIT/ABORT). If it receives a guarantee,

start messages are sent using a send-a11 primitive. The caller then waits to receive local-state

messages.

Figure 7 outlines a participant Pi in DT2PC. Upon receiving a start message from the caller,

Pi attempts to receive guarantees from its resource manager that it can vote by V, process other

votes by LST;, and perform the commit or abort actions in the interval [LST,, D,]. If Pi does not

Davidson, Lee & Wolfe

process C a l l e ~ (S , D)
begin

D,:= D - A - T f - E

V := D, - A* - rmaz - ~d - 6
if (V - S - A* > rp and Reserve (T ~ , [D - rf, Dl) then

Initialize global state vector entries to EXCEFTION.
by D do

send-all ([PI , . . . , PN], START, T,,,, D,, V)
while (not received all N local-state messages) do

receive ([PI , . . . , PN], ABORTICOMMIT)
Update global state vector entry.

end while
end by I* D */

end if
end process

Figure 6: Caller Process for DT2PC

receive these guarantees, it null-aborts by voting NO and sending a local state message (ABORT)

to the caller. Otherwise, Pi attempts to determine its vote. If V expires before Pi sends its vote,

the temporal scope handler generates a NO vote. Whenever Pi votes NO, it aborts and sends an

ABORT message to the caller. Whenever Pi votes YES, it waits to receive all votes from the

other participants. It then decides, performs the appropriate action, and communicates its local

state to the calling process upon completion. If D, expires, then Pi terminates by executing

exception statements.

3.6 Correctness of DT2PC

We now show that DT2PC is correct by proving a series of lemmas corresponding to the correct-

ness criteria of Section 2.1. We use Lemma 3 from Section 3.4 and again assume that the TAC

is initiated, i.e. that the caller received its requested guarantees, the deadline was far enough

away to initiate the protocol, and that start messages were sent to the participants.

Lemma 11 (TAC2) The decision is COMMIT only if all participants vote YES.

Proof.- Obvious, since the only way a participant can decide to commit is to receive all votes

with none of them being NO.

Lemma 12 (TAC1) All participants that reach a decision reach the same one.

Davidson, Lee & Wolfe

process Pi
begin

receive (Caller, START, r,,,, D,, V)
LST; := D, - r,,,
if not (Reserve(rb, [V, V + rb]) and

Reserve(rd, [LSTi - r d , LSTi]) and
Reserve(ti , [LST, , D,])) then

send-all ([PI, . . . , PN], NO)
send (Caller, ABOFS)

else I* guarantee received *I
vote:= NO
by V do

compute vote (YES/NO)
send-all ([PI,. . . , PN], vote)

except I* V */
when EDEADLINE do send-all ([PI, . . . , PN],vote) end when

end by I* V */
by D, do

if vote= NO then temp:= ABORT else temp:= COMMIT
while (not received all other votes) and (temp = COMMIT) do

receive ([PI,. . . , PN], their-vote)
if their-vote = NO then temp := ABORT end if

end while
decision:= temp
case decision of

COMMIT: user-specified commit statements
ABOFU': user-specified abort statements

end case
send (Caller, decision) /* local state message */

except
when EDEADLINE do exception statements end when

end by /* D, */
end if

end process

Figure 7: Participant Process Pi in DT2PC

Davidson, Lee & Wolfe 20

Proof: I f some participant decides COMMIT, then any other participant that reaches a decision

must decide COMMIT since all votes must be YES. If some participant decides ABORT, then

some vote (possibly its own) must be NO; hence by Lemma 11 no other participant can decide

COMMIT.

Lemma 13 If there are no faults and participant Pi is not guaranteed its execution times, then it

meets TAC4.
Proof: Note that the fair scheduling assumption and definitions of T, and TP ensure that Pi will

broadcast NO votes to all other participants and send an ABORT message to the caller by V

(TAC4a,c). Using Lemma 3 and the facts that V < D, and that D - D, includes T~ time for

the caller to receive all ABORTKOMMIT messages, TAC4d1 holds. TAC4b is trivially satisfied

because Pi does not vote YES.

We now complete the proof of TAC4 by restricting our attention to participants who have

received a guarantee of their execution times.

Lemma 14 If there are no faults, then each participant Pi sends its vote by V as measured on

its own clock.
Proof: Follows since Pi is guaranteed r b time needed to broadcast its vote in the exception

handler at V.

Lemma 15 If there are no faults, then each participant Pi reaches a decision by LST,, measured
on its own clock.
Proof: Lemmas 14, 3 and the proof of Lemma 13 ensure that all vote messages arrive at Pi by

V + A* + E. on its clock, which is LSTi - rd. Since Pi reserved 7-d time in [LST; - r d , LST;],

it receives the votes and decides by LST;.

Lemma 16 (TAC4a) If there are no faults, then all participants reach a decision.

Proof: Follows directly from Lemmas 13 and 15. o

Lemma 17 (TAC4b) If there are no faults and all participants vote YES, then the decision is to

commit.

Proof: By Lemma 15, each participant receives all votes and has time to reach a decision by

LSZ. Since the votes are all YES, the decision must be to COMMIT.

Lemma 18 (TAC4c) If there are no faults, then all participants complete their decided-upon
action by D.

Davidson, Lee & Wolfe 21

Proof: This follows from the fact that the decision is made by LST; (Lemma IS), and ti units of

execution are guaranteed within [LST;, D,] which is sufficient both to complete the decided-upon

action and to send the completion message by D,. Note that for any participant, the completion

message is sent by D,.

Lemma 19 (TAC4d') If there are no faults, then at D, each participant's local state and global

state vector entry reject the participant's completed action.

Proof: The local state message is sent by D, (proof of Lemma 18) and arrives at the caller by

D, + A + E (lemma 3), which is D - .rf on the caller's clock. r j allows the caller time to receive

the message and update the global state vector.

Lemma 20 (TAC3') At D, each participant either has its local state and global state vector

reJect its completed action or its global state vector entry is EXCEPTION.

Proof: The global state vector is initially EXCEPTION for each participant, and is changed

only when a local state message is received from a participant. This message is only sent if

the participant has completed the decided-upon action and (implicitly) changed its local state to

reflect completion of the decided-upon action.

Using the above lemmas, we conclude that DT2PC is correct:

Theorem 2 DT2PC shown in Figures 6 and 7 is correct with respect to the TAC Correctness

Criteria.

4 Coordinating Robots Example

We now illustrate the usefulness of TAC using the coordinating robots example described in the

introduction. To facilitate the description, we first introduce some language constructs.

4.1 Language Constructs

The language constructs include a TAC block for the calling process, and timed actions for the

participants.

TAC Block. To invoke a TAC, the caller starts a set of concurrent participant timed actions,

and waits for the participants' local states. The structure of the TAC block is:

Davidson, Lee & Wolfe

tac-begin [Vl , . .. , V,] I* Global state vector. */
Vl:= action PI ((args))

Vn:= action Pn ((args))
end tac;

The global state vector [Vl, ..., V,] is initialized to EXCEPTION for each entry; VI: is updated

when Pi completes and returns its local state. When each entry in the global state vector has

been updated, the TAC completes. To establish a deadline for TAC, the TAC block is enclosed

within a temporal scope (see Section 3.2 and [9]). If the deadline is reached and TAC block has

not completed (some V, is still EXCEPTION), then the temporal scope exception handler starts

recovery.

Timed Actions. TAC participants are timed actions which execute as remote procedures called

from a TAC block. The structure of a timed action is:

timed action (action-name) ((parameters))
for (time) { resource (resource-id))

begin
(statementsl) I* decide vote: YES or NO */
vote (YES or NO)
await

when COMMIT do (statements2) end when
when ABORT do (statements3) end when

except
when EDEADLINE do (statements4) end when

end action

The parameters allow data to be exchanged between the TAC block and the timed action; the

explicit declaration of resources allows the underlying protocol to request reservations for the

COMMIT/ABORT actions. When the timed action is invoked, it computes its vote; the decision

is made based on the votes of all timed actions in the TAC block. If the decision is COMMIT,

(statements2) are executed; if the decision is ABORT, (statements3) are executed. Note that the

deadline (EDEADLINE) is not explicitly specified, but is determined by the underlying protocol

using the caller's deadline.

Another difference between timed atomic commitment and traditional atomic commitement

should be discussed here. In traditional atomic commitment programmer-provided abort state-

ments (such as (statements3)), are not used because only automatically recoverable actions are

Davidson, Lee & Wolfe

process Belt-Controller

Wait for sensor to detect a defective-container.
after 5 seconds within 10 seconds do

tacbegin [Vl , V2]
Vl := action Robot-1 ()
V2 := action Robot2 ()

end tac
except

when EDEADLINE do
stop entire system
alert operator to clear container fmm arms

end when
end after
if Vl = ABORT and V2 = ABORT

then stop belt and reset

Figure 8: Caller Process Belt-Controller

performed before the decision is known. However, in timed atomic commitment, state altering

actions may be performed in the voting phase that can only be restored by the programmer. For

instance, in the robot example of Section 5, a robot bases its vote on whether or not it has grasped

the container; if the decision is to abort, the programmer must provide explicit compensating

actions [10,11] in the abort clause to release the container. However, unrecoverable actions

should be performed only during the commit phase so that they can be assured of completing

(barring faults).

4.2 Coordinating Robots Example

The coordinating robots example described in the introduction requires that a defective chemical

container be picked up by two robot arms and discarded within 10 seconds of detection. The

example consists of a caller process, Belt-Controller (see Figure 8), and two participants, Robot-1

and RobotZ, which control the arms needed to pick up a container from the conveyer belt. (see

Figure 9).

Davidson, Lee & Wolfe 25

environment includes the possibility of processor and communication faults, it is impossible to

devise a protocol which guarantees that all participants either commit or abort by a deadline.

We therefore modify the traditional definition of atomic commitment to one for timed atomic

commitment by introducing an EXCEPTION state, which indicates that a participant may not

have completed the decided-upon action by the deadline. As in traditional atomic commitment,

we insist that the decisions made by participants are consistent, i.e., no participant decides to

commit if another decides to abort; however, EXCEPTION is defined to be consistent with

COMMIT or ABORT.

To formalize this notion, we presented minimal requirements for a correct implementation

of timed atomic commitment. These correctness criteria capture the intuitive notion that an

exceptional outcome should only occur in the presence of faults, and an aborted outcome should

only occur in the presence of faults or if some process votes NO. That is, a correct TAC should

succeed in committing whenever possible. In order to achieve a correct implementation, we also

noted that it is necessary to have an operating environment that provides bounds on message

delays and clock synchronization, and guarantees resources.

Centralized and decentralized timed two-phase commit protocols were modified to meet the

correctness criteria by introducing intermediate deadlines on the voting and performance phases

of participants, and on the decision phase for the caller. The deadlines were derived from D

using several assumptions, e.g., maximum message delay, clock drift and execution time bounds.

If any of these assumptions are violated, correctness is still assured but an exception outcome

may occur; to reduce exceptions, these bounds should be pessimistic.

There are tradeoffs between using the centralized or decentralized implementation. In CT2PC,

there are 4N messages; of these, 2N messages (the decision and completion messages) are

"critical". By critical we mean that if the message is lost, the result will be EXCEPTION.

Note that if a START or VOTE message is lost in CT2PC, the coordinator will timeout and

decide ABORT. In DT2PC there are N2 + N messages, all of which are critical. In either

implementation, loss of any process, participant or coordinator, may result in an EXCEPTION

outcome.

If the caller wishes to know that there is a possibility of committing, using worst-case

assumptions, there is a minimum overall elapsed deadline, D - S. For the centralized protocol,

D - S must be greater than or equal to the sums of the time to send the start message (A*),

compute the vote ((7, - T,) + E), send the vote (A), decide (rd + E), send the decision (A*),

perform the decided-upon action (T~ , , + c), send the completion message (A), and update the

Davidson, Lee & Wolfe

timed action R o b o ~ l 0
for 4 see resource arm1

begin
lower arm and grasp container
if grasped correctly then vote (YES) else vote (NO)
await

when COMMIT do raise arm end when
when ABORT do

if container is grasped then release container
end when

except
when EDEADLINE do stop arm end when

end action

Figure 9: Participant Timed Action Robot-1

Belt-Controller waits 5 seconds after a sensor detects a defective container before initiating

a TAC with a 10 second deadline. It then waits until it knows both arms have completed the

decided-upon action, or until the 10 second deadline expires. If the result is COMMIT, the

belt continues without interruption; if it is ABORT, the belt is stopped and reset. Otherwise,

Belt-Controller does not know whether or not RobotJ and Robot2 have successfully completed

by the deadline; it stops the entire system and alerts the operator so that the unlifted container

can be removed.

Upon invocation, Robot-1 determines its vote by trying to grasp the container; this may

fail since the arm is shared among several processes and only one process may control the

arm at a time. If it is successful, the vote is YES; otherwise, the vote is NO. Note that the

underlying protocol may also force the vote to be NO if intermediate deadlines cannot be met

or the required reservations are not guaranteed; in this example, the arm is needed for 4 seconds

during the COMMITIABORT phase. After voting, Robot-1 awaits the decision; ABORT results

in the container being released; otherwise, it is lifted. If the participant's deadline expires before

the completion of the decided-upon action, then the arm is stopped and Belt-Controller handles

the exception.

5 Conclusion

In a large class of hard-real-time control applications, components of a control task must perform

a type of atomic commitment under timing constraints. However, if the assumed operating

Davidson, Lee & Wolfe

global state vector (T~) :

For the decentralized protocol, D - S must be greater than or equal to the sums of the time to

send the start message (A*), compute the vote ((7, - T*) + E), send the vote (A*), decide and

perform the decided-upon action (T ~ + T,,, + E), send the completion message (A), and update

the global state vector (T~) :

A shorter deadline would not be incorrect nor necessarily cause exceptional outcomes. However,

since the intermediate deadlines are derived from D, a shorter D may cause an increased ABORT

rate. For example, there may not be enough time for guarantees to be made, or (in CT2PC)

the coordinator may timeout while waiting for votes. Thus, these protocols are most useful for

real-time applications in which the deadline is long compared to message delays and clock skew.

Note that a virtue of the TAC protocols is that the timed behavior of the caller is predictable;

at the deadline, the caller either knows that all participants have performed the decided-upon

action, or decides that some participant is exceptional and performs explicit recovery. It is our

belief [3,1,8] that consistency and predictable performance are often more important than speed

in real-time computing, thus the overhead of using the TAC protocols is justified.

To support the use of timed atomic commitment, we also introduced a temporal scope, TAC

block and timed action constructs. A timed action defines a participant with explicit voting, de-

cision, and performance phases. The caller uses a TAC block to initiate the atomic commitment,

and expresses the deadline by enclosing it in a temporal scope. These constructs were demon-

strated in the coordinating robots example. Although it is possible to implement the example

without these constructs, an equivalent implementation would require explicit synchronization,

fault detection and enforcement of timing constraints. In addition, these constructs support

extensible and modifiable programs: Programs are extensible since adding another robot arm

merely entails adding another participant in the TAC. Programs are modifiable since changing

the deadline in the caller does not necessitate changing the participant code. Above all, TAC

language constructs simplify program development and modification by hiding implementation

details.

The language constructs and underlying protocols are currently being implemented using a

real-time kernel [8] developed at the University of Pennsylvania for distributed real-time control

applications.

Davidson, Lee & Wolfe 27

Acknowledgement: We thank the referees for their constructive input into earlier versions of

this paper.

References
[I] J. Stankovic, "Misconceptions about real-time computing: a serious problem for next-

generation systems," IEEE Computer, vol. 21, pp. 10-19, Oct. 1988.

[2] K. Schwan, T. Bihari, and B. Blake, "Adaptable, reliable software for distributed and
parallel, real-time systems," in Sixth Symposium on Reliability in Distributed Software,
pp. 32-44, March 1987.

[3] I. Lee, S. Davidson, and V. Wolfe, "Motivating time as a first class entity," Tech. Rep. MS-
CIS-87-54, Department of Computer and Information Science, University of Pennsylvania,
July 1987. Presented at IEEE Fourth Workshop on Real-Time Operating Systems.

[4] J. Gray, Operating Systems, ch. Notes On Database Operating Systems, pp. 394 - 481.
Springer-Verlag, 1979.

[5] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in
Database Systems. New York: Addison Wesley, 1986.

[6] W. Zhao, K. Ramamritham, and J. Stankovic, "Scheduling tasks with resource require-
ments in hard real-time systems," IEEE Transactions on Software Engineering, vol. SE- 13,
pp. 564-577, May 1987.

[7] W. Zhao, K. Ramamritham, and J. Stankovic, "Preemptive scheduling under time and
resource constraints," IEEE Transactions on Computers, vol. C-36, pp. 949-960, August
1987.

183 I. Lee, R. B. King, and R. P. Paul, "A predictable real-time kernel for distributed multi-
sensor systems," IEEE computer, vol. 22, pp. 78-83, June 1989.

[9] I. Lee and V. Gehlot, "Language Constructs for Distributed Real-Time Programming," in
Proc. IEEE Real-Time Systems Symposium, Dec. 1985.

[lo] H. Tokuda, "Compensatable atomic objects in object-oriented operating systems," in Pacijic
Computer Communication Symposium, pp. 45-53, Oct. 1985.

[l l] A. Gheith and K. Schwan, "CHAOSart: support for real-time atomic transactions," in 19th
International Symposium on Fault Tolerant Computing, pp. 462-469, IEEE, 1989.

	Timed Atomic Commitment
	Recommended Citation

	Timed Atomic Commitment
	Abstract
	Keywords
	Comments

	tmp.1194464037.pdf.GGGgK

