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A Modal Specification Theory for Timing Variability ?

Andrew L. King, Lu Feng ??, Oleg Sokolsky, and Insup Lee

Department of Computer & Information Science, University of Pennsylvania
{kingand,lufeng,sokolsky,lee}@cis.upenn.edu

Abstract. Modal specifications are classical formalisms that can be used to ex-
press the functional variability of systems; it is particularly useful for capturing
the stepwise refinement of component-based design. However, the extension of
such formalisms to real-time systems has not received adequate attention. In this
paper, we propose a novel notion of time-parametric modal specifications to de-
scribe the timing as well as functional variability of real-time systems. We present
a specification theory on modal refinement, property preservation and composi-
tional reasoning. We also develop zone-graph based symbolic methods for the
reachability analysis and modal refinement checking. We demonstrate the practi-
cal application of our proposed theory and algorithms via a case study of medical
device cyber-physical systems.

1 Introduction

Modal specifications introduced by Larsen and Thomsen in 1980s [2] allow the step-
wise refinement design of component-based systems. The classical formalism is modal
transition systems (MTSs), which are essentially labelled transition systems equipped
with two types of transitions: must transitions which are required in all implementa-
tions, and may transitions which are allowed (but not required). Refining a MTS is an
iterative process that chooses to implement or omit each of the may transitions, until
a fully specified implementation is achieved. Thus, a MTS permits a set of different
implementations, making it possible to express the functional variability of systems.
Indeed, modal specifications have proven useful in many applications, for example,
software product lines [16] where a specification defines a family of various products.
More recently, we applied modal specifications to on-demand medical device systems
[14], allowing the design of complex medical device interfaces and the verification of
safety properties at the system level.

One limitation of our previous work is that the focus was on the time-abstract be-
havior of systems. However, safety critical systems such as medical devices typically
have real-time elements, and often the safety and/or effectiveness of such systems de-
pends on doing the right thing at the right time. For example, we might require that an
infusion pump starts delivering drugs within t time units after it receives an on signal.
This would be an example of a timeliness constraint; while we require that something
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happens by time t it would be ok if it happened earlier. Another example could be a
watchdog timer that puts an actuator into a fail-safe mode if it hasn’t received a recent
control signal. In this situation we probably don’t want the watchdog to activate prior
to time t, because it might disrupt the normal function of the system.

There are a few extensions on timed modal specifications [9, 8, 7], but none of them
considers the timing variability of systems. For example, suppose we want to design a
medical system that satisfies the following requirement: “the infusion pump should start
infusing no later than 3 time units, once it receives an on signal”; we may express this
requirement with a clock constraint x ≤ 3 in the specification, meaning that the clock
x can progress within 3 time units. If we follow the theory of existing literature, then
implementations must preserve the exact timing behavior of specification, i.e., x ≤ 3
for all implementations. Nevertheless, from the system designer’s perspective, we think
that an infusion pump requiring x ≤ 2 is also a good implementation, since it does not
violate the deadline. To capture this kind of timing variability, we propose the notion
of time-parametric modal specifications which handles the above example by using a
clock constraint x ≤ α, where α is a parameter satisfying α ≤ 3 and α ∈ N.

In our specification theory, an implementation is modeled as a timed I/O automaton
(TIOA). Time-parametric modal specifications augment the notion of TIOAs, by distin-
guishing must and may transitions (for functional variability) and allowing parametric
clock constraints (for timing variability). The relation between a specification and an
implementation is captured by modal refinement. We prove that the satisfaction of safety
and liveness properties on specifications is preserved on its implementations. To reason
about the behavior of systems with multiple components, we also define the notion of
composition and prove the compositionality of modal refinement. We develop a sym-
bolic reachability analysis algorithm for time-parametric modal specifications, based
on parametric zone-graphs. We also present a decision algorithm for the specification-
implementation relation. Finally, we illustrate the applicability of our theory through a
case study of medical device plug and play systems.

To the best of our knowledge, this is the first modal specification theory that can
handle both timing and functional variability of real-time systems. In summary, there
are three main contributions of this paper:

(1) We propose a novel notion of time-parametric modal specifications, which can be
used to describe the timing and functional variability of real-time systems; based
on this notion, we develop a specification theory on modal refinement, property
preservation and compositional reasoning.

(2) We present a new symbolic semantical model as parametric zone-graphs, and de-
velop two symbolic algorithms for the reachability analysis and modal refinement
checking.

(3) We demonstrate the practical application of our theory and algorithms with a case
study of medical device systems.

The rest of the paper is organized as follows: we describe contributions (1), (2)
and (3) in Sections 2, 3 and 4, respectively; we then make a conclusion and point out
directions for future work in Section 5.



Related work. The seminal paper on modal transition systems (MTSs) was by Larsen
and Thomsen [17]. Many extensions (e.g., modal specifications with data, MTSs with
structured labels and disjunctive MTSs) have been developed over the years, for which
an overview could be found in [2]. Note that the so-called parametric MTS [4], which
uses boolean-valued parameters for expressing the functional variability of systems,
should be distinguished from our notion where integer-valued parameters are used to
capture timing variability.

There are a few extensions on timed modal specifications: a formalism in the CCS
style was proposed in [9], but no logical characterization or model satisfaction relation
is defined; Bertrand et al. [7] developed a complete specification theory for event-clock
automata, a subclass of timed automata. However, none of these work considers the
timing variability. There is also a formalism called MTS with durations [5], where con-
trollable or uncontrollable intervals are used to express the duration of time; but this
notion is not compositional, thus not suitable for component-based design.

Our work is also closely related to the timed automata theory [1, 12, 6]. The classical
notion of parametric timed automata [13] is similar to our notion of time-parametric
modal specifications in the sense that it also allows (real-valued) parameters in clock
constraints, but its lack of the modal ingredient prevents the modeling of functional
variability. Timed I/O automata are used as specifications in the theory of [10], but this
work cannot handle timing variability.

2 Modal Specifications for Timing Variability

In this section, we propose a new notion of time-parametric modal specifications which
can be used to describe the variability of timing and functional behavior in correspond-
ing implementations. We first define parametric clock constraints in Section 2.1, and
present the syntax and operational semantics of time-parametric modal specifications in
Section 2.2. We develop the specification theory on modal refinement, property preser-
vation and compositional reasoning in Sections 2.3, 2.4 and 2.5, respectively.

2.1 Clocks

As in the classical theory of timed automata [1, 12], we use a finite set of real-valued
clock variables, called clocks for short, to describe the progress of time. Given a finite
set of clocks Clk , we refer to a function v : Clk → R≥0 as a clock valuation. Given
d ∈ R≥0, let v + d denote the clock valuation that assigns all clocks x ∈ Clk to
v(x) + d. The set of all clock valuations is denoted by RClk

≥0 . We use 0 to denote the
clock valuation that assigns 0 to all clocks in Clk . Clocks can be reset to zero: for
r ⊆ Clk , let v[r 7→ 0] denotes the clock valuation that resets all clocks in r to 0
and keeps the value v(x) for clocks x ∈ Clk \ r. A clock constraint is a conjunctive
formula of atomic predicates x ∼ c, where x ∈ Clk is a clock, ∼ ∈ {≤, <,=, >,≥}
is an equality/inequality relation operator and c ∈ N is a constant. A clock valuation v
satisfies a clock constraint g, denoted by v |= g, iff the proposition formula of g resolves
to true when substituting all occurrence of clock x with value v(x).



To reason about timing variability, we extend the notion of clock constraints to
parametric clock constraints, which are conjunctive formulae of predicates x ∼ (c±α)
where α is a non-negative integer parameter bounded by a set of linear constraints C.
Let Θ be a set of parameters, we call a function f : Θ → N a parameter assignment. A
parameter value f(α) is valid if it satisfies the linear constraintsC and c±f(α) ∈ N. Let
g be a parametric clock constraint; by assigning a set of valid values f to its parameters
Θ, we obtain an instance of g as a clock constraint, denoted by g[f(Θ)]. For example,
a parametric clock constraint x ≤ 1 + α bounded by 1 ≤ α ≤ 3, α ∈ N has three
instances: x ≤ 2, x ≤ 3 and x ≤ 4. A clock valuation v satisfies a parametric clock
constraint g, denoted by v |= g, iff v satisfies all instances of g; and we say that v
partially satisfies g, denoted by v |=p g, iff v satisfies some instances of g. Let gi for
i = 1, 2 be two parametric clock constraints, each of which is bounded by a set of linear
constraints Ci over parameters Θi; their conjunction g = g1 ∧ g2 is then bounded by
the linear constraints C = C1 ∧ C2 over parameters Θ = Θ1 ∪Θ2.

For the rest of the paper, we use B(Clk) (resp. P(Clk)) to denote the set of clock
constraints (resp. parametric clock constraints) over clocks Clk . We have B(Clk) ⊆
P(Clk), since a clock constraint can be considered as a special case of parametric clock
constraints whose instance is itself.

2.2 Syntax and Operational Semantics

Now we propose the notion of time-parametric modal specifications, sometimes called
specifications for short in this paper, to capture the timing and functional variability of
different implementaions modeled as timed I/O automata. A timed I/O automaton is a
timed automaton [6] that distinguishes input, output and internal actions. Formally,

Definition 1 (Timed I/O Automaton). A timed I/O automaton (TIOA) A is a tuple
(Loc, l,Clk ,Act , Inv , ↪→) where

– Loc is a finite set of locations, and l ∈ Loc is an initial location
– Clk is a finite set of clocks
– Act = ActI ] ActO ] Actτ is a finite set of actions partitioned into input ActI ,

output ActO and internal Actτ actions
– Inv : Loc → B(Clk) assigns invariants to locations 1

– ↪→⊆ Loc × B(Clk)×Act × 2Clk × Loc is the transition relation

A transition l
g,a,r
↪→ l′ is enabled at location l when guard g ∈ B(Clk) holds and action

a ∈ Act occurs; any clock in r ⊆ Clk will be reset to 0 once the transition moves to
location l′.

Syntactically, a time-parametric modal specification looks similar to a TIOA; it dis-
tinguishes must and may transition relations for functional variability, and allows para-
metric clock constraints for timing variability.

Definition 2 (Time-Parametric Modal Specification). A time-parametric modal spec-
ificationM is a tuple (Loc, l,Clk ,Act , Inv , ↪→�, ↪→♦, C(Θ)) where

1 We restrict invariants to be downwards closed as in the UPPAAL verification tool [3].



infusiondetect start
bolus?

x := 0

on

x ≥ αx ≤ β

x < α

alarm!

off!

flow!

C : α ≤ β ≤ 3 and α, β ∈ N

x := 0

x := 0

Fig. 1: An example of time-parametric modal specification.

– Loc, l,Clk and Act are the same as in Definition 1
– Inv : Loc → P(Clk) assigns downwards closed parametric clock constraints in

the form of x ≤ c± α or x < c± α to locations
– ↪→� ⊆ Loc×P(Clk)×Act×2Clk ×Loc is the must transition relation describing

required behavior
– ↪→♦ ⊆ Loc×P(Clk)×Act × 2Clk ×Loc is the may transition relation describing

allowed behavior
– C(Θ) is a set of linear constraints on a finite set of non-negative integer parameters
Θ that are used in P(Clk)

We consider only syntactically consistent specifications where ↪→�⊆↪→♦, i.e., a re-
quired transition should also be allowed. Definition 2 coincides with Definition 1 if
↪→�=↪→♦=↪→, P(Clk) = B(Clk) and Θ = ∅.

A time-parametric modal specification abstracts the behavior of various TIOA im-
plementations, which are required to contain all transitions from the set ↪→� and al-
lowed to optionally include transitions from the set ↪→♦ (i.e., functional variability);
transitions may occur in different timing intervals, depending on the values of specifi-
cation parameters (i.e., timing variability).

Example 1. Fig. 1 shows a time-parametric modal specification for an infusion pump,
which has 3 locations: detect, start and infusion. The initial location detect is indi-
cated with an incoming arrow. There is only one clock variable x. The actions include
input (“bolus?”), output (“alarm!”, “flow!”, “off!”) and internal ( “on”). There are two
parameters Θ = {α, β}, bounded by the linear constraints α ≤ β ≤ 3 and α, β ∈ N.
The invariants on detect and infusion are both true (omitted in the figure), while the in-
variant on start is a parametric clock constraint x ≤ β. Must (resp. may) transitions are
indicated by solid (resp. dashed) lines in the figure. For example, once a pump detects
a “bolus?" request, it must move to the start location; then, when the guard x < α is
true, the pump may issue an “alarm!", reset clock x and move back to location detect.

We follow the classical interpretation that defines the operational semantics of timed
automata as timed transition systems [6].

Definition 3 (TIOA’s Operational Semantics). The operational semantics of a timed
I/O automaton A = (Loc, l,Clk ,Act , Inv , ↪→), denoted by JAK, is a timed transition
system (TTS) represented as a tuple (S, s,Σ,→) where

– S = {〈l, v〉 ∈ Loc × RClk
≥0 | v |= Inv(l)} is an infinite set of states

– s = 〈l,0〉 is an initial state



– Σ = Act ∪ R≥0 is the alphabet
– →⊆ S ×Σ × S is the transition relation defined by the following two rules:
• action transition: 〈l, v〉 a−→ 〈l′, v′〉 for a ∈ Act if there is transition l

g,a,r
↪→ l′ in

A such that v |= g, v′ |= Inv(l′) and v′ = v[r 7→ 0]

• delay transition: 〈l, v〉 d−→ 〈l, v + d〉 for d ∈ R≥0 if v + d |= Inv(l)

To define the operational semantics of time-parametric modal specifications, we
first extend the notion of TTSs to modal timed transition systems, by partitioning the
transition relation into must action, may action and delay transitions.

Definition 4 (Modal Timed Transition System). A modal timed transition system
(MTTS) M is a tuple (S, s,Act ,→�,→♦,→d) where

– S is an (infinite) set of states, s ∈ S is an initial state, and Act is a set of actions
– →� ⊆ S × Act × S is the must action transition relation,→♦ ⊆ S × Act × S is

the may action transition relation, and→d ⊆ S × R≥0 × S is the delay transition
relation

Definition 5 (Specification’s Operational Semantics). For a time-parametric modal
specificationM = (Loc, l,Clk ,Act , Inv , ↪→�, ↪→♦, C(Θ)), its operational semantics,
denoted by JMK, yields a finite set of MTTSs such that there is a one-to-one mapping
between a valid parameter assignment f(Θ) and a MTTS M = (S, s,Act ,→�,→♦

,→d) where

– S = {〈l, v〉 ∈ Loc × RClk
≥0 | v |= Inv(l)[f(Θ)]}, and s = (l,0) ∈ S

– 〈l, v〉 a−→� 〈l′, v′〉 (resp. 〈l, v〉 a−→♦ 〈l′, v′〉) if there is a must (resp. may) action
transitions l

g,a,r
↪→ � l′ (resp. l

g,a,r
↪→ ♦ l

′) inM such that v |= g[f(Θ)], v′ = v[r 7→ 0]
and v′ |= Inv(l′)[f(Θ)]

– 〈l, v〉 d−→d 〈l, v + d〉 for d ∈ R≥0 if v + d |= Inv(l)[f(Θ)]

Note that Inv(l)[f(Θ)] and g[f(Θ)] are clock constraints obtained by substituting the
occurrences of parameters Θ with values f(Θ). Computing the set of valid parameter
assignments f(Θ) reduces to solving the linear constraints C(Θ) ofM, which can be
efficiently solved by using a SMT solver such as Z3 [11].

2.3 Modal Refinement

We check whether a TIOA is an implementation of a time-parametric modal specifica-
tion by checking the modal refinement relation.

Definition 6 (Modal Refinement of MTTSs). Let Mi = (Si, si,Act ,→�,i,→♦,i

,→d,i) for i = 1, 2 be two MTTSs. We say that M1 modally refines M2, denoted by
M1 �M2, iff there exists a binary relation R ⊆ S1 × S2 containing (s1, s2) such that
for each (s, t) ∈ R we have

– for all (t, a, t′) ∈→�,2 there is some (s, a, s′) ∈→�,1 with (s′, t′) ∈ R
– for all (s, a, s′) ∈→♦,1 there is some (t, a, t′) ∈→♦,2 with (s′, t′) ∈ R



infusiondetect start
bolus?

x := 0

on

x ≥ 1x ≤ 3

x < 1

alarm!

off!

flow!
x := 0

x := 0

(a)

infusiondetect start
bolus?

x := 0

on

x ≥ 0x ≤ 5

off!

flow!

x := 0

(b)

Fig. 2: Two example TIOAs.

– for all (s, d, s′) ∈→d,1 there is some (t, d, t′) ∈→d,2 with (s′, t′) ∈ R, and for all
(t, d, t′) ∈→d,2 there is some (s, d, s′) ∈→d,1 with (s′, t′) ∈ R

Since a TTS (Definition 3) can be considered as a special case of MTTSs where→�=→♦,
the above definition is also applicable for A �M where A is a TTS and M is a MTTS.

Definition 7 (Implementation). Let A be a TIOA andM be a time-parametric modal
specification over the same actions. We say thatA is an implementation ofM, denoted
by A vM, if there exist a MTTS M ∈ JMK such that JAK �M .

A time-parametric modal specificationMmay admit a set of implementations with tim-
ing and functional variability. By fixing a parameter assignment for the specification,
a MTTS M ∈ JMK representing certain timing behavior is chosen; and by checking
whether the operational semantics of A modally refines M , we compare their func-
tional behavior. A is an implementation of M when both the timing and functional
requirements are met. Later in Section 3.3, we present a symbolic method to check the
specification-implementation relation.

Example 2. Consider the time-parametric modal specification shown in Fig. 1. The
TIOA in Fig. 2a is an implementation of the specification, where the may transition
labelled by “alarm!” is implemented and the parameters are fixed for α = 1, β = 3.
The TIOA in Fig. 2b is not a valid implementation, because the invariant in location
start is x ≤ 5, violating the specification’s constraints of x ≤ β and β ≤ 3.

2.4 Model Checking

Property preservation (i.e., the satisfaction of certain property on a specification implies
that all implementations also satisfy the property) is a crucial for component-based
design. In this section, we prove the property preservation for time-parametric modal
specifications. We consider two most commonly used types of properties: safety and
liveness.

Let φ be state formulae about locations and time. A safety property claims “some-
thing bad will never happen”; formally, it can be written in temporal logic A[ ]φ (i.e.,
invariantly φ), or expressed as the negation of reachability property ¬E〈〉¬φ (i.e., never
possibly ¬φ). A liveness property says “something will eventually happen”, expressed
with path formulae A〈〉φ (i.e., always eventually φ). We refer the readers to [6] for the
details of temporal logic.

Let A be a TIOA implementation and ψ be a safety or liveness property; we say
that A satisfies ψ, denoted by A |= ψ, iff its operational semantics JAK |= ψ. Let M



be a MTTS, we define M must (resp. may) satisfy ψ, denoted by M |=� ψ (resp.
M |=♦ ψ), iff the formula ψ is true on paths that only contain must (resp. may) and
delay transitions. M |=� ¬φ iff M |=♦ φ is false. We say that a time-parametric modal
specificationM must satisfy a property ψ, denoted byM |=� ψ, iff M |=� ψ for all
MTTSs M ∈ JMK; andM may satisfy ψ, denoted byM |=♦ ψ, iff M |=♦ ψ for some
M ∈ JMK.

Lemma 1. Let A be a TTS and M be a MTTS such that A � M . Let ψ be a safety or
liveness property. Suppose M |=� ψ, then A |= ψ.

Proof. See the appendix.

Theorem 1. LetA be a TIOA implementation of a time-parametric modal specification
M, i.e., A v M. Let ψ be a safety or liveness property. Suppose M |=� ψ, then
A |= ψ.

Proof. SinceA vM, based on Definition 7, there must exist a MTTS M ∈ JMK such
that JAK � M . Given thatM |=� ψ, we know that M |=� ψ for every M ∈ JMK.
Thus, based on Lemma 1, we have JAK |= ψ, meaning that A |= ψ.

2.5 Compositional Reasoning

We now introduce the notion of composition, which is important for component-based
design, and prove the property preservation compositionally. LetM1 andM2 be two
time-parametric modal specifications. They are composeable iff they have disjoint sets
of clocks and parameters, i.e., Clk1∩Clk2 = ∅ andΘ1∩Θ2 = ∅, and their actions only
overlap on complementary types: (ActI1 ∪ Actτ1) ∩ (ActI2 ∪ Actτ2) = ∅ and (ActO1 ∪
Actτ1) ∩ (ActO2 ∪Actτ2) = ∅.
Definition 8 (Composition). Given two composeable time-parametric modal specifi-
cations Mi = (Loci, li,Clk i,Act i, Inv i, ↪→�,i, ↪→♦,i, Ci(Θi)) for i = 1, 2. Their
composition product, denoted byM1‖M2, yields a specification (Loc1×Loc2, (l1, l2),Clk1∪
Clk2,Act , Inv , ↪→�, ↪→♦, C(Θ)) such that

– Act = ActI ] ActO ] Actτ where ActI = (ActI1 \ ActO2 ) ∪ (ActI2 \ ActO1 ),
ActO = (ActO1 \ ActI2) ∪ (ActO2 \ ActI1), and Actτ = Actτ1 ∪ Actτ2 ∪ (ActI1 ∩
ActO2 ) ∪ (ActO1 ∩ActI2)

– Inv(l1, l2) = Inv1(l1) ∧ Inv2(l2)
– ↪→� and ↪→♦ are defined by the following rules (interchangeable forM1 andM2):

(l1, g1, a!, r1, l
′
1) ∈ ↪→γ,1 (l2, g2, a?, r2, l

′
2) ∈ ↪→γ,2(

(l1, l2), g1 ∧ g2, a, r1 ∪ r2, (l′1, l′2)
)
∈ ↪→γ

(synchronizing)

(l1, g1, a, r1, l
′
1) ∈ ↪→γ,1 a /∈ Act2(

(l1, l2), g1, a, r1, (l′1, l2)
)
∈ ↪→γ

(interleaving)

where γ ∈ {�,♦}: if ↪→γ,1=↪→�,1 and ↪→γ,2=↪→�,2 in the synchronizing rule, or
↪→γ,1=↪→�,1 in the interleaving rule, then ↪→γ=↪→�; otherwise, ↪→γ=↪→♦.



– Θ = Θ1 ∪Θ2 and C(Θ) = C1(Θ1) ∧ C2(Θ2).

Since a TIOA can be considered as a special case of time-parametric modal specifica-
tions, the above definition is also applicable for the composition of two TIOAs (resp. a
TIOA and a specification), which yields a product TIOA (resp. specification).

Lemma 2. Let A be a TIOA implementation of a specificationM, i.e., A v M. Let
A′ be a composeable TIOA with A. Then A‖A′ vM‖A′.

Proof. See the appendix.

Theorem 2. Let A be a TIOA implementation of a specificationM, and A′ be a com-
poseable TIOA with A. Let ψ be a safety or liveness property. SupposeM‖A′ |=� ψ,
then A‖A′ |= ψ.

Proof. It’s straightforward from Theorem 1 and Lemma 2.

3 Symbolic Semantics and Verification

Recall that the operational semantics of a time-parametric modal specification consists
of a (finite) set of MTTSs, each of which contains an infinite set of states. It’s not
feasible to verify such infinite state-space models directly. To tackle this challenge, we
define a new symbolic semantics as parametric zone-graphs in Section 3.1, and propose
practical methods for symbolic reachability analysis and modal refinement checking in
Sections 3.2 and 3.3, respectively.

3.1 Symbolic Semantics: Parametric Zone-Graphs

Firstly, we extend the classical notion of zones and zone-graphs for timed automata
[6] to parametric zones and zone-graphs. A parametric zone is in the form of a para-
metric clock constraint (defined in Section 2.1), representing the maximal set of clock
valuations satisfying any instance of the parametric clock constraint. Let v be a clock
valuation and D be a parametric zone, we define v ∈ D iff v partially satisfies the para-
metric clock constraint of D, i.e., v |=p D. Given two parametric zones D1 and D2, if
v ∈ D1 implies v ∈ D2, then zone D1 is included in D2, denoted by D1 ⊆ D2. We
define D↑ = {v + d | v ∈ D, d ∈ R≥0} for the zone progression, and r(D) = {v[r 7→
0] | v ∈ D} for the clock reset of zones. A parametric zone-graph is a graph where each
node consists of a location and a parametric zone. We define the symbolic semantics of
time-parametric modal specifications based on parametric zone-graph as follows.

Definition 9 (Specification’s Symbolic Semantics). The symbolic semantics of a time-
parametric modal specification M = (Loc, l,Clk ,Act , Inv , ↪→�, ↪→♦, C(Θ)), de-
noted by JMKz, is a parametric zone-graph (S, s,Act , �, ♦, d, C(Θ)) where

– S = {〈l,D〉 ∈ Loc × P(Clk) | D ⊆ Inv(l)} is a finite set of symbolic states, and
s = 〈l,D0〉 is the initial state

– symbolic must action transition: 〈l,D〉 a
 � 〈l′, r(D ∧ g) ∧ Inv(l′)〉 if there is a

must transition l
g,a,r
↪→ � l′ inM
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C : α ≤ β ≤ 3 and α, β ∈ N

Fig. 3: Parametric zone-graph of the specification in Fig. 1.

– symbolic may action transition: 〈l,D〉 a
 ♦ 〈l′, r(D ∧ g) ∧ Inv(l′)〉 if there is a

may transition l
g,a,r
↪→ ♦ l

′ inM
– symbolic delay transition: 〈l,D〉 d 〈l,D↑ ∧ Inv(l)〉

A symbolic state 〈l,D〉 in JMKz corresponds to a set of states in the operational seman-
tics ofM. A symbolic transition 〈l,D〉  γ 〈l′, D′〉 with γ ∈ {�,♦, d} implies that,
for every v′ ∈ D′, there must exist at least one MTTSM ∈ JMK which has a transition
〈l, v〉 →γ 〈l′, v′〉 for some v ∈ D. Indeed, we show that the symbolic semantics given
in Definition 9 is a correct and full characterization of the operation semantics given in
Definition 5 as follows.

Theorem 3. Let M be a time-parametric modal specification, JMKz be its symbolic
semantics and JMK be its operational semantics.

– (Soundness) if the initial symbolic state 〈l,D0〉 in JMKz must (resp. may) lead to
a target state 〈lf , Df 〉, then for all vf ∈ Df , state 〈lf , vf 〉 must (resp. may) be
reachable from the initial state 〈l,0〉 in some M ∈ JMK

– (Completeness) if, in any M ∈ JMK, a target state 〈lf , vf 〉 must (resp. may) be
reachable from the initial state 〈l,0〉, then state 〈l,D0〉 in JMKz must (resp. may)
lead to 〈lf , Df 〉 for some Df such that vf ∈ Df

Proof. See the appendix.

The clock valuations in a (parametric) zone-graph may drift unboundedly, inducing
infinite symbolic transition relations and thus an infinite zone-graph. We can apply tech-
niques such as the k-normalization [6] to normalize zones and guarantee the finiteness
of transition relations. Note that the clock ceiling k of a parametric clock constraint
x ∼ c ± α is given by the maximum clock constant c plus the maximum value of
parameter α.

Example 3. Fig. 3 illustrates the parametric zone-graph induced from the time-parametric
modal specification shown in Fig. 1. There are 6 symbolic states in the zone-graph; for
example, 〈infusion, α ≤ x ≤ β〉 is a state associated with a location infusion and a



Algorithm 1 Must (resp. may) reachability analysis on parametric zone-graphs

Input: a parametric zone-graph G whose initial state is 〈l,D0〉, a target 〈lf , φf 〉
Output: “YES”, if 〈lf , φf 〉 is reachable from 〈l,D0〉; “NO”, otherwise
1: PASSED=∅, WAIT={〈l,D0〉}
2: while WAIT 6= ∅ do
3: take 〈l,D〉 from WAIT

4: if D = ∅ for any valid parameter assignments f(Θ) then
5: prune state 〈l,D〉 and its incoming/outgoing transitions from G
6: else
7: if l = lf and D ∩ φf 6= ∅ for all (resp. some) valid f(Θ) then
8: return “YES”
9: end if

10: if D 6⊆ D′ for all 〈l,D′〉 ∈ PASSED then
11: add 〈l,D〉 to PASSED

12: for all 〈l′, D′〉 such that (〈l,D〉, 〈l′, D′〉) ∈ d and � (resp. ♦) do
13: add 〈l′, D′〉 to WAIT

14: end for
15: end if
16: end if
17: end while
18: return “NO”

parametric zone α ≤ x ≤ β, which is bounded by the linear constraints: α ≤ β ≤ 3
and α, β ∈ N.

In Fig. 3, solid lines represent symbolic must action transitions, e.g., there is a must
transition labelled with action “bolus?" from state 〈detect, x = 0〉 to 〈start, x = 0〉;
dashed lines are for the symbolic may action transitions, e.g., state 〈start, x ≤ β〉
may loop back to 〈detect, x = 0〉 with action “alarm!"; and dash dotted lines are for
symbolic delay transitions, e.g., state 〈detect, x = 0〉 evolves to 〈detect, x ≥ 0〉 via
zone progression.

3.2 Symbolic Reachability Analysis

Reachability analysis lies at the core of many verification problems, e.g., we can verify
safety properties by checking whether some bad states are reachable. Inspired by the
zone-graph based reachability algorithm in [6], we propose a symbolic algorithm for
the reachability analysis of parametric zone-graphs, which is useful for the verification
of time-parametric modal specifications.

As illustrated in Algorithm 1, we check whether a target state 〈lf , φf 〉 is reachable
from the initial state 〈l,D0〉 by exploring the state-space of parametric zone-graph 2

on-the-fly. Note that we twist Algorithm 1 for both the must and may reachability anal-
ysis (the differences are in Lines 7 and 12). The algorithm maintains two sets of states:
PASSED for those having been traversed and WAIT for those to be considered. Starting
with the initial state 〈l,D0〉, the algorithm processes each element 〈l,D〉 of WAIT till

2 We assume a normalized zone-graph with finite transition relations.



Algorithm 2 Checking the specification-implementation relation
Input: a TIOA A and a time-parametric modal specificationM
Output: “YES”, if A is an implementation ofM; “NO”, otherwise
1: obtain a finite set F of valid parameter assignments by solving C(Θ) ofM
2: while F 6= ∅ do
3: take a parameter assignment f(Θ) from F
4: obtain a pair of TIOAs M�

f , M♦
f by substituting all occurrences of parameters Θ with

values f(Θ), and keeping only must and may transitions, respectively
5: ifM�

f simulates A, and A simulatesM♦
f then

6: return “YES”
7: end if
8: end while
9: return “NO”

the set becomes empty. If there is no clock valuation v ∈ D for any parameter assign-
ment f(Θ), i.e., D = ∅, then state 〈l,D〉 and all transitions from/to it are pruned (see
Line 5). If l = lf and D ∩ φf 6= ∅ for all valid parameter assignment f(Θ), then the
target must be reachable; on the other hand, we say that 〈lf , φf 〉 may be reachable if
D ∩ φf 6= ∅ is only true for some f(Θ), in the sense that the target may (not) be reach-
able for some implementation of the time-parametric modal specification. If 〈l,D〉 does
not hit the target and has not been traversed (see Line 10), then the algorithm adds 〈l,D〉
to PASSED and all its successor states to WAIT. The algorithm terminates when WAIT
is empty, and outputs that the target state 〈lf , φf 〉 is not reachable.

The termination of Algorithm 1 is guaranteed, because the parametric zone-graph
G has a finite set of symbolic states and finite transition relations, i.e., the size of WAIT
is finite. The correctness of Algorithm 1 is given by Theorem 3.

Example 4. Consider the parametric zone-graph shown in Fig. 3. A target 〈infusion, x ≤
5〉 must be reachable, because there is a path

〈detect, x = 0〉 → 〈start, x = 0〉 → 〈start, x ≤ β〉 → 〈infusion, α ≤ x ≤ β〉

and, for any valid parameter values satisfying the constraint: α ≤ β ≤ 3, we have
x ≤ β ≤ 5. Suppose the target is 〈infusion, x ≤ 1〉, then it may be reachable, because
(α ≤ x ≤ β) ∧ (x ≤ 1) 6= ∅ is true for some parameter assignments, e.g., α = β = 1,
but false for others, e.g., α = β = 3.

3.3 Symbolic Modal Refinement Checking

Recall from Section 2.3 that we verify whether a TIOA is an implementation of a time-
parametric modal specification via modal refinement check. We now propose a sym-
bolic method to check the specification-implementation relation, by reducing the prob-
lem to the timed simulation check of timed automata, where standard zone-graph based
algorithms [18] are available.

Algorithm 2 illustrates our method. Given a time-parametric modal specification
M, we first solve the linear constraints C(Θ) and obtain a finite set of parameter as-
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Fig. 4: A closed-loop PCA system.

signments. For each parameter assignment f , we substitute all the occurrences of pa-
rametersΘ with values f(Θ), resolving the timing variability of the specification. Then,
by keeping only the must (resp. may) transition relations ofM, we obtain a TIOAM�

f

(resp.M♦
f ). We check the timed simulation relation between TIOAsM�

f , A andM♦
f

(see Line 5), by applying the standard zone-graph based algorithm [18]. If both simu-
lation checks are successful, we claim that A is an implementation of M; otherwise,
we continue with another parameter assignment. The termination of Algorithm 2 is
guaranteed, because there are only finite parameter assignments; if we cannot find any
assignment f that makes the condition in Line 5 true, then A is not an implementation
ofM.

We argue the correctness of Algorithm 2 as follows. According to the definition of
timed simulation [18], M�

f simulates A iff every delay/action transition in JM�
f K is

matched in JAK; similarly, A simulatesM♦
f yields that every transition in JAK has an

exact match in JM♦
f K. Based on Definition 6, we can claim that JAK modally refines

MTTS JMf K, whose must (resp. may) action transitions are given by the action tran-
sitions of JM�

f K (resp. JM♦
f K) and delay transitions coincide with that of JM�

f K or
JM♦

f K. Moreover, JMf K belongs to the set JMK. Therefore, based on Definition 7, A
is an implementation ofM.

4 Case Study

In this section we describe how time parametric modal specifications can be used to
specify and analyze on-demand medical systems. In an on-demand medical system clin-
icians assemble a composite medical device by coupling interoperable medical devices
with applications that implement clinical algorithms. The devices carry a capabilities
specification, while the applications carry requirements specifications. An underlying
platform checks that only devices with capabilities compatible with an application are
used; If a clinician attempts to couple an incompatible device they are notified and the
coupling process is aborted [14]. As the specific device (i.e.,, make, brand, or model)
to be coupled to the application is not known apriori by the application developer the
safety assesment of an application must be done with respect to the application’s de-
vice requirements. Because of this, these specifications play an important role. Not only
must the formalism be able to capture enough details about device behavior to enable a
realistic safety assesment, they must also allow the developer to provide specifications
that are as general as possible in order to ensure that a given application is compatible
with as many devices as is safe.
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For the rest of this section we will describe how such a system providing closed loop
control of PCA therapy can be specified using time-parametric modal specifications,
how refinement is used to check compatibility, and how the behavior of the overall
application can be analyzed against its requirements. In this section we adopt a syntactic
sugar by allowing each specification to contain state variables. Locations at the semantic
level are then related to the cross-product of the state variable values in the standard
way.

In PCA therapy a patient is attached to an infusion pump that provides a bolus of
painkiller at the request of the patient. If the patient requests too much painkiller they
run the risk of overdose. In the closed loop system (Fig. 4) a pulse oximeter is used to
measure the blood oxygenation of the patient (SpO2). The SpO2 reading is forwarded
over the network to the application which then determines if infusion should be can-
celed. If so, an ‘off’ signal is sent to the pump. First we adopt a simple patient model
(Figure 5a) that relates the activity of the infusion pump to the SpO2 of the patient.
When infusion is off, the patient’s SpO2 rises by 1 every two time units. When infusion
is on, the SpO2 decreases by 1 every time unit (the SpO2 can never go above 100 or
below 0). In each location, the patient model can emit the current SpO2 value. Next we
model the pulse oximeter which is a device that senses the SpO2 of the patient then for-
wards its reading onto the application (Fig. 5b). Valid pulse oximeter implementations
are allowed to sense and forward SpO2 values as fast as they want, but they are required
to read and forward a value at least once every 2 time units.

For the sake of space we omit a visualization of the safety interlock application.
However, its functionality is simple. On every update from the pulse oximeter it deter-
mines if it should cancel any ongoing infusion. If the value is< 95 infusion is canceled.
The application will also cancel infusion if it does not receive a SpO2 update for more
than 3 time units. Finally, the pump is as modeled previously in Fig. 1. If we wanted to
verify a simple safety property, e.g., that the patient’s SpO2 never goes below 85, we
would compose the application, patient model, and the requirements specification on
the pump and pulse oximeter and then apply the state reachability algorithm from Sec-
tion 3.1. Compatibility is simply a refinement check between the device’s capabilities
specification and the applications requirements specification.



5 Conclusion

In this paper we introduce time-parametric modal specifications which are timed I/O
automata extended with must/may transitions and parametric clock constraints. This
formalism enables system designers to specify a family of implementations who differ
not only functionally but also in terms of timing behavior. We build a specification
theory based on his formalism, including modal refinement, safety / liveness property
preservation, and compositional reasoning. We also develop two symbolic algorithms
for the reachability analysis and specification-implementation relation checking. The
usefulness of our theory is demonstrated via a case study of medical device systems.

For the future work, there are several potential directions. Firstly, we aim to improve
the modal refinement decision algorithm in 3.3; instead of checking the refinement for
every possible parameter assignment, we would like to find a way to narrow down
the choices of parameters when performing the refinement check on-the-fly. Secondly,
we will consider weak modal refinement which concerns only the observable behavior
of systems. Moreover, we plan on building a tool that implements all proposed algo-
rithms. This tool would be used to both verify properties and check refinement of time-
parametric specifications. Additionally, we plan to incorporate the refinement check
into a prototype on-demand medical system platform.
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Appendix

Lemma 1. Let A be a TTS and M be a MTTS such that A � M . Let ψ be a safety or
liveness property. Suppose M |=� ψ, then A |= ψ.

Proof. Case 1: ψ = ¬E〈〉¬φ is a safety property where φ is a state formula for good
behavior. For the sake of contradiction, we assume A 6|= ψ, i.e., A |= E〈〉¬φ, meaning
that there exist a path π in A reaching some bad state sf |= ¬φ from the initial state
s. Since A � M , every transition in A is also allowed in M ; that is, every action
transition s a−→ s′ along π corresponds to a may transition t a−→♦ t′ in M , and every
delay transition s d−→ s′ for d ∈ R≥0 along π has an exact match t d−→d t

′ in M . Thus,
from the initial state t of M , there is path π′ corresponding to π and reaching some
state tf |= ¬φ; since path π′ consists of only may action and delay transitions, we
have M |=♦ E〈〉¬φ. This is a contradiction to M |=� ¬E〈〉¬φ, which suggests that
M |=♦ E〈〉¬φ is false. Therefore, we shall have A |= ψ.

Case 2: ψ = A〈〉φ is a liveness property where φ is a state formula. Given that
M |=� ψ, every path πi leaving the initial state t of M would eventually reach some
state tf |= φ via a sequence of must action and delay transitions. Since A � M , for
every must action transition t a−→� t′, there is a corresponding transition s a−→ s′ in A;
and for every delay transition t d−→d t

′ with d ∈ R≥0, there is a counterpart s d−→ s′

in A. Thus, every path initiated from s in A corresponds to a path πi in M and would
eventually reach some state sf |= φ; that is, A |= A〈〉φ, i.e., A |= ψ.

Lemma 2. Let A be a TIOA implementation of a specificationM, i.e., A v M. Let
A′ be a composeable TIOA with A. Then A‖A′ vM‖A′.
Proof. Since A v M, based on Definition 7, there must exist a MTTS M ∈ JMK
such that JAK � M . Let f be the parameter assignment corresponding to M . By sub-
stituting all occurrences of parameters in M with values f , we obtain Mf such that
JMf K = M and JMf‖A′K yields a single MTTS belonging to the set JM‖A′K. In
order to ensure A‖A′ v M‖A′, we only need to prove that JA‖A′K � JMf‖A′K is
true, by considering the following three cases.

1. For any must action transition 〈l, v〉 a−→� 〈l′, v′〉 in JMf‖A′K, we shall prove that
there is a corresponding transition in JA‖A′K.

– Suppose a ∈ ActM and the transition is a product of the synchronizing rule
in Definition 8. Let l = (ls, lq) and l′ = (l′s, l

′
q), where ls, l′s (resp. lq, l′q) are

locations of Mf and are locations of A′. There is a transition 〈ls, vs〉 a−→�

〈l′s, v′s〉 in M . Since JAK �M , there must exist some 〈lt, vt〉 a−→ 〈l′t, v′t〉 in JAK
and hence a corresponding transition 〈(lt, lq), µ〉 a−→ 〈(l′t, l′q), µ′〉 in JA‖A′K.

– If a ∈ ActM, l = (ls, lq) and l′ = (l′s, lq), then the transition is obtained from a
interleaving step onMf , so that there is a transition 〈ls, vs〉 a−→� 〈l′s, v′s〉 inM .
Since JAK �M , there must exist a corresponding transition 〈lt, vt〉 a−→ 〈l′t, v′t〉
in JAK and hence 〈(lt, lq), µ〉 a−→ 〈(l′t, lq), µ′〉 in JA‖A′K.

– If a /∈ ActM, then the transition is a result of the interleaving on A′, i.e.,
l = (ls, lq) and l′ = (ls, l

′
q). Thus, a corresponding interleaving transition

〈(lt, lq), µ〉 a−→ 〈(lt, l′q), µ′〉 shall take place in JA‖A′K.



2. For any transition 〈l, v〉 a−→ 〈l′, v′〉 in JA‖A′K, we can prove that there is may ac-
tion transition in JMf‖A′K, by reasoning about the correspondence between their
projected transitions on JAK and JMf K in a similar way as for the must action case.

3. For any delay transition 〈l, v〉 d−→d 〈l, v + d〉 in JMf‖A′K, let its projection on

JMf K (or M ) be 〈ls, vs〉 d−→d 〈ls, vs + d〉. Since JAK � M , based on Definition 6,

there must exist a transition 〈lt, vt〉 d−→ 〈lt, vt + d〉 in JAK and hence a correspond-
ing delay transition in JA‖A′K. Similarly, we can prove that there is a matching
transition in JMf‖A′K for any delay transition in JA‖A′K.

According to Definition 6, the above three cases yield JA‖A′K � JMf‖A′K. Thus,
we have proved that A‖A′ vM‖A′.

Theorem 3. LetM be a time-parametric modal specification, JMKz be its symbolic
semantics and JMK be its operational semantics.

– (Soundness) if the initial symbolic state 〈l,D0〉 in JMKz must (resp. may) lead to
a target state 〈lf , Df 〉, then for all vf ∈ Df , state 〈lf , vf 〉 must (resp. may) be
reachable from the initial state 〈l,0〉 in some M ∈ JMK

– (Completeness) if, in any M ∈ JMK, a target state 〈lf , vf 〉 must (resp. may) be
reachable from the initial state 〈l,0〉, then state 〈l,D0〉 in JMKz must (resp. may)
lead to 〈lf , Df 〉 for some Df such that vf ∈ Df

Proof. We will prove by induction on the length of paths. Without loss of generality,
we assume that all paths are expressed in the form of alternating (must or may) action
transitions and delay transitions, i.e., · · · 〈li−1, vi−1〉 a−→ 〈li, vi〉 d−→ 〈li+1, vi+1〉 · · · for
a ∈ Act and d ∈ R≥0.

(Soundness) Assume 〈l,D0〉  ∗ 〈ln, Dn〉 σ
 〈ln+1, Dn+1〉, where ∗ represents

a succession of transitions. By induction, we have 〈l,0〉 →∗ 〈ln, vn〉 for all vn ∈ Dn.
We need to prove for all vn+1 ∈ Dn+1, there is a transition 〈ln, vn〉 σ−→ 〈ln+1, vn+1〉.
There are two cases, since σ can be an action or a delay.

– Suppose 〈ln, Dn〉 a
 γ 〈ln+1, Dn+1〉 for a ∈ Act and γ ∈ {�,♦}. Based on

Definition 9, we have ln
g,a,r
↪→ γ ln+1 and Dn+1 = r(Dn ∧ g) ∧ Inv(ln+1). By

Definition 5, there is a transition 〈ln, vn〉 a−→γ 〈ln+1, vn+1〉 in some M ∈ JMK
such that vn ∈ g. Thus, for all vn+1 ∈ Dn+1, there is a vn ∈ Dn such that vn ∈ g,
vn+1 ∈ Inv(ln+1) and vn+1 = vn[r 7→ 0].

– Suppose 〈ln, Dn〉 d
 d 〈ln+1, Dn+1〉 for d ∈ R≥0. From Definition 9, we have

ln = ln+1 and Dn+1 = D↑n ∧ Inv(ln). Due to the definition of zone progression,
we have Dn+1 = {vn + d | vn ∈ Dn, d ∈ R≥0 and vn + d ∈ Inv(ln)}. Based on

Definition 5, we have 〈ln, vn〉 d−→d 〈ln, vn + d〉 if vn + d ∈ Inv(ln). Thus, for all
vn+1 ∈ Dn+1, there is a vn ∈ Dn such that vn+1 = vn+d and vn, vn+1 ∈ Inv(ln).

(Completeness) Assume 〈l,0〉 →∗ 〈ln, vn〉 σ→ 〈ln+1, vn+1〉. The induction step
gives 〈l,D0〉 ∗ 〈ln, Dn〉 and vn ∈ Dn. We need to prove that 〈ln, Dn〉 σ

 〈ln+1, Dn+1〉
for some Dn+1 and vn+1 ∈ Dn+1. There are two cases:



– Suppose 〈ln, vn〉 a−→γ 〈ln+1, vn+1〉 for a ∈ Act and γ ∈ {�,♦} in any M ∈
JMK. Based on Definition 5, there is a transition ln

g,a,r
↪→ γ ln+1 inM and vn ∈ g,

vn+1 = vn[r 7→ 0] and vn+1 ∈ Inv(ln+1). By Definition 9, we have 〈ln, Dn〉 a
 γ

〈ln+1, Dn+1〉 and Dn+1 = r(Dn ∧ g) ∧ Inv(ln+1). Thus, vn+1 ∈ Dn+1.
– Suppose 〈ln, vn〉 d−→d 〈ln+1, vn+1〉 for d ∈ R≥0. Then we have ln = ln+1,

vn+1 = vn + d and vn, vn+1 ∈ Inv(ln). From Definition 9, we get 〈ln, Dn〉 d
 d

〈ln+1, Dn+1〉 andDn+1 = D↑n∧Inv(ln) = {vn+d | vn ∈ Dn, d ∈ R≥0 and vn+
d ∈ Inv(ln)}. Thus, vn+1 ∈ Dn+1.
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