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1 Introduction 

In a large class of hard-real-time control applications, components execute concurrently on 

distributed nodes and must coordinate, under timing constraints, to perform the control task. 

The application is often such that all or none of the components must perform correctly within 
timing constraints for the system to be consistent. If only some of the components perform 

correctly, then the system will be left in an inconsistent state that violates system requirements. 

The problem of coordinating all or nothing behavior under timing constraints is called timed 
atomic commitment. 

As a simple example, consider a plant where containers of chemicals are processed on a 

conveyer belt. Occasionally, a defective container is detected which has to be carefully removed 

and discarded, preferably without stopping the belt. To do this, two robot arms, which are also 

servicing the belt in other capacities, must coordinate to perform the task within ten seconds 

of detecting the defective container. Before a container is lifted, each arm must have grasped 

the container and must know that operating conditions will allow it to lift the container within 

the deadline; if these conditions cannot be met, then the conveyer belt can be safely stopped, 

the container removed without timing restrictions, and the belt reset. Using the terminology 

of atomic commitment: if both arms complete the lift by the deadline, then the system has 

committed; if neither arm lifts and the belt stops, then the system has aborted. If one or both 

arms have only partially lifted within 10 seconds (perhaps due to electrical or mechanical failure), 

a hazardous situation may occur, such as a spill or collision with the next container on the belt; 

the system is in an exception state calling for emergency actions. 

In this application, the robot arm processes must perfonn a type of atomic commitment. 

However, traditional atomic commitment only requires that all processes eventually either commit 

or abort. There is no deadline by which the decision and action must be completed. We therefore 

introduce a new notion for distributed real-time computing called timed atomic commitment which 

enforces a deadline on the decision and performance of commitment actions. Similar notions 

have been called for in [1,2,3] and many discussions allude to the benefits of being able to time 

constrain traditional atomic commitment [4,5], but timed atomic commitment remains without a 

clear definition or implementation. 

Unfortunately, it is impossible to place a deadline on traditional atomic commitment if 

processor failure or message loss can occur. If a processor fails before a decision has been 

reached and remains down until after the deadline, it may be impossible for any processor to 

reach a decision. Furthermore, if a processor fails before completing the decided upon action, 
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it may be down until after the deadline and obviously cannot complete the action. Even if 

processors don't fail, message loss alone causes timed atomic commitment to be impossible. 

This fact follows easily from the "Two General's Paradox" [4], which states that there can be no 
fixed length protocol for non-trivial agreement between two or more processes if messages can 

be lost. Since reasonable distributed operating environments include message loss and processor 

failure, traditional atomic commitment cannot be extended to observe a deadline. We therefore 

allow the outcome of timed atomic commitment to be either 1) all actions were performed 

within the deadline (COMMIT), 2) no actions were performed (ABORT), or 3) the system is 

in an exceptional state indicating that a fault may have caused timing constraints to be violated 

(EXCEPTION). 

The distinction between ABORT and EXCEPTION is important. In the coordinating robots 

example, if the outcome is ABORT, then neither arm has lifted; nothing "wrong" has happened, 

and the belt can merely be stopped for long enough for the container to be successfully lifted. 

However, if the outcome is EXCEPTION, then the container may be only partially lifted which 

may cause it to spill or to interfere with the next container on the belt. In general, EXCEPTION 

indicates that the system may be in an undesirable state, requiring recovery actions. However, 

regardless of the number of faults, we still require that the processes are functionally consistent, 

i.e., no process commits if some process aborts. Note that since it is provably impossible 

for any atomic commitment to solve the problem of ensuring an "all-abort" or "all-commit" 

outcome within a deadline in the presence of faults, timed atomic commitment is defined to 

detect inconsistencies through the exceptional outcome and provide the opportunity for recovery. 

Our goal is to define timed atomic commitment, devise protocols to implement it in a real- 

istic operating environment, and show its usefulness though an example. The rest of this paper 

is organized as follows: Section 2 defines timed-atomic commitment. In Section 3, necessary 

requirements for the operating environment are discussed and centralized and decentralized pro- 

tocols for timed atomic commitment are presented. Section 4 introduces programming constructs 

for timed atomic commitment and illustrates their use in the coordinating robots example. Sec- 

tion 5 draws conclusions on the effectiveness of timed atomic commitment and when it should 

be used. 

2 Definition of Timed Atomic Commitment 

Atomic commitment is a problem that has been extensively studied, has a clean definition, 

and has a range of provably correct protocols for its implementation [ 5 ] .  An especially clean 
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Figure 1: FSM Model of a Participant in TAC 

statement of the problem can be found in [5 ] ,  and it is this definition that we adapt to include a 

deadline. 

There are N processes, called participants, that are to perform timed atomic commitment 

(TAC). When the TAC commences, a global clock is initiated to measure the deadline for 

completion, D. Each participant goes through three phases, as shown in Figure 1: a vote 

phase, at the end of which it produces a vote of YES or NO; a decision phase, at the end of 

which it produces the decision, COMMIT or ABORT, and a performance phase, during which it 

performs the decided-upon action and records the outcome in its local state. The vote indicates 

the participant's perception of its ability to commit: a YES vote is a promise to commit if the 

decision is made to commit; a NO vote means it cannot promise to commit. The local state of 

a participant is initially EXCEPTION, and cannot be altered after the TAC ends at D. 

Informally, in a "perfect" operating environment, the goal of TAC is to guarantee that, at 

D ,  either all participants have local states of COMMIT, or all participants have local states of 

ABORT. Furthermore, a COMMIT outcome is preferable to an ABORT outcome. To reach a 

COMMIT outcome, every participant must vote YES and decide to COMMIT; additionally, the 

commit actions must be successfully performed by D. To reach an ABORT outcome, some 

participant must vote NO, and thus all participants decide to ABORT; aborting (which may 

include performing restoring actions) must also be successfully performed by D. 

Unfortunately, actual operating environments are not perfect and include faults. For example, 

local clocks may be skewed, messages may be delayed or even lost, processes may not be able to 

execute when they need to, and execution may take longer than expected. Any of these factors 
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may cause some participant to have a local state of EXCEPTION after the TAC, i.e., be unable to 

vote, decide, or perform the decided-upon action by D. However, most operating environments 

offer "guarantees": for example, local clocks are synchronized to within a constant, and delivery 

time of messages has an upper bound. If the operating environment does not maintain a stated 

guarantee, we say that a fault has occurred. When faults occur we allow the TAC to indicate an 

EXCEPTION outcome. 

2.1 TAC Correctness Criteria 

We now specify what it means to perform correct timed atomic commitment. 

TACl All participants that reach a decision reach the same one. 

TAC2 The decision is to commit only if all participants vote YES. 

TAC3 At D ,  a participant's local state either reflects the participant's completed action or is 

EXCEPTION. 

TAC4 If there are no faults, then 

a) all participants reach a decision; 

b) if all participants vote YES, then the decision is to commit; 

c )  all participants complete the decided-upon action by D; and 

d) at D, a participant's local state reflects the participant's completed action. 

Criteria TACl and TAC2 define functional consistency of TAC, while TAC3 requires the local 

state to be determined at D. TAC4 defines minimal "success" requirements: TAC4b requires 

the decision to be COMMIT if there are no faults and all participants vote YES; this invalidates 

trivial protocols that arbitrarily force the decision to be ABORT. TAC2 and TAC4a together 

imply that a decision must be made to ABORT rather than remaining EXCEPTION if there are 

no faults and some participant votes NO; this eliminates trivial protocols that allow a process to 

remain undecided. TAC4c and TAC4d require that, in the absence of faults, the decided-upon 

action must be successfully completed and recorded in the local state by D. 
Note that in addition to the "all-commit" or "all-abort" outcomes of traditional atomic com- 

mitment, there are three other combinations of local states in a TAC: 1) all exceptional; 2) some 

committed, some exceptional; and 3) some aborted, some exceptional. This increased number 

of outcomes is due to the distinction between the EXCEPTION state and the ABORT state. In 
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an ABORT state, the participant returns to its original state. In the example, an ABORT state 

implies that neither robot arm lifted and the container is in the position it was before the TAC. 

In an EXCEPTION state, the participant may have partially performed commit or abort actions; 

e.g., one arm may have only partially lifted by the deadline while the other one has completely 

lifted. The EXCEPTION state indicates that the system may be inconsistent, and that recovery 

should be performed. 

To see the difference between TAC and traditional atomic commitment, consider the case 

where there is no deadline, i.e., D = oo. In the absence of faults, the correctness criteria require 

that all participants eventually reach a decision and perform the decided-upon action. Therefore 

the result of TAC with D = oo will be either "all-abort" or "all-commit". No participant will 

ever terminate in the EXCEPTION local state, and this definition agrees with that of traditional 

atomic commitment in [5 ] .  However, if faults occur, the correctness criteria pose no requirements 

on whether a decision will ever be reached. This contrasts with the traditional definition which 

states that if faults do not occur for sufficiently long, a decision will eventually be reached. The 

reason for this discrepancy is that, in the absence of further assumptions about the operating 

environment (such as the number, time of occurrence, and frequency of faults), it is impossible 

to state how large a fault-free window of time between the start of TAC and D is needed to 

allow a participant to reach a decision. 

2.2 Calling Process Extension. 

In practice, it is not enough that the participants establish their own local states by D; some 

other process must know all of the local states by D so that it can determine what action 

to take. Furthermore, it is natural to assume that this process initiates the TAC by sending 

start messages, and "embodies" the global clock by measuring D. In the coordinating robots 

example, if the outcome is ABORT, the belt should be stopped and the lift retried. If the 

outcome is EXCEPTION, some form of recovery should be taken. We therefore extend the 

definition of timed atomic commitment with a calling process that initiates the TAC by sending 

out the start messages, measures D on its clock, and establishes the outcome of the TAC by D. 

The outcome of the TAC is represented by a global state vector. The global state vector entry 

for each participant is initially EXCEPTION and is changed when the caller determines each 

participant's local state. To ensure that the caller correctly establishes the outcome of the TAC 

by D, we replace TAC3 and TAC4d in the timed correctness criteria with: 
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TAC3' At D,  a participant's local state either reflects the participant's completed 

action or is EXCEPTION. Furthermore, the participant's global state vector entry is 

either its local state or is EXCEPTION. 

TAC4d' at D, a participant's local state reflects the participant's completed action. 

Furthermore, the participant's global state vector entry is the same as its local state. 

The protocols and language constructs we present for TAC are based on this extended definition. 

Protocols For Timed Atomic Commitment 

One's initial reaction in building a timed atomic commit protocol is to merely add a deadline to 

the end of the performance phase of a "favorite" traditional (untimed) atomic commit protocol. If 

D expires at any phase of the participant's execution, the participant merely makes a transition 

to the EXCEPTION local state (see Figure 1 in the previous section). However, this simple 

solution violates the correctness criterion TAC4 since an EXCEPTION state may be reached 

with no faults occurring. For example, at some point in any atomic commitment protocol, the 

participant must reach a decision; this decision can be made just before D,  not leaving enough 

time for the decided-upon action to be completed. Furthermore, the participant may not reach 

a decision at all before D expires; no faults have occurred, but again the participant enters an 

EXCEPTION local state. In light of these types of anomalies, we must develop slightly more 

complex protocols and carefully state what we require of the operating environment. 

3.1 Operating Environment 

In devising a correct TAC protocol, the guarantees made by the operating environment must 

be carefully considered. For example, if the operating environment makes no guarantees about 

message delivery, then message loss is not a fault. As argued in the introduction, there can be no 

correct TAC protocol for this environment. Since the definition of TAC relies on the definition 

of faults, any protocol must describe what its assumed operating environment is, including what 

guarantees it makes and what faults can occur. Our assumed operating environment makes 

guarantees about processors, schedulers, clocks, and communication. 

The assumed computation system is a collection of distributed processors that communicate 

with each other via messages over a network. A processor fault occurs when a processor goes 

down. While the processor is down, no process that is assigned to the processor performs any 

computation. Each processor has its own local clock. A clock fault occurs if two clocks drift 
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too far apart, i.e., there is an assumed upper bound on clock drift, called c. We assume that no 

malicious faults occur. 

Communication is asynchronous. The time from executing send to arrival of the message 

at the recipient process's message queue is guaranteed not to exceed A. There are two forms 

of communication faults: lost messages, where a message is never delivered from the sender to 

the receiver, and late messages, where messages take longer than the guaranteed upper bound 

on delivery. We assume that messages never arrive out of order. 

Finally, each processor has a collection of time-shared processes that are subject to pre- 

emption. We assume that scheduling is fair: each process is guaranteed to execute for at least 

rT time units within r p  time units of becoming ready to execute. Processors use a resource 
manager to allocate and schedule resources such as the CPU and devices. The resource manager 

is assumed to be capable of guaranteeing resources for a duration of time within a given time 

interval [6,7,8]. A scheduling fault occurs either when the fairness assumption is violated, or 

the resource manager promises resources but fails to deliver them within the promised time. We 

assume that the execution time bounds are accurate, i.e., a process never requests too little time 

from a resource manager, and that the resource manager responds to guarantee requests within 

a fixed amount of time. 

3.2 Notation 

To facilitate the description of the protocols, we introduce the following notation. Firstly, we 

express time dependent behavior using the temporal scope language construct. We outline only 

the aspects of temporal scopes used in this paper; further details can be found in [9]. A temporal 

scope consists of (optionally) a start time and a deadline, statements that are to be performed in 

the interval defined by the start time and deadline, and an exception handler. If the start time 

is not specified, it is assumed to be immediate; if the deadline is missing, it is assumed to be 

infinite. The structure of a temporal scope is as follows: 

before (start-time) by (deadline) do 
(statements-1) 

except 
when ESTART do (statements2) end when 
when EDEADLINE do (statements3) end when 

end before 

If (statements-1) are not started by the specified (start-time), then (statements2) are executed. If 

the (statements-1) are not completed by (deadline), then execution of (statements-1) is terminated 

(statements-3) are executed. 
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Secondly, we describe how processes reserve resources. A process must be able to reserve 

resources to be able to complete the decided-upon action by deadline. For simplicity, we assume 

that the only required resource is the CPU, although in general it could include other resources 

such as memory or devices. A system call, Reserve(e, [low,high]), returns true if e execution 

time units within the interval [low, high] are guaranteed by the resource manager to the invoking 

process; otherwise, false is returned. 

Thirdly, we describe communication. The send primitive, send(process, message), takes -r, 

units of local processing time (included in the assumed bound A). We also assume a non- 

interruptible broadcast version of send(process,message) called send-all(process-list,message). 

By non-interruptible we mean that it is not possible to interrupt a send-all for a temporal scope 

deadline violation. The send-all primitive has a bound of A*, of which r b  is local processing 

time. The receive primitive, receive (process-list, message), blocks until a message arrives from 

any of the specified processes. 

3.3 Centralized TAC Protocol 

This section adapts a centralized two-phase commit protocol1 to TAC by incorporating inter- 

mediate deadlines; the result is the centralized timed two-phase commit protocol (CT2PC). In 

CT2PC, an extra "coordinator" process is added to collect votes from the participants, and make 

and distribute the decision. For simplicity, we assume that the calling process is the coordinator, 

i.e., the caller sends out the start messages, acts as coordinator during the TAC, and establishes 

the global state vector at the end of the TAC. 

In the TAC, let S be the absolute start time and D be the absolute deadline. For a participant 

Pi, let ti be the maximum execution time needed to receive a pending decision message, carry 

out the commit or abort action, and send a completion message, measured on its clock. The 

largest of all the ti's is called T,,,. For the coordinator, let r d  be the maximum execution time 

needed to receive N waiting vote messages, process them, and make a decision; and ~f be the 

maximum execution time needed to receive N pending completion messages and compute the 

result of a TAC. Recall that E is the maximum clock drift, A is the bound on execution of send, 

T, is the local processing time for send, A* is the bound on execution of send-all, and rb is the 

local processing time for send-all. 

Intermediate Deadlines. Each phase of the CT2PC consists of a message exchange between 

the coordinator and the participants as shown in Figure 2. The following intermediate de:idlines 

'For an overview of centralized two-phase commit protocols see [5,4]. 
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wait for votes determine 

Figure 2: Messages in a CT2PC Protocol 

and decide 

are added to the phases: 

result , 

D, = D - A - r j  - E :  deadline for sending a completion message by a participant. In 

the absence of faults, each participant must complete the decided-upon action and send 

the completion message (at most A time units) so that the coordinator has time to process 

it (at most rf time units) before D on the coordinator's clock (skewed by at most E). 

COORDINATOR 

b 
generate perform 

vote actions PARTICIPANT 

D E C  = D, - T,,, - A* - e: deadline for sending a decision by the coordinator. For a 

participant with T,,, execution time to guarantee completion of the decided-upon action 

by D, in the absence of faults, it must start executing the action by D, - T ~ , ,  on its 

clock. The coordinator must then interpret this time on its own clock using the worst 

case assumption on clock skew, and allowing maximum message delay for the broadcast 

decision to arrive at the participant. 

V = DEC - A - rd - E: deadline for a participant to vote. The participant must vote 

in time for the vote message to arrive at the coordinator and be processed before DEC 

expires on the coordinator's clock. 

[LST;, D,]: the interval of time during which Pi requests a guarantee of ti time units of 

resources needed to perform the decided-upon action. There are several choices for LST;, 

ranging from LSTi = DEC + A* + E to LSTi = D, - ti. Choosing an earlier LST; 

allows Pi to vote YES more frequently since the guarantee is more likely to be granted. 

Choosing the later LSTi can better tolerate a tardy decision message. 

To understand why the assumption of fair scheduling has been imposed, consider the follow- 

ing scenario: Suppose that the co-ordinator sends START messages to the participants, and that 
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the messages are delivered within A* time units. If no assumption is made about scheduling, 

some participant could be ready to receive the message, but not be scheduled to execute until 

after the deadline, D. This will cause the coordinator to conclude that the outcome is EXCEP- 

TION in the absence of any faults, violating TAC4c. However, if participants are guaranteed 

to execute for long enough to send a COMPLETION message to the coordinator before D, 
indicating that they have automatically aborted, this problem is avoided. Thus, T, must at least 

be long enough for the participant to null-abort, that is, allow enough time for the participant 

to receive a waiting START message, query the resource manager, and send a COMPLETION 

message to the coordinator. Furthermore, T, must be given after the start message is delivered 

and before D,. This can be guaranteed if the participant is given T, units within ~p time units 

of being ready, in which rp  < Dp - S - A*. 

CT2PC Protocol. Figure 3 outlines the coordinator. Before starting a TAC, the coordinator 

ensures that D is sufficiently long to allow each participant to receive a START message and 

return a COMPLETION message in time for the coordinator to determine the result. The 

coordinator also reserves r d  and rf units of execution so that it can send a decision message 

by DEC and determine the result by D. If the reservations are denied, the TAC is not started. 

Otherwise, the coordinator commences the TAC by sending START messages. The coordinator 

then waits to receive vote messages from the participants. When it receives all votes, or any 

NO vote, it decides and sends the decision to the participants. However, if DEC expires before 

it decides, it decides to abort and sends the ABORT decision to the participants. After sending 

the decision, it receives COMPLETION messages and updates the corresponding global state 

vector entries. If D expires before all COMPLETION messages have been received, the result 

is EXCEPTION. 

Figure 4 outlines a participant Pi. When a START message is received, the participant 

attempts to reserve ti units of execution within [LST;, D,]. If the reservation succeeds, it 

determines its vote and tries to send the vote by V. When the participant receives a decision 

from the coordinator, it performs the decided-upon action and sends a COMPLETION message 

by DP. 
Note that steps taken for vote determination are application dependent. For the coordinating 

robots example described in the introduction, a robot must grasp the container before voting YES 

to ensure that it can lift it correctly. Thus if the robot votes YES, but the decision is ABORT, 

the robot must release the container in its ABORT action. 

If the participant cannot receive a reservation, or receives an ABORT message without a prior 
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process Caller(S,D) I* S= start time, D= deadline */ 
begin 

D,:= D - A - 7 - f - E  
D E C  :=Dp - A* - Tmaz - E 

V : = D E C - A - E - 7 - d  
i f ( D , - S 2 A * + r T ) a n d ( D , - S - A * > r p )  

and Reserve (rd + r b ,  [DEC - rd ,DEC+ rb]) 
and Reserve ( T ~ ,  [D - 7-f , Dl) then 
Initialize global state vector entries to EXCEPTION. 
decision := ABORT 
by D E C  do 

send-all ( [PI , .  . . , PN], START, D,, DEC,  V) 
while (not received all N votes) and (no NO votes received) do 

receive ( [P I , .  . . , PN], vote) 
end while 
if all YES votes then decision := COMMIT end if 
send-all ( [ P I ,  . . . , PN], decision) 

except 
when EDEADLINE do 

send-all ( [P I ,  . . . , PN], decision) 
end when 

end by /* D EC */ 
by D do 

while not received all COMPLETION messages do 
receive ([PI , .  . . , PN], COMPLETION) 
Update global state vector entry. 

end while 
end by 

end if 
end process 

Figure 3: Coordinator (Caller) Process for CT2PC 
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process Pi /* i th Participant Process */ 
begin 

receive (Caller, STARTIABORT, Dp, D EC, V) 
by D, do 

if received ABORT then 
send (Caller, COMPLETION) /* null abort */ 

else /* received START message */ 
LST; := D EC + A* + c 
if Reserve ( t i ,  [LST;, D,]) then 

by V do 
compute vote (YESINO) 
send (Caller, vote) 

end by /* V */ 
receive (Caller, decision) 
case decision of 

COMMIT: user-specified commit statements 
ABORT: user-specified abort statements 

end case 
end if 
send (Caller, COMPLETION) 

end if 
except 

when EDEADLINE do exception statements end when 
end by /* D, */ 

end process 

Figure 4: Participant Process for CT2PC 
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START message, the participant null-aborts and sends a COMPLETION message. A null-abort 
indicates that the participant has taken no steps in determining its vote that need to be undone 

during an ABORT. 

3.4 Correctness of CT2PC 

To show that CT2PC is correct, we now prove a series of lemmas corresponding to the correctness 

criteria of Section 2.1. We assume that the TAC was initiated, i.e., the coordinator has received 

its requested guarantees, the deadline was far enough away to initiate the protocol, and start 

messages were sent to the participants. 

Lemma 1 (TAC2) The decision is COMMIT only ifall participants vote YES. 

Proof: Follows immediately from the fact that a participant decides to commit only if the 
coordinator sends a COMMIT message, which is done only if all the votes are YES. 

Lemma 2 (TAC1) All participants that reach a decision reach the same one. 
Proof: First, recall that send-all is non-interruptible, so the coordinator sends out the same 

decision message to every participant. The only case in which a participant makes a decision 

without explicitly receiving it from the coordinator is if the participant aborts. In this case, the 

coordinator cannot decide to commit since the aborting participant will not send a YES vote. It 

follows from Lemma 1 that the decision in this case cannot be COMMIT. 

In the following two lemmas, we assume that there are no faults. They are used to show 

that CT2PC satisfies the minimum goodness requirements, TAC4. 

Lemma 3 Ifthere are no faults, any message thatprocess Pi sends to process Pi at time t on Pj's 

clock is guaranteed to arrive by t + A + e on Pi's clock. Furthermore, if process Pi broadcasts 

a message at time t ,  then it will arrive by t + A* + e on any recipient Pi's clock. 
Proof: Follows from the definitions of A, A' and E .  

Lemma 4 I f  there are no faults and the participant Pi is not guaranteed its execution times, then 
it meets TAC4. 

Pro08 The fair scheduling assumption and definitions of T, and TP ensure that Pi will send a 
COMPLETION message by D, (TAC4a,c). Using Lemma 3 and the fact that D - D, includes 

~f time to receive and process all COMPLETION messages, TAC4dt holds. TAC4b is trivially 

satisfied because Pa does not vote YES. 
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We now complete the proof of TAC4 by restricting our attention to participants who have 

received a guarantee of ,their execution times. 

Lemma 5 If there are no faults, then the decision message arrives at each participant Pi by 

LST;, measured on Pi's clock. 
Proof: It is enough to show that in the absence of faults the decision message is broadcast by 

DEC, because Lemma 3 ensures that it arrives at Pi by DEC + A* + E = LST; on Pi's clock. 

Suppose that the decision message has not been broadcast before DEC. Since the coordinator 

has reserved T~ + r b  execution time during [DEC - rd, DEC + rb], the coordinator is guaranteed 

to start executing the exception handler at DEC and have enough local processing time for a 

send-all (rb); hence the decision message is sent at DEC according to the coordinator clock in 

the worst case. 

Lemma 6 (TAC4a) If there are no faults, then all participants reach a decision. 

Proof: By Lemma 5,  the decision message arrives at Pi by LST;. Since Pi has received a 

guarantee of ti during [LST;, D,], and ti includes execution time to receive the decision, Pi is 

guaranteed to reach a decision. 

Lemma 7 (TAC4b) If there are no faults and all participants vote YES, then the decision is to 

commit. 
Proof: Since there are no faults and each participant votes YES, each participant must have sent 

its vote message by V measured on its clock. Due to Lemma 3, every vote message must arrive 

at the coordinator by V + A + E = DEC - r d ,  measured on the coordinator's clock. Since the 

coordinator has reserved r d  units of execution during [DEC - rd, DEC],  it is guaranteed to be 

able to receive all vote messages and decide to commit by DEC. By Lemma 6 ,  all participants 

must also decide to commit. 

Lemma 8 (TAC4c) If there are no faults, then all participants complete their decided-upon ac- 

tion by D. 
Proof: By Lemma 5 ,  the decision message arrives at Pi by LST,. Since Pi has reserved ti 

execution time during [LST;, D,], then by the definition of ti Pi completes the decided-upon 

action and sends a COMPLETION message by D,. Note that we have proved something stronger 

than required, namely that the COMPLETION message is also sent by D,. 

Lemma 9 (TAC4d') If there are no faults, then at D, each participant's local state and global 

state vector entry reject the participant's completed action. 
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Proof: As noted in the proofs of Lemmas 4 and 8, each participant sends a COMPLETION 

message by D,. By Lemma 3, the COMPLETION messages must arrive at the caller by 

D, + A + e = D - T ~ .  Since the coordinator has reserved rf execution time in [D - r j ,  Dl, it 
must receive all COMPLETION messages and update the global state vector by D. 

Lemma 10 (TAC3') At D, each participant either has its local state and global state vector 

entry reflect its completed action or its global state vector entry is EXCEPTION. 
Proofi The global state vector is initially EXCEPTION for each participant, and is changed only 

when a COMPLETION message is received from a participant. A COMPLETION message is 

only sent if the participant has completed the decided-upon action and (implicitly) changed its 

local state to reflect completion of the decided-upon action. 

Using the above lemmas, we conclude that CT2PC is correct: 

Theorem 1 CT2PC shown in Figures 3 and 4 is correct with respect to the TAC Correctness 

Criteria. 

3.5 A Decentralized TAC Protocol 

This section adapts a decentralized two-phase commit protocol that requires each participant to 

receive a vote from every other participant, make its own decision, and perform the appropriate 

action in time to let the caller know its local state by D. 

For a participant Pi, let r d  be the maximum execution time needed to receive N vote 

messages, process them, and make a decision; let ti be the maximum execution time needed 

carry out its commit or abort action and send its local state message; and let T,,, be the largest 

of all the ti's. As in CT2PC, let ~f be the maximum execution time needed for the caller to 

receive N completion messages and compute the result of the TAC. Recall that E is the maximum 

clock drift, A is the bound on execution of send, T, is the local processing time for send, A* is 

the bound on execution of send-all, and r b  is the local processing time for send-all. 

Intermediate Deadlines. Participants execute as shown in Figure 5. The intermediate deadlines 

are: 

D, = D - A - rf - c: deadline for sending a completion message by a participant. 

V = D, - A* - T,,, - ~d - e: deadline for a participant to vote. Let P be a participant 

with T,,, expected execution time. To guarantee that P can meet D,, each participant 
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S D determine 

- 
votes 

result, 

CALLER 
wait for votes 

vote 
Figure 5: Messages in a DT2PC Protocol 

and decide 

must broadcast its vote by V to ensure that its vote arrives at P by D, - rm,, - 7-d on 

P ' s  clock. 

, 
perform 

[LST,, D,]: the interval of time during which Pi requests a guarantee of t i  time units 

of resources needed to perform the decided-upon action. LST; can range from LSTi = 

D, - T,,, to LST, = D, - ti. The former is the latest time that Pi receives all votes 

if no fault occurs, whereas the latter is the latest time that Pi must start executing its 

decided-upon action to complete by a pessimistic interpretation of D, on its clock. The 

tradeoffs are similar to those discussed in the CT2PC protocol. 

actions PARTICIPANT 
other LST w 

We now reiterate what is required of the fair scheduling assumption: T, must be long enough 

to null-abort, which in this case involves receiving a waiting START message, querying the 

resource manager, broadcasting a NO vote, and sending an ABORT message to the caller. 

Furthermore, all votes must arrive at each participant before LST;, forcing TP < V - S - A*. 

DT2PC Protocol. Figure 6 outlines the caller in DT2PC. It first checks that D is sufficiently 

long to allow each participant to receive a START message, send NO votes to other participants, 

and send ABORT to the caller. It then attempts to guarantee that it can receive r j  execution 

time in order to receive the local-state messages (COMMIT/ABORT). If it receives a guarantee, 

start messages are sent using a send-a11 primitive. The caller then waits to receive local-state 

messages. 

Figure 7 outlines a participant Pi in DT2PC. Upon receiving a start message from the caller, 

Pi attempts to receive guarantees from its resource manager that it can vote by V, process other 

votes by LST;, and perform the commit or abort actions in the interval [LST,, D,]. If Pi does not 
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process C a l l e ~ ( S ,  D) 
begin 

D,:= D - A - T f  - E  

V := D, - A* - rmaz - ~d - 6 
if (V - S - A* > rp and Reserve ( T ~ ,  [D - rf, Dl) then 

Initialize global state vector entries to EXCEFTION. 
by D do 

send-all ( [PI , .  . . , PN], START, T,,,, D,, V) 
while (not received all N local-state messages) do 

receive ( [PI ,  . . . , PN],  ABORTICOMMIT) 
Update global state vector entry. 

end while 
end by I* D */ 

end if 
end process 

Figure 6: Caller Process for DT2PC 

receive these guarantees, it null-aborts by voting NO and sending a local state message (ABORT) 

to the caller. Otherwise, Pi attempts to determine its vote. If V expires before Pi sends its vote, 

the temporal scope handler generates a NO vote. Whenever Pi votes NO, it aborts and sends an 

ABORT message to the caller. Whenever Pi votes YES, it waits to receive all votes from the 

other participants. It then decides, performs the appropriate action, and communicates its local 

state to the calling process upon completion. If D, expires, then Pi terminates by executing 

exception statements. 

3.6 Correctness of DT2PC 

We now show that DT2PC is correct by proving a series of lemmas corresponding to the correct- 

ness criteria of Section 2.1. We use Lemma 3 from Section 3.4 and again assume that the TAC 

is initiated, i.e. that the caller received its requested guarantees, the deadline was far enough 

away to initiate the protocol, and that start messages were sent to the participants. 

Lemma 11 (TAC2) The decision is COMMIT only if all participants vote YES. 

Proof.- Obvious, since the only way a participant can decide to commit is to receive all votes 

with none of them being NO. 

Lemma 12 (TAC1) All participants that reach a decision reach the same one. 
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process Pi 
begin 

receive (Caller, START, r,,,, D,, V) 
LST; := D, - r,,, 
if not (Reserve(rb, [V, V + rb]) and 

Reserve(rd, [LSTi - r d ,  LSTi]) and 
Reserve(ti , [LST, , D,])) then 

send-all ([PI, . . . , PN], NO) 
send (Caller, ABOFS) 

else I* guarantee received *I 
vote:= NO 
by V do 

compute vote (YES/NO) 
send-all ([PI,. . . , PN], vote) 

except I* V */ 
when EDEADLINE do send-all ([PI, . . . , PN],vote) end when 

end by I* V */ 
by D, do 

if vote= NO then temp:= ABORT else temp:= COMMIT 
while (not received all other votes) and (temp = COMMIT) do 

receive ([PI,. . . , PN], their-vote) 
if their-vote = NO then temp := ABORT end if 

end while 
decision:= temp 
case decision of 

COMMIT: user-specified commit statements 
ABOFU': user-specified abort statements 

end case 
send (Caller, decision) /* local state message */ 

except 
when EDEADLINE do exception statements end when 

end by /* D, */ 
end if 

end process 

Figure 7: Participant Process Pi in DT2PC 
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Proof: I f  some participant decides COMMIT, then any other participant that reaches a decision 

must decide COMMIT since all votes must be YES. If some participant decides ABORT, then 

some vote (possibly its own) must be NO; hence by Lemma 11 no other participant can decide 

COMMIT. 

Lemma 13 If there are no faults and participant Pi is not guaranteed its execution times, then it 

meets TAC4. 
Proof: Note that the fair scheduling assumption and definitions of T, and TP ensure that Pi will 

broadcast NO votes to all other participants and send an ABORT message to the caller by V 

(TAC4a,c). Using Lemma 3 and the facts that V < D, and that D - D, includes T~ time for 

the caller to receive all ABORTKOMMIT messages, TAC4d1 holds. TAC4b is trivially satisfied 

because Pi does not vote YES. 

We now complete the proof of TAC4 by restricting our attention to participants who have 

received a guarantee of their execution times. 

Lemma 14 If there are no faults, then each participant Pi sends its vote by V as measured on 

its own clock. 
Proof: Follows since Pi is guaranteed r b  time needed to broadcast its vote in the exception 

handler at V. 

Lemma 15 If there are no faults, then each participant Pi reaches a decision by LST,, measured 
on its own clock. 
Proof: Lemmas 14, 3 and the proof of Lemma 13 ensure that all vote messages arrive at Pi by 

V + A* + E. on its clock, which is LSTi - rd. Since Pi reserved 7-d time in [LST; - r d ,  LST;], 

it receives the votes and decides by LST;. 

Lemma 16 (TAC4a) If there are no faults, then all participants reach a decision. 

Proof: Follows directly from Lemmas 13 and 15. o 

Lemma 17 (TAC4b) If there are no faults and all participants vote YES, then the decision is to 

commit. 

Proof: By Lemma 15, each participant receives all votes and has time to reach a decision by 

LSZ.  Since the votes are all YES, the decision must be to COMMIT. 

Lemma 18 (TAC4c) If there are no faults, then all participants complete their decided-upon 
action by D. 



Davidson, Lee & Wolfe 21 

Proof: This follows from the fact that the decision is made by LST; (Lemma IS), and ti units of 

execution are guaranteed within [LST;, D,] which is sufficient both to complete the decided-upon 

action and to send the completion message by D,. Note that for any participant, the completion 

message is sent by D,. 

Lemma 19 (TAC4d') If there are no faults, then at D, each participant's local state and global 

state vector entry reject the participant's completed action. 

Proof: The local state message is sent by D, (proof of Lemma 18) and arrives at the caller by 

D, + A + E (lemma 3), which is D - .rf on the caller's clock. r j  allows the caller time to receive 

the message and update the global state vector. 

Lemma 20 (TAC3') At D, each participant either has its local state and global state vector 

reJect its completed action or its global state vector entry is EXCEPTION. 

Proof: The global state vector is initially EXCEPTION for each participant, and is changed 

only when a local state message is received from a participant. This message is only sent if 

the participant has completed the decided-upon action and (implicitly) changed its local state to 

reflect completion of the decided-upon action. 

Using the above lemmas, we conclude that DT2PC is correct: 

Theorem 2 DT2PC shown in Figures 6 and 7 is correct with respect to the TAC Correctness 

Criteria. 

4 Coordinating Robots Example 

We now illustrate the usefulness of TAC using the coordinating robots example described in the 

introduction. To facilitate the description, we first introduce some language constructs. 

4.1 Language Constructs 

The language constructs include a TAC block for the calling process, and timed actions for the 

participants. 

TAC Block. To invoke a TAC, the caller starts a set of concurrent participant timed actions, 

and waits for the participants' local states. The structure of the TAC block is: 
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tac-begin [Vl , . .. , V,] I* Global state vector. */ 
Vl:= action PI ((args)) 

Vn:= action Pn ((args)) 
end tac; 

The global state vector [Vl, ..., V,] is initialized to EXCEPTION for each entry; VI: is updated 

when Pi completes and returns its local state. When each entry in the global state vector has 

been updated, the TAC completes. To establish a deadline for TAC, the TAC block is enclosed 

within a temporal scope (see Section 3.2 and [9]). If the deadline is reached and TAC block has 

not completed (some V,  is still EXCEPTION), then the temporal scope exception handler starts 

recovery. 

Timed Actions. TAC participants are timed actions which execute as remote procedures called 

from a TAC block. The structure of a timed action is: 

timed action (action-name) ( (parameters) ) 
for (time) { resource (resource-id) ) 

begin 
(statementsl) I* decide vote: YES or NO */ 
vote (YES or NO) 
await 

when COMMIT do (statements2) end when 
when ABORT do (statements3) end when 

except 
when EDEADLINE do (statements4) end when 

end action 

The parameters allow data to be exchanged between the TAC block and the timed action; the 

explicit declaration of resources allows the underlying protocol to request reservations for the 

COMMIT/ABORT actions. When the timed action is invoked, it computes its vote; the decision 

is made based on the votes of all timed actions in the TAC block. If the decision is COMMIT, 

(statements2) are executed; if the decision is ABORT, (statements3) are executed. Note that the 

deadline (EDEADLINE) is not explicitly specified, but is determined by the underlying protocol 

using the caller's deadline. 

Another difference between timed atomic commitment and traditional atomic commitement 

should be discussed here. In traditional atomic commitment programmer-provided abort state- 

ments (such as (statements3)), are not used because only automatically recoverable actions are 
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process Belt-Controller 

Wait for sensor to detect a defective-container. 
after 5 seconds within 10 seconds do 

tacbegin [Vl , V2] 
Vl := action Robot-1 () 
V2 := action Robot2 () 

end tac 
except 

when EDEADLINE do 
stop entire system 
alert operator to clear container fmm arms 

end when 
end after 
if Vl = ABORT and V2 = ABORT 

then stop belt and reset 

Figure 8: Caller Process Belt-Controller 

performed before the decision is known. However, in timed atomic commitment, state altering 

actions may be performed in the voting phase that can only be restored by the programmer. For 

instance, in the robot example of Section 5, a robot bases its vote on whether or not it has grasped 

the container; if the decision is to abort, the programmer must provide explicit compensating 

actions [10,11] in the abort clause to release the container. However, unrecoverable actions 

should be performed only during the commit phase so that they can be assured of completing 

(barring faults). 

4.2 Coordinating Robots Example 

The coordinating robots example described in the introduction requires that a defective chemical 

container be picked up by two robot arms and discarded within 10 seconds of detection. The 

example consists of a caller process, Belt-Controller (see Figure 8), and two participants, Robot-1 

and RobotZ, which control the arms needed to pick up a container from the conveyer belt. (see 

Figure 9). 
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environment includes the possibility of processor and communication faults, it is impossible to 

devise a protocol which guarantees that all participants either commit or abort by a deadline. 

We therefore modify the traditional definition of atomic commitment to one for timed atomic 

commitment by introducing an EXCEPTION state, which indicates that a participant may not 

have completed the decided-upon action by the deadline. As in traditional atomic commitment, 

we insist that the decisions made by participants are consistent, i.e., no participant decides to 

commit if another decides to abort; however, EXCEPTION is defined to be consistent with 

COMMIT or ABORT. 

To formalize this notion, we presented minimal requirements for a correct implementation 

of timed atomic commitment. These correctness criteria capture the intuitive notion that an 

exceptional outcome should only occur in the presence of faults, and an aborted outcome should 

only occur in the presence of faults or if some process votes NO. That is, a correct TAC should 

succeed in committing whenever possible. In order to achieve a correct implementation, we also 

noted that it is necessary to have an operating environment that provides bounds on message 

delays and clock synchronization, and guarantees resources. 

Centralized and decentralized timed two-phase commit protocols were modified to meet the 

correctness criteria by introducing intermediate deadlines on the voting and performance phases 

of participants, and on the decision phase for the caller. The deadlines were derived from D 

using several assumptions, e.g., maximum message delay, clock drift and execution time bounds. 

If any of these assumptions are violated, correctness is still assured but an exception outcome 

may occur; to reduce exceptions, these bounds should be pessimistic. 

There are tradeoffs between using the centralized or decentralized implementation. In CT2PC, 

there are 4N messages; of these, 2N messages (the decision and completion messages) are 

"critical". By critical we mean that if the message is lost, the result will be EXCEPTION. 

Note that if a START or VOTE message is lost in CT2PC, the coordinator will timeout and 

decide ABORT. In DT2PC there are N2 + N messages, all of which are critical. In either 

implementation, loss of any process, participant or coordinator, may result in an EXCEPTION 

outcome. 

If the caller wishes to know that there is a possibility of committing, using worst-case 

assumptions, there is a minimum overall elapsed deadline, D - S. For the centralized protocol, 

D - S must be greater than or equal to the sums of the time to send the start message (A*), 

compute the vote ((7, - T,) + E), send the vote (A), decide (rd + E), send the decision (A*), 

perform the decided-upon action (T~ , ,  + c), send the completion message (A), and update the 
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timed action R o b o ~ l  0 
for 4 see resource arm1 

begin 
lower arm and grasp container 
if grasped correctly then vote (YES) else vote (NO) 
await 

when COMMIT do raise arm end when 
when ABORT do 

if container is grasped then release container 
end when 

except 
when EDEADLINE do stop arm end when 

end action 

Figure 9: Participant Timed Action Robot-1 

Belt-Controller waits 5 seconds after a sensor detects a defective container before initiating 

a TAC with a 10 second deadline. It then waits until it knows both arms have completed the 

decided-upon action, or until the 10 second deadline expires. If the result is COMMIT, the 

belt continues without interruption; if it is ABORT, the belt is stopped and reset. Otherwise, 

Belt-Controller does not know whether or not RobotJ and Robot2 have successfully completed 

by the deadline; it stops the entire system and alerts the operator so that the unlifted container 

can be removed. 

Upon invocation, Robot-1 determines its vote by trying to grasp the container; this may 

fail since the arm is shared among several processes and only one process may control the 

arm at a time. If it is successful, the vote is YES; otherwise, the vote is NO. Note that the 

underlying protocol may also force the vote to be NO if intermediate deadlines cannot be met 

or the required reservations are not guaranteed; in this example, the arm is needed for 4 seconds 

during the COMMITIABORT phase. After voting, Robot-1 awaits the decision; ABORT results 

in the container being released; otherwise, it is lifted. If the participant's deadline expires before 

the completion of the decided-upon action, then the arm is stopped and Belt-Controller handles 

the exception. 

5 Conclusion 

In a large class of hard-real-time control applications, components of a control task must perform 

a type of atomic commitment under timing constraints. However, if the assumed operating 
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global state vector (T~) :  

For the decentralized protocol, D - S must be greater than or equal to the sums of the time to 

send the start message (A*), compute the vote ((7, - T*) + E), send the vote (A*), decide and 

perform the decided-upon action ( T ~  + T,,, + E), send the completion message (A), and update 

the global state vector (T~) :  

A shorter deadline would not be incorrect nor necessarily cause exceptional outcomes. However, 

since the intermediate deadlines are derived from D,  a shorter D may cause an increased ABORT 

rate. For example, there may not be enough time for guarantees to be made, or (in CT2PC) 

the coordinator may timeout while waiting for votes. Thus, these protocols are most useful for 

real-time applications in which the deadline is long compared to message delays and clock skew. 

Note that a virtue of the TAC protocols is that the timed behavior of the caller is predictable; 

at the deadline, the caller either knows that all participants have performed the decided-upon 

action, or decides that some participant is exceptional and performs explicit recovery. It is our 

belief [3,1,8] that consistency and predictable performance are often more important than speed 

in real-time computing, thus the overhead of using the TAC protocols is justified. 

To support the use of timed atomic commitment, we also introduced a temporal scope, TAC 

block and timed action constructs. A timed action defines a participant with explicit voting, de- 

cision, and performance phases. The caller uses a TAC block to initiate the atomic commitment, 

and expresses the deadline by enclosing it in a temporal scope. These constructs were demon- 

strated in the coordinating robots example. Although it is possible to implement the example 

without these constructs, an equivalent implementation would require explicit synchronization, 

fault detection and enforcement of timing constraints. In addition, these constructs support 

extensible and modifiable programs: Programs are extensible since adding another robot arm 

merely entails adding another participant in the TAC. Programs are modifiable since changing 

the deadline in the caller does not necessitate changing the participant code. Above all, TAC 

language constructs simplify program development and modification by hiding implementation 

details. 

The language constructs and underlying protocols are currently being implemented using a 

real-time kernel [8] developed at the University of Pennsylvania for distributed real-time control 

applications. 
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