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Abstract

This paper proposes an algorithm to compute incrementally the
changes to distributed recursive database views in response to in-
sertions and deletions of base facts. Our algorithm uses a pipelined
semi-naı̈ve (PSN) evaluation strategy introduced in declarative
networking. Unlike prior work, our algorithm is formally proven
to be correct for recursive query computation in the presence of
message reordering in the system. Our proof proceeds in two
stages. First, we show that all the operations performed by our
PSN algorithm computes the same set of results as traditional cen-
tralized semi-naı̈ve evaluation. Second, we prove that our algo-
rithm terminates, even in the presence of cyclic derivations due to
recursion.

1 Introduction

One of the most exciting developments in computer science in the
past years is the fact that computing has become increasingly dis-
tributed. Both resources and computation no longer reside in a sin-
gle place. Resources can be stored in different machines possibly
around the world, and computation can be performed by differ-
ent machines as well, e.g. cloud computing. Since machines usu-
ally run asynchronously and under very different environments,
programming computer artifacts in such frameworks has become
increasingly difficult as programs have to be at the same time cor-
rect, readable, efficient and portable. There has therefore been
a recent return to declarative programming languages, based on
Prolog and Datalog, that allow one to write programs for dis-
tributed systems such as networks and multi-agent robotic sys-
tems, e.g. Network Datalog (NDlog) [11], MELD [4], Netlog [7],
DAHL [12], Dedalus [3]. When programming in these declarative

languages, programmers usually do not need to specify how com-
putation is done, but rather what is to be computed; and therefore,
declarative programs tend to be more readable, portable, and or-
ders of magnitude smaller than usual imperative implementations.

One of the key observations that these languages rely on is that
distributed systems, such as networking and multi-agent robotic
systems, deal at their core with maintaining distributed states by
allowing each node to compute locally and then propagate its lo-
cal states to other nodes (agents) in the system. For instance, in
routing protocols, at each iteration each node computes locally its
routing tables based on information it has gained so far, then dis-
tributes the table to its neighbors. We can think of these systems
as distributed database views, where not only base facts are dis-
tributed, but the rules are also distributed among different nodes
in the network. Computation in these systems can be regarded as
computing distributed database views.

Similarly to its centralized counterpart, one of the main chal-
lenges of implementing these distributed views is how to effi-
ciently and correctly update them when the base facts change. For
instance, in the network setting, when a new link in the network
has been established or an old link has been broken, one needs to
update the routing tables to reflect the changes in the base predi-
cates. It is often impractical to recompute each node’s state from-
scratch when changes occur, since that would require all nodes to
exchange their local states, including those that have been previ-
ously propagated. For example, in the path-vector protocol used
in Internet routing, recomputation from-scratch would require all
nodes to exchange all routing information, including those that
have been previously propagated. A much better approach is to
maintain distributed databases incrementally. That is, instead of
reconstructing the entire database, one only modifies previously
derived tuples that are affected by the changes of the base tuples,
while the remaining facts are left untouched.
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Gupta et al. proposed an algorithm in their seminal paper [8]
on incrementally maintaining database views in a centralized set-
ting, called DRed (Delete and Rederive). DRed first deletes all
tuples that might be affected by the changes to base tuples, then
rederives tuples that are still derivable. As shown in [10], it turns
out that DRed is not practical in a distributed setting, due to high
communication overhead incurred by rederivations of tuples.

This paper develops techniques for incrementally maintaining
recursive views in a distributed setting, while avoiding as much
as possible synchronization among agents (nodes). That is, no
agent is supposed to stop computing because some other agent
has not concluded its computation and we do not assume the exis-
tence of any coordinator in the system. Synchronization requires
extra communication between nodes, which comes at a huge per-
formance penalty. In particular, we propose an asynchronous in-
cremental view maintenance algorithm, based on the pipelined
semi-naı̈ve (PSN) evaluation strategy proposed by Loo et al. [11].
PSN relaxes the traditional semi-naı̈ve (SN) evaluation strategy
by allowing an agent to change its local state by following a local
pipeline of update messages. These messages specify the inser-
tions and deletions scheduled to be performed to the agents’s local
state. When an update is processed, new updates may be generated
and those that have to be processed by other agents of the system
are transmitted accordingly.

Most importantly, we formally prove the correctness for our
PSN algorithm, which is lacking from existing work on distributed
view maintenance. What makes the problem hard is the fact that
we need to show that, in a distributed, asynchronous setting, the
view computed by our algorithm is correct regardless of the or-
der in which updates are processed. Unlike prior PSN propos-
als [11, 10], our PSN algorithm does not require that message
channels are FIFO, which is for many distributed systems an un-
realistic assumption.

Furthermore, guaranteeing termination for distributed recursive
views also turns out to be tricky. In a centralized, synchronous set-
ting termination is usually guaranteed by discarding new deriva-
tions of previously derived tuples by using evaluation mechanisms
that use set-semantics, such as DRed. The use of set-semantics,
however, requires nodes to re-derive tuples that are deleted, af-
fecting performance in a distributed setting. When using multi-
set semantics, on the other hand, one does not need to re-derive
tuples, since nodes keep track of all possible derivations for any
tuple. However, one can no longer easily guarantee termination,
as tuples might be supported by infinitely many derivations. In-
spired by [13], we add to tuples annotations containing the set of
facts (base and intermediate) that were used to derive it. We use
this annotation to detect cycles in derivations, which is enough to
detect when tuples are supported by infinitely many derivations,
and hence guarantee termination.

More concretely, this paper makes the following technical con-
tributions, after introducing some basic definitions in Section 2:

• We propose a new PSN-algorithm to maintain views incre-
mentally in a distributed setting (Section 3). This algorithm
only deals with distributed non-recursive views.

• We formally prove that PSN is correct (Section 4). Instead of
directly proving PSN maintains views correctly, we construct
our proofs in two steps. First, we define a synchronous algo-
rithm based on SN evaluation, and prove the synchronous SN
algorithm is correct. Then, we show that any PSN execution
computes the same result as the synchronous SN algorithm.

• We extend the basic algorithm by annotating each tuple with
information about its derivation to ensure the termination of
maintaining views for recursive programs (Section 5), and
prove its correctness.

Finally, we discuss related work in Section 6, and conclude with
some final remarks in Section 7.

2 Preliminaries
In this section, we review the basic definitions of Datalog and in-
troduce the language Distributed Datalog (DDlog), which extends
Datalog programs by allowing Datalog rules to be distributed
among different nodes. DDlog is the core sublanguage common
to many of the distributed Datalog languages, such as NDlog [11],
MELD [4], Netlog [7], and Dedalus [3].

2.1 Background: Datalog
A Datalog program consists of a (finite) set of logic rules and
a query. The query is a ground fact, that is, , that is, a fact
containing no variable symbols. A rule has the form h(~t) :-

b1(~t1), . . . , bn(~tn), where the commas are interpreted as conjunc-
tions and the symbol :- as reverse implication; h(~t) is an atomic
predicate called the head of the rule; b1(~t1), . . . , bn(~tn) is a se-
quence of atomic predicates called the body; and the ~ts are vectors
of variables and ground terms. Semantically, the order of the ele-
ments in the body does not matter, but it does have an impact on
how programs are evaluated (usually from left to right).

Any free variable in a Datalog rule is assumed to be universal
quantified. Moreover, we assume that all variables appearing in
the head of a rule also appear somewhere in its body. Following
[17], we assume a finite signature of predicate and constant sym-
bols, but no function symbols.

We say that a predicate p depends on q if there is a rule where
p appears in its head and q in its body. The dependency graph
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of a program is the transitive closure of the dependency relation
using its rules. We say that a program is (non)recursive if there
are (no) cycles in its dependency graph. We classify the predicates
that do not depend on any predicates as base predicates, and the re-
maining predicates as derived predicates. Consider the following
non-recursive Datalog program, p, s, and t are derived predicates
and u, q, and r are base predicates.
{p :- s,t,r; s :- q; t :- u; q :-; u :-}.
The (multi)set of all the ground atoms that are derivable from

this program, called view or state, is {s, t, q, u}. For this
example, each predicate is supported by only one derivation and
therefore the same view is obtained when using as intended se-
mantics set semantics or multiset semantics. If we added, how-
ever, the clause s :- u to this program, then the view when us-
ing multiset semantics of the resulting program would change to
{s, s, t, q, u} where s appears twice. This is because there
are two different ways to derive s: one by using q and another
by using u. The view using set semantics can, however, be eas-
ily derived from the view obtained when using multiset semantics
by simply eliminating the multiplicity of the tuples in the view.
Therefore, since the algorithms proposed in this paper keep track
of the multiplicity of tuples, they can be used for either multiset or
set-semantics. We discuss at the end of this section, why we opt
to use multiset-semantics.

2.2 Distributed Datalog
Location Specifiers To allow distributed computation, DDlog
extends Datalog by augmenting its syntax with the location op-
erator @ [11], which specifies the location of a tuple. For in-
stance, consider the following DDlog program, which calculates
the reachability relation among nodes:
r1: reachable(@S,D) :- link(@S,D).
r2: reachable(@S,D) :- link(@S,Z), reachable(@Z,D).

The program takes as input link(@S,D) tuples, each of which
represents an edge from the node itself (S) to one of its neighbors
(D). The location operator, @ specifies where tuples are stored. For
example, link tuples are stored based on the value of the S at-
tribute.

Rules r1-r2 recursively derive reachable(@S,D) tuples,
where each tuple represents the fact that the node S is reachable
from the node D. Rule r1 computes one-hop reachability, given the
neighbor set of S stored in link(@S,D), while rule r2 computes
transitive reachability as follows: if there exists a link from S to Z,
and Z knows that the node D is reachable from Z, then S can also
reach D.

In a distributed setting, initially, each node in the system stores
the link tuple that are relevant to its own state. For example, the
tuple reachable(@2,4) is stored at the node 2. To compute all
reachability relations, each node runs the exact same copy of the

program above concurrently. Newly derived tuples may need to
be sent to the corresponding nodes as specified by the @ operator.

Rule localization As illustrated by the rule r2, the predicates in
the body of clauses can have different location specifiers indicat-
ing that they are stored on different nodes. To apply such a rule,
predicates may need to be gathered from several nodes, possible
different from where the rule resides. To have a clear defined se-
mantics of the program, we apply rule localization rewrite proce-
dure as shown in [11] to make such communication explicit. The
rule localization rewrite procedure transforms a program into an
equivalent one where all elements in the body of a rule are located
at the same location, but the head of the rule may reside at a dif-
ferent location than the body predicates. This procedure improves
performance by eliminating the need of unnecessary communica-
tion among nodes, as a node only needs the tuples locally stored
to derive a new fact. For example, the rule localization rewrite of
clause r2 is the following two clauses:

r2-1: reachable(@S,D) :- link(@S,Z), aux(@S,Z,D).
r2-2: aux(@S,Z,D) :- reachable(@Z,D), link(@Z, S).

Here, the predicate aux is a new predicate: it does not appear in
the original alphabet of predicates. As specified in the rule r2-1,
this predicate is used to inform all neighbors, S, of node Z that
the node Z can reach node D. It is not hard to show, by induction
on the height of derivations, that this program is equivalent to the
previous one in the sense that a reachable tuple is derivable us-
ing one program if and only if it is derivable using the other. For
the rest of this paper, we assume that such localization rewrite has
been performed.

Problems with Set-Semantics in Distributed Setting While
maintaining a view, derived tuples might need to be deleted from
the view due to the deletion of base tuples. For instance, in the
reachability example above, if a link tuple is deleted, one might
need to delete some reachable tuples that are derived from it. In
traditional, centralized incremental maintenance algorithms, such
as DRed [8], one maintains a view by using set-semantics. That
is, one does not keep track of the number of supporting derivations
for any tuple. Then, whenever a tuple, p, is deleted, one eagerly
deletes all the tuples that are supported by a derivation that con-
tains p. Since some of the deleted tuples may be supported by
alternative derivations that do not use p, DRed re-derives them in
order to maintain a correct view.

It turns out that re-deriving tuples in a distributed setting is ex-
pensive due to high communication overhead, as demonstrated in
[10]. A better approach is to use an evaluation algorithm that
uses multiset-semantics to keep track of the number of support-
ing derivations of any tuple. So, whenever a tuple is deleted, such
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algorithm just needs to reduce its multiplicity by one, and when-
ever its multiplicity is zero, the tuple is deleted from the view.

However, guaranteeing termination when an algorithm uses
multiset semantics is much harder, since tuples might be supported
by infinitely many derivations. For example, in the reachability
program above, if two nodes a and b are connected within a path
that contains a cycle, one can derive the fact reachable(a,b) in-
finitely many times due to the recursion in the program. Therefore,
if implemented in a naive way, an algorithm could easily diverge
when keeping track of all supporting derivations.

3 Basic PSN Algorithm for Non recursive
Programs

We present our algorithm for distributed incremental view mainte-
nance for non-recursive programs. We do not consider termination
issues in the presence of recursive programs, which allows us to
focus on proving the correctness of pipelined execution in PSN
in the next section, before presenting an improved algorithm that
provably ensures termination of recursive programs in Section 5.

3.1 System Assumptions
This paper makes two main assumptions about the model of our
distributed system. The first assumption, following [11], is the
bursty model: once a burst of updates is generated, the system
eventually quiesces (does not change) for a time long enough for
all the nodes to reach a fixed point. The second assumption is that
messages are never lost during transmission, that is, a message
eventually reaches its final destination. Here, we are not interested
in the mechanisms of how the transmission is done, but we as-
sume that any message is eventually received by the correct node
specified by the location specifier @. Notice that, differently from
previous work [10, 11], it is possible in our model that messages
are reordered. That is, we do not assume that a message that is sent
before another message has to necessarily arrive at its destination
first1

The assumptions above are realistic for many systems, such as
in networking or systems involving robots. For instance, with-
out the bursty model, the links in a network could be changing
constantly. Due to network propagation delays, no routing pro-
tocol would not be able to correctly update routing tables to cor-

1Message reordering manifests itself in several practical scenarios. For in-
stance, in addition to reordering of messages buffered at the network layer, network
measurements studies such as [15] have shown that packets may traverse different
Internet paths for any two routers due to ISP policies, and in a highly disconnected
environment such as in Robotics [4], messages from a given source to destination
may traverse different paths due to available network connectivity during the point
of transmission of each message.

rectly reflect the latest state of the network. Similarly, if the en-
vironment where a robot is situated changes too quickly, then the
robot’s internal knowledge of the world would not be useful for it
to construct a successful plan. The bursty model can be seen as
a compromise between completely synchronized models of com-
munication, and completely asynchronous models, where new up-
dates can appear at any moment. For the assumption that messages
are never lost and eventually received, there are existing proto-
cols which acknowledge when messages are received and have
the source nodes resend the messages in the event of acknowledg-
ments timeouts, hence enforcing that messages are not lost.

3.2 Definitions

An update is represented as a pair 〈U, p〉, where U is either the
INS, denoting an insertion, or DEL, denoting a deletion, and p is a
ground fact. We call an update of the form 〈INS, p〉 and 〈DEL, p〉
an insertion update and deletion update, respectively.

We write U to denote a multiset of updates. For instance, the
following multiset of updates
U = {〈INS, p(@1, d)〉, 〈DEL, p(@2, a)〉, 〈DEL, p(@2, a)〉},
specifies that two copies of the fact p(@2, a) should be deleted

from node 2’s view, while one copy of the fact p(@1, d) should be
inserted into node 1’s view.

As mentioned in Section 2, we will use multiset semantics. We
use ] as the multiset union operator, and \ as the multiset minus
operator. We write P to denote the multiset view for the predi-
cate p, and ∆P to denote the multiset of updates to predicate p.
We write P ν to denote the updated view of p based on ∆P . P ν

can be computed from P and ∆P by union P with all the tuples
inserted by ∆P and minus the tuples deleted by ∆P . For ease
of presentation, we use the predicate name pν in places where we
need to use the updated view. For instance, if the view of p is the
multiset {p(a), p(a), p(b), p(c)} and we use the multiset of up-
date U shown above, the resulting view (P ν) for pν is the multiset
{p(b), p(c), p(d)}.

Delta-Rules The main task of the algorithm is to compute which
tuples can be derived from the insertion updates and which tuples
need to be deleted due to the deletion updates, given a multiset
of insertions and deletions, U , to base tuples. The main idea is
that we can modify the rules in the corresponding program to do
so. Consider, for example, the rule p :- b1, b2 whose body con-
tains two elements. There are the following three possible cases
one needs to consider in order to compute the changes to the view
of the predicate p when using this rule: ∆p :- ∆b1, b2, ∆p :-

b1, ∆b2, and ∆p :- ∆b1, ∆b2. The first two just takes into con-
sideration the changes to the predicates b1 and b2 alone, while the
last rule uses their combination. We call these rules delta-rules.
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Following [1, 17], we can simplify the delta-rules above by us-
ing the view of pν , as defined above. The delta-rules above are
changed to ∆p :- ∆b1, b2 and ∆p :- bν1 , ∆b2, where the second
clause encompasses all updates generated by changes to new up-
dates in both b1 and b2 as well as only changes to b2.

Generalizing the notion of delta-rules described above, for each
rule h(~t) :- b1(~t1), . . . , bn(~tn) in a program, we create the follow-
ing delta insertion and deletion rules, where 1 ≤ i ≤ n:
〈INS, h(~t)〉 :- bν1(~t1), . . . , bνi−1(~ti−1), ∆bi(~ti), bi+1(~ti+1), . . . , bn(~tn)

〈DEL, h(~t)〉 :- bν1(~t1), . . . , bνi−1(~ti−1), ∆bi(~ti), bi+1(~ti+1), . . . , bn(~tn)

The first rule applies when ∆bi is an insertion, and the second
one applies when ∆bi is a deletion.

As discussed in [8], we can prove following lemma stating that
derivation are indeed computed only once using these delta rules.

Lemma 1 (Unique Derivation) Given a multiset of updates,
each of which is supported by a unique derivation, firing the delta-
rules formalized as above generates each update supported by a
unique derivation only once.

Proof This follows from the way delta-rules are constructed.
Whenever there are more than one update inserting (respectively,
deleting) tuples appearing in the body of the same delta rule, only
the update whose tuple appears in the right-most (respectively,
left-most) position can fire that delta-rule. 2

3.3 PSN Algorithm
We propose Algorithm 1 for maintaining incrementally a dis-
tributed view given a DDlog program using an enhanced version of
the original pipelined evaluation strategy [11]. Since all tuples are
stored according to the @ operator, we can use a single multiset K
containing the union of views of all the nodes in the system. From
K one can figure out the specific node where the data is stored by
examining the attribute annotated by the @ operator. Similarly, we
use a single multiset of updates U containing the updates that are
in the system, but that have not yet been processed by any node.

Algorithm 1 starts with a multiset of updates U and the multiset
K containing two copies of the view of all nodes in the system,
one marked with ν and another without ν. The execution of one
node of the system is specified by one iteration of the while-loop in
Algorithm 1. In line 2, one picks non-deterministically an update
from U which is processed next. However, one is only allowed to
pick a deletion update if the tuple being deleted is present in the
view K. This is specified by the operation removeElement(K).
This operation avoids tuples to have negative counts. Once an
update is picked, the ν table is updated according to the type of
update in lines 3–6. In lines 7–12, one uses the update picked to
fire delta-rules and to create new updates that are then inserted into
the multiset U (lines 13–15). This last step intuitively corresponds

to a node sending new messages to other nodes, even to itself.
Finally in remaining lines, one commits the changes to the view
without ν according to the update picked, making the table with
ν and without ν have the same elements again and ready for the
execution of the next iteration.

Algorithm 1 Basic pipelined semi-naı̈ve algorithm.
1: while U .size > 0 do
2: δ ← U .removeElement(K)
3: if δ is an insertion update 〈INS, p(~t)〉
4: P ν = P ] {p(~t)}
5: if δ is a deletion update 〈DEL, p(~t)〉
6: P ν = P \ {p(~t)}
7: if δ is an insertion update 〈INS, b(~t)〉
8: execute all insertions delta-rules for b:
9: 〈INS, h〉 :- bν1 , . . . , bνi−1, ∆b, bi+1, . . . , bn

10: if δ is a deletion update 〈DEL, b(~t)〉
11: execute all deletion delta-rules for b:
12: 〈DEL, h〉 :- bν1 , . . . , bνi−1, ∆b, bi+1, . . . , bn
13: for all derived insertion (deletion) updates u do
14: U .insert(u)
15: end for
16: if δ is an insertion update 〈INS, p(~t)〉
17: P = P ] {p(~t)}
18: if δ is a deletion update 〈DEL, p(~t)〉
19: P = P \ {p(~t)}
20: end while

We can formally prove that Algorithm 1 always terminates on
non-recursive programs.

Lemma 2 For non-recursive programs, PSN executions always
terminate.

Proof To show termination we rely on the fact that the depen-
dency graph for a non-recursive program contains no cycles, that
is, it is a directed acyclic graph. First, we order the predicate
names in the dependency graph in a sequence by using any of
the graph’s topological sorts S. Then given a set U of updates at
the beginning of an iteration of the while-loop that remain to be
processed by Algorithm 1, we construct a state-tuple associated
to U as follows: for the ith position of the state-tuple, we count
the number of updates inserting or deleting tuples whose predi-
cate name is the same as the predicate name appearing at the ith

position of S. We can show that after an iteration of Algorithm 1’s
while-loop the state-tuple reduces its value with respect to the lexi-
cographical ordering, which is well-founded since their are finitely
many predicate names in the program. After an iteration, an up-
date of a tuple whose predicate name appears at the ith position
in S is replaced by a set of updates of predicates that appear at
the ith + m position, where m > 0. Therefore, the value of the
resulting state-tuple decreases. Moreover, since we are assuming
a language with finitely many symbols and we assume that Algo-
rithm 1 starts with a finite number of updates, it is not possible
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to create indefinitely many different updates. Hence, Algorithm 1
terminates. 2

An Example Execution We illustrate an execution of Algorithm
1 with a simple example adapted from [8], which specifies two and
three hop reachability:

hop(@X,Y) :- link(@X,Z), link(@Z,Y)

tri hop(@X,Y) :- hop(@X,Z), link(@Z,Y)
Here only the predicate link is a base tuple. Furthermore, as-

sume that the view is as given below, where we elide the predicate
names and the @ symbols. For example, the tuples link(@a,b)
and hop(@a,c) are in the view.

Link = {(a,b),(a,d),(d,c),(b,c),(c,h),(f,g)}
Hop = {(a,c),(a,c),(d,h),(b,h)}
Tri hop = {(a,h),(a,h)}

Notice that in the view above some tuples appear with multi-
plicity greater than one, that is, there are more than one derivation
supporting such tuples. Assume that there is the following changes
to the set of base tuples link:
U = {〈INS,link(d,f)〉, 〈INS,link(a,f)〉, 〈DEL,link(a,b)〉}

Algorithm 1 first picks an update non-deterministically, for in-
stance, the update u = 〈INS, link(d,f)〉, which causes an inser-
tion of the tuple link(d,f) to the table marked with ν. Then,
it uses u to propagate new updates by firing rules, which in this
case creates a single insertion update: 〈INS, hop(d,g)〉. Finally,
one commits the change due to the update u in the table without ν.
Hence the new set of updates and the new view of the link table
are as follows:
U = {〈INS,hop(d,g)〉, 〈INS,link(a,f)〉, 〈DEL,link(a,b)〉}
Link = {(a,b),(a,d),(d,c),(b,c),(c,h),(f,g),(d,f)}

Asynchronous Execution As we mentioned earlier, Algo-
rithm 1 sequentializes the execution of all nodes: in each iteration
of the outermost while loop, one node picks an update in its queue,
fires all the delta-rules and commits the changes to the view, while
other nodes are idle. However this is only for the convenience
of constructing the proofs of correctness. In a real implementa-
tion, nodes run Algorithm 1 concurrently. Because of the non-
deterministic pick of an update in line 2 and rule localization, we
can show that any concurrent execution of Algorithm 1 yields the
same view as some synchronized run over all nodes. More specif-
ically, rule localization ensures that all the predicates needed for
firing a delta-rule reside in the local database. Furthermore, each
iteration of Algorithm 1 only considers one update at a time. New
updates received from other nodes will be queued up for consider-
ation after the completion of the current iteration. In other words,
when two nodes execute one iteration of Algorithm 1 concurrently,
each node only access its local state. Therefore, the interleaving
of one iteration of Algorithm 1 by two nodes produces the same
result as a sequentialized run of the two iterations.

In contrast to the algorithms in the literature, one does not pro-
cess all the updates involving link tuples before processing hop

or tri hop tuples. In fact, in the next iteration of Algorithm 1,
one is allowed to pick the update 〈INS, hop(d,g)〉 although there
are insertions and deletions of link tuples still to be processed.
This asynchronous behavior makes the correctness proof for Al-
gorithm 1 much harder. In the synchronized algorithms proposed
in the literature one could rely on the following invariant: in an it-
eration one only processes updates that insert or delete tuples that
are supported by derivations of some particular height. This is no
longer the case for Algorithm 1 and therefore, we need to proceed
our correctness proofs differently in the next section.

4 Correctness of Basic PSN
To prove its correctness, we first formally define the operational
semantics of Algorithm 1 in terms of state transitions. The cor-
rectness proof relates the distributed PSN algorithm (Algorithm 1)
to a synchronous SN algorithm (Algorithm 2), whose correctness
is easier to show. After proving that Algorithm 2 is correct, we
prove the correctness of Algorithm 1 by showing that an execu-
tion using PSN can be transformed into an execution using SN.

4.1 Operational Semantics for Algorithm 1
Algorithm 1 consists of three key operations: pick, fire and
commit. We call them basic commands, and an informal descrip-
tion are given below:

pick – One picks non-deterministically one update, u, that is not
a deletion of a tuple that is not (yet) in the view, from the multiset
of updates U . If u is an insertion of predicate p, pν is inserted
into the updated view P ν ; otherwise if it is a deletion update, pν

is deleted from P ν . This basic command is used in lines 2–6 in
Algorithm 1.

fire – This command is used to execute all the delta-rules that
contain ∆p in their body, where 〈U, p(~t)〉 has already been se-
lected by the pick command. After a rule is fired, the derived up-
dates from firing this rule are added to the multiset U of updates.
This basic command is used in lines 7–15 in Algorithm 1.

commit – Finally, after an update u has already been both
picked and used to fire delta-rules, one commits the change to the
view caused by u: if u is an insertion update of a tuple p, p is in-
serted into the view P ; otherwise, if it is a deletion update of p, p
is deleted from the view P . This basic command is used in lines
16–19 in Algorithm 1.

We formalize the operational semantics of Algorithm 1 in terms
of state transitions. A state s is a tuple 〈K,U ,P, E〉, where K is a
multiset of facts, and U ,P and E are all multisets of updates. More
specifically, at each iteration of the execution, K is a snapshot of
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the views of derivable predicates, and it contains both the view
(P ) and the updated view (P ν). The multiset U contains all the
updates that are yet to be picked for processing; P contains the
updates that have been picked and are scheduled to fire delta-rules;
and finally E contains the updates that have been already used to
fire delta-rules, but are not used to update the view yet. At the
end of the execution, U , P and E should be empty signaling that
all updates have been processed, and all the views P in K are the
final view of the system.

The transition rules specifying the operational semantics for the
basic commands are shown in Figure 1. The semantics of the pick
command is specified by pickI , when the update is an insertion,
and pickD, when the update is a deletion. The pick command
moves, an update 〈U, p(~t)〉 from U to P , and updates the view
in K: pν(~t) is inserted into K if U is INS, otherwise it is deleted
from K if U is DEL. Note that the rule pickD only applies when
the predicate to be deleted actually exists in K. Because messages
may be re-ordered, it could happen that a deletion update message
for predicate p arrives before p is derived based on some insertion
updates. In an implementation, if such an update happens to be
picked, we simply put it back to the update queue, and pick another
update.

The rule fire specifies the semantics of command fire, where we
make use of the function firRules. This function takes an update,
〈U, p(~t)〉, the current view, K, and the set of rules,R, as input and
returns the multiset of all updates, F , generated from firing all
delta-rules that contain ∆p in their body. The multiset F is then
added to the multiset U of updates to be processed later.

Finally, the last two rules, commitI and commitD, specify the
operation of committing the changes to the view. Similar to the
rules for pick, they either insert into or delete from the updated
view P a fact p(~t).

A computation run using a program R is a valid sequence of
applications of these transition rules defined in Figure 1. We call
the first state of a computation run the initial state and its last state
the resulting state.

Definition 3 (Complete-iteration) A computation run is a
complete-iteration if it can be partitioned into a sequence of
transitions using the pick commands (pickI and pickD), followed
by a sequence of transitions using the fire command, and finally
a sequence of transitions using the commit command, such that
the multiset of updates, T , used by the sequence of pickI and
pickD transitions is the same those used by the sequence of fire
and those used by commit transitions.

Definition 4 (PSN-iteration) A complete iteration is a PSN-
iteration if the multiset of updates used by the pick commands con-
tains only one update.

Algorithm 2 Basic semi-naı̈ve algorithm (multiset semantics).
1: while U .size > 0 do
2: for all insertion updates u = 〈INS, h(~t)〉 in U do
3: Ih.insert(h(~t))
4: end for
5: for all deletion updates u = 〈DEL, h(~t)〉 in U do
6: Dh.insert(h(~t))
7: end for
8: for all predicates p do
9: P ν ← (P ] Ip) \Dp

10: end for
11: while U .size > 0 do
12: δ ← U .removeElement(K)
13: if δ is an insertion update 〈INS, b(~t)〉
14: execute all insertions delta-rules for b:
15: 〈INS, h〉 :- bν1 , . . . , bνi−1, ∆b, bi+1, . . . , bn
16: if δ is a deletion update 〈DEL, b(~t)〉
17: execute all deletion delta-rules for b:
18: 〈DEL, h〉 :- bν1 , . . . , bνi−1, ∆b, bi+1, . . . , bn
19: for all derived insertion (deletion) updates u do
20: Uν .insert(u)
21: end for
22: end while
23: U ← Uν .flush
24: for all predicates p do
25: P ← (P ] Ip) \Dp; Ip ← ∅;Dp ← ∅
26: end for
27: end while

Definition 5 (PSN execution) We call a computation run a PSN
execution if it can be partitioned into a sequence of PSN-
iterations, and in the last state U , P and E are empty.

A PSN-iteration corresponds to an iteration of the outermost
loop of Algorithm 1, as one picks only one update from U (lines
2–6), fires delta-rules using this update (lines 7–15), and then com-
mits the change to the view (lines 16–19).

4.2 Correctness of an SN Evaluation

We define an incremental view maintenance algorithm based on
synchronous SN evaluation. This algorithm itself is not practical
for any real implementation because of high synchronization costs
between nodes. We only use it as an intermediary step to prove
the correctness of Algorithm 1.

4.2.1 A Synchronous SN Algorithm

We define a synchronous SN algorithm as shown in Algorithm 2
The main difference between Algorithm 1 and Algorithm 2 is that
in Algorithm 2, all nodes are synchronized at the end of each iter-
ation. In each iteration, each nodes process all available updates,
and propagate generated new updates to each other. Then, nodes
need to synchronize with one another so that no node is allowed
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〈INS, p(~t)〉 ∈ U

〈K,U,P, E〉 −→R 〈K ] {pν(~t)},U \ {〈INS, p(~t)〉},P ] {〈INS, p(~t)〉}, E〉
[pickI ]

〈INS, p(~t)〉 ∈ E

〈K,U,P, E〉 −→R 〈K ] {p(~t)},U,P, E \ {〈INS, p(~t)〉}〉
[commitI ]

〈DEL, p(~t)〉 ∈ U and pν(~t) ∈ K

〈K,U,P, E〉 −→R 〈K \ {pν(~t)},U \ {〈DEL, p(~t)〉},P ] {〈DEL, p(~t)〉}, E〉
[pickD]

〈DEL, p(~t)〉 ∈ E

〈K,U,P, E〉 −→R 〈K \ {p(~t)},U,P, E \ {〈DEL, p(~t)〉}〉
[commitD]

u ∈ P and F = firRules(u,K,R)

〈K,U,P, E〉 −→R 〈K,U ] F,P \ {u}, E ] {u}〉
[fire]

Figure 1: Operational Semantics for Basic Commands

to start the execution of the next iteration if there are some nodes
that have not finished processing all the updates in its local queue
in the current iteration or have not received all the updates gen-
erated by other nodes in the current iteration. On the other hand,
Algorithm 1 allows each node to pick and process any one update
available at the time of the pick.

Interestingly, the operational semantics for Algorithm 2 can also
be defined in terms of the three basic commands: pick, fire, and
commit. One picks (lines 2–10) all the updates from the multiset
of updates U , uses them to fire delta-rules (lines 11–22) creating
new updates, which are inserted in U (line 23), and then com-
mits the changes to the view (lines 24–26). Algorithm 2 enforces
that all updates that are created at ith iteration are necessarily pro-
cessed in the ith + 1 iteration.

Definition 6 (SN-iteration) A complete-iteration is an SN-
iteration if the multiset of updates used by the pick commands con-
tains all updates in the initial state U .

Definition 7 (SN execution) We call a computation run a SN ex-
ecution if it can be partitioned into a sequence of SN-iterations,
and in the last state U , P and E are empty.

An SN-iteration corresponds exactly to an iteration of the out-
ermost loop in Algorithm 2.

4.2.2 Proof of Correctness

Definitions We use the following notation throughout the rest of
this section: given a multiset of updates U , we write U t to denote
the multiset of tuples in U . Given a program P , let V be the view
of a program P given the set of base facts E, and let V ν be the
view of P given the set of facts E ] It \Dt, where I and D are,
respectively, a multiset of insertion and deletion updates of base
facts. We assume that Dt ⊆ E ] It.

We write ∆ to denote the multiset of insertion and deletion up-
dates of tuples such that V ν is the same multiset resulting from
applying the insertions and deletions in ∆ to V . We write ∆[i] to
denote the multiset of insertion and deletion updates of tuples in

∆ such that 〈U, p(~t)〉 ∈ ∆[i] if and only if p(~t) is supported by
a derivation of height i. In an execution of Algorithm 2, we use
U [i] to denote the multiset of updates at the beginning of the ith

iteration, and U [i, j] to denote the multiset resulting from union of
all multisets U [k] such that i ≤ k ≤ j.

Since Algorithm 2 uses multiset semantics, we need to be care-
ful with the multiplicity of tuples as these need also to be main-
tained correct. In our proofs, we keep track of the multiplicity of
tuples by distinguishing between different occurrences of the same
tuple in the following form: we label different occurrences of the
same base tuple with different natural numbers and label each oc-
currence of the same derived tuple with the derivation supporting
it. For instance, consider the program from Section 2.1:
{p :- s,t,r; s :- q; s :- u; t :- u; q :-; u :-}.

The view for this program is the multiset of annotated tuples
V = {sΞ1 , sΞ2 , tΞ3 , q1, u1}. The the two occurrences of s are
distinguished by using the derivations trees Ξ1 and Ξ2. The former
is a derivation tree with a single leaf q1 and the latter is a derivation
tree also with a single leaf but with the base tuple u1. If we, for
example, delete the base tuple u1, then the resulting view changes
to V ν = {sΞ1 , q1}, where the difference set is

∆ = {〈DEL, u1〉, 〈DEL, sΞ2〉, 〈DEL, tΞ3〉},
∆[0] = {〈DEL, u1〉}, and ∆[1] = {〈DEL, sΞ2〉, 〈DEL, tΞ3〉}.

We elide these annotations whenever they are clear from the con-
text.

Before proving the correctness of Algorithm 2, we formally
define correctness, which is similar to the definition of eventual
consistency used by Loo et al. [11] in defining the correctness of
declarative networking protocols.

Definition 8 (Correctness) We say that an algorithm correctly
maintains the view if it takes as input, a program P , the view V
based on base facts E, a multiset of insertion updates I and a
multiset of deletion updatesD, such thatDt ⊆ E]It; and the re-
sulting view when the algorithm finishes is the same as V ν , which
is the view of P given the set of facts E ] It \Dt.

Algorithm 2 computes a multiset of updates U that are applied
to the view V . Ideally, we want to show that the multiset of up-
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dates computed by Algorithm 2 is the same as ∆, which is the dif-
ference between the initial V and the desired final result V ν . The
correctness proof of Algorithm 2 is composed of two parts: (1)
all the updates generated by Algorithm 2 are in ∆ (Algorithm 2 is
sound); and (2) Algorithm 2 generates all the updates in ∆ (Algo-
rithm 2 is complete).

Soundness of Synchronous SN We first show that Algorithm 2
does not perform more updates to the view than what’s specified
in ∆. Given a terminating execution of Algorithm 2, let’s assume
that the execution consists of n iterations. Intuitively, the sound-
ness statement would require that U [0, n] ⊆ ∆. However, this
is not true. Consider the following program with two clauses: p

:- q, r and q :- s. Assume that the original view V is {s, q}
and that one provides the updates {〈INS, r〉, 〈DEL, s〉}. Then the
view V ν = {r}, ∆ = {〈INS, r〉, 〈DEL, s〉, 〈DEL, q〉}. After the
first iteration of Algorithm 2, the resulting set of new updates
U [1] = {〈INS, p〉, 〈DEL, q〉}. The update 〈INS, p〉 is not in ∆ but
in U [1]. Notice that 〈INS, p〉 is supported by a proof that uses the
base fact r, which is inserted; and the fact q, which is supported
by a proof that uses a deleted fact s. The deletion of s needs some
more iterations to “catch up” and correct the unsound insertion of
p.

We classify an update u as conflicting if it is supported by a
proof containing a base fact that was inserted (in It) and another
fact that was deleted (in Dt). In the example above, 〈INS, p〉 is a
conflicting updated because it is supported by r, which is inserted
and s, which is deleted. One key observation is that Algorithm 2
may compute more updates than those in ∆. These extra updates
are all conflicting updates. We need to show that the effects of all
conflicting updates eventually cancel each other out.

The following lemma formalizes the intuition that updates that
are needed to change V to V ν are all non-conflicting updates.

Lemma 9 All updates in ∆ are non-conflicting.

Proof Consider by contradiction that an insertion update u ∈ ∆
of the tuple p is conflicting. Then p is supported by a tuple q that
is deleted from the view V . This is a contradiction because then p
is no longer derivable in V ν ; and therefore, the insertion, u, of p
could not have been in ∆.

Similarly, assume that a deletion update u ∈ ∆ of the tuple p is
conflicting. Then p is supported by a tuple q that is inserted to V .
Again, we have a contradiction, since then p could not have been
in V ; and hence u could not have been in ∆. 2

The following lemma states that the non-conflicting updates
(updates that are supported only by insertion updates or only by
deletion updates) generated at each iteration by the algorithm, are
necessary to change V to V ν .

Lemma 10 (Soundness of Non-conflicting Updates) Let Û be
the multiset of non-conflicting updates in a multiset of updates U .
Then for any iteration i, the multiset Û [i] ⊆ ∆.

Proof We proceed by induction on the number of iterations i.
For the base case, we have Û [0] = I ]D = ∆[0] ⊆ ∆.
For the inductive case, consider i = j + 1 and the inductive hy-
pothesis Û [k] ⊆ ∆ for all k ≤ j. Assume that u = 〈INS, pΞ〉 ∈
Û [j + 1], and it is computed by using a delta-rule of the rule p

:- b1, . . . , bn and the tuples or the insertion of tuples of the form
bΞ1
1 , . . . , bΞnn . Since u is non-conflicting, all smaller derivations

Ξis are also non-conflicting. Hence from the inductive hypothe-
sis, all the insertions used by Ξis, including any insertion of bΞjj ,
belong to ∆. Hence the tuples bΞ1

1 , . . . , bΞnn belong to V ν , and
therefore by using the same rule above, there is an insertion of the
tuple pΞ in V ν , that is 〈INS, pΞ〉 ∈ ∆.

The case for deletion follows similarly. Assume that the update
u = 〈DEL, pΞ〉 ∈ Û [j+1], and it is computed by using a delta-rule
of the rule p :- b1, . . . , bn and the tuples or the insertion of tuples
of the form bΞ1

1 , . . . , bΞnn . Since u is non-conflicting, all smaller
derivations Ξis are also non-conflicting. Hence from the inductive
hypothesis, all the deletions used by Ξis, including any deletion
of bΞjj , belong to ∆. Hence, all tuples bΞjj s belong to V , but some

tuple bΞji does not belong to V ν . Hence pΞ is in V but not in V ν ,
that is 〈DEL, pΞ〉 ∈ ∆. 2

Now, we turn our attention to the conflicting updates. We write
ū to denote the complement update of u. If u is an insertion
(respectively, deletion) update of a tuple p, then ū is a deletion
(respectively, insertion) update of the same tuple p. We show
that conflicting updates always exist in complementary pairs; and
moreover, the insertion update is always generated at an iteration
that is no later than the complementary deletion update.

Lemma 11 (Pairing of Conflicting Updates) For any conflict-
ing update u ∈ U [i], there is exactly one update ū ∈ U [j], for
some j, that is supported by the same derivation. If u is an inser-
tion update then i ≤ j, and if u is a deletion update then i ≥ j.

Proof Let us first prove that conflicting insertion updates are
computed first. Given a conflicting deletion update 〈DEL, p〉 that is
generated at iteration i, it must be the case that a delta-rule 〈DEL, p〉
:- bν1 , . . . , bνm−1, ∆bm, bm+1, . . . bn is fired. By the definition of
conflicting updates, one of the tuples bi in the body is supported
by a tuple that must be inserted. Since the body of the rule above
can only be satisfied when bi is inserted, the insertion of bi must
have been necessarily picked before or at the iteration i, firing
another delta-rule similar to the rule above. Hence, the insertion
update for the tuple p is created before or at iteration i.

Next we show that for any conflicting insertion update, a com-
plementary deletion update is generated at the same or in a later
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iteration. Given an insertion update u ∈ U [i]. Let m be the mini-
mal height among all the subtrees of the derivation supporting the
tuple in u that contain a tuple, bi, that is deleted. In exactly m it-
erations, the corresponding deletion delta-rule is going to be fired
using the deletion update for bi, generating a deletion update ū
with a tuple with same supporting proof. 2

Completeness of Synchronous SN Now we prove that all the
updates in ∆ are generated by Algorithm 2. The following lemma
states that all updates in ∆ that are supported by a derivation of
height i has already been computed by Algorithm 2 at an iteration
that is no later than i.

Lemma 12 (Completeness) For any i, ∆[i] ⊆ U [0, i].

Proof By induction on the height of proofs.
Base case i = 0: ∆[0] = I ]D = U [0] = U [0, 0].
Inductive case i = j + 1: By induction hypothesis, we know that
all ∆[k], where k < j + 1, have been computed. Now, we show
that all updates in ∆[j+1] are contained in U [0, j+1]. Assume that
〈INS, pΞ〉 ∈ ∆[j + 1] and assume that pΞ is supported in the view
V ν by using rule p :- b1, . . . , bn called r and tuples bΞ1

1 , . . . , bΞnn
also in V ν . We now show that a delta-rule of r is fired before
the jth + 1 iteration. Since pΞ /∈ V , it means that some bΞii s
do not belong to V , but belong V ν (hence the insertion update).
Since the insertion of Ξ is a derivation of height j + 1, the Ξis
are derivations of height at most j. Hence, from the inductive
hypothesis, it is the case that the insertions of the bΞii s have been
previously derived and in the worst case the delta-rule for r is fired
at the iteration j. However, in order to fire a delta-rule of r, we
also need to make sure that Algorithm 2 does not delete any of
the bΞii s. Since 〈INS, pΞ〉 is in ∆, it follows from Lemma 9 that
Ξ is non-conflicting. So, no tuple bΞii s is supported by a tuple
that is deleted and hence indeed none of the bΞii s are deleted by
Algorithm 2. Therefore, 〈INS, pΞ〉 ∈ U [0, j + 1].

The case for deletion updates is similar. Assume that
〈DEL, pΞ〉 ∈ ∆[j+ 1] and assume that pΞ is supported in the view
V by using rule p :- b1, . . . , bn called r and tuples bΞ1

1 , . . . , bΞnn .
However, since pΞ is not supported in V ν , there is a bΞii that is
in V , but not in V ν . Assume that bΞii is the left-most occurrence
of such fact with respect to the body elements of the rule. Ξi has
height necessarily lower than i. Therefore, from the induction hy-
pothesis, the deletion of bΞii has been already processed by Algo-
rithm 2, firing the a deletion delta-rule of the rule above, creating
a deletion of pΞ. 2

Notice that in the proof, we use invariants that relate the deriva-
tion height of the tuples to the iteration number of the while loop.
This would not have been possible for Algorithm 1.

Correctness of Synchronous SN Combining the soundness and
completeness result, we can finally show the correctness of Algo-
rithm 2.

Theorem 13 (Correctness of SN) Given a non-recursive DDlog
program P , a multiset of base tuples, E, a multiset of updates
insertion updates I and deletion updates D to base tuples, such
that Dt ⊆ E ] It, Algorithm 2 correctly maintains the view of the
database when it terminates.

Proof Because P is non-recursive, we know that both V and
V ν is finite; and therefore, ∆ is also finite.

By the definition of the transition rules, given a complete run
of Algorithm 2, the final view V1 computed by Algorithm 2 is
V ]U tI [0, n] \ U tD[0, n], where n is the number of iterations of the
execution, UI denotes the insertions updates in U , and UD denotes
the deletion updates in U .

Let Û denotes the non-conflicting updates in U . By Lemma 10,
Û [0, n] ⊆ ∆. By Lemma 12, ∆ ⊆ U [0, n]. By Lemma 9, ∆ ⊆
Û [0, n]. Therefore, ∆ = Û [0, n]. By Lemma 11, V ] U tI [0, n] \
U tD[0, n] = V ] Û tI [0, n] \ Û tD[0, n]. Since V ν = V ]∆t

I \∆t
D,

we can conclude that V1 = V ν . 2

4.3 Relating SN and PSN executions
Our final goal is to prove the correctness of PSN. With the correct-
ness result of Algorithm 2 in hand, now we are left to prove that
Algorithm 1 computes the same result as Algorithm 2. At a high-
level we would like to show that given any PSN execution, we can
transform it into an SN execution without changing the final re-
sult of the execution. This transformation requires two operations:
one is to permute two PSN-iterations so that a PSN execution can
be transformed into one where the updates are picked in the same
order as in an SN execution; the other is to merge several PSN-
iterations into one SN-iteration. We need to show that both of
these operations do not affect the final view of the execution.

Definitions We write s sn−→ (U)s′ and s
psn−→ (U)s′ to denote, re-

spectively, an execution from state s to s′ using an SN iteration and
an PSN iteration. We annotate the updates used in the iterations
in the parenthesis after the arrow. We write s a=⇒ s′ to denote an
execution from s to s′ using multiple SN iterations, when a is sn;
or PSN iterations, when a is psn. We write s =⇒ s′ to denote an
execution from s to s′ using multiple complete iterations. We write
σ1  σ2 if the existence of execution σ1 implies the existence of
execution σ2. We write σ1 ! σ2 when σ1  σ2 and σ2  σ1.

Permuting PSN-iterations The following lemma states that
permuting two PSN-iterations that are both insertion (deletion) up-
dates leaves the final state unchanged.
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Lemma 14 (Permutation – same kind)
Given an initial state s,
s

psn−→ ({〈U, r1〉})s1
psn−→ ({〈U, r2〉})s′

!
s

psn−→ ({〈U, r2〉})s2
psn−→ ({〈U, r1〉})s′ ,whereU ∈ {INS, DEL}.

Proof Assume that U = INS. We show the proof for the di-
rection. For the reverse direction the proof is exactly the same, but
where the names r1 and r2 are flipped. We need to show that the
updates generated are the same no matter which insertion update
is fired first.

Let’s assume that the initial state s = 〈K,U , ∅, ∅〉.
Let F1 = firRules(〈INS, r1〉,K ] {rν1},R),

F2 = firRules(〈INS, r2〉,K ] {r1, r
ν
1 , r

ν
2},R).

Let F ′2 = firRules(〈INS, r2〉,K ] {rν2},R),
F ′1 = firRules(〈INS, r1〉,K ] {r2, r

ν
2 , r

ν
1},R).

In the first execution sequence, F1 contains updates generated
by firing delta-rules that contain ∆r1 in the body using the initial
views with rν1 inserted, and F2 contains updates generated by fir-
ing delta-rules that contain ∆r2 in the body using the views where
r1 is already inserted into the view.

In the second execution sequence, F ′2 contains updates gener-
ated by firing delta-rules that contain ∆r2 in the body using the
initial views with rν2 inserted, and F ′1 contains updates generated
by firing delta-rules that contain ∆r1 in the body from the state
where r2 is already inserted into the view.

We need to show that F1 ] F2 = F ′1 ] F ′2.
Based on the definition of firRule, it is not hard to see that F ′1

is a superset of F1 because in the second execution sequence, r2 is
already inserted into the view before firing update to r1. Similarly,
F2 is a superset of F ′2. Let us assume that F ′1 = F1 ] F ′′1 , and
F2 = F ′2 ] F ′′2 . We just need to show that F ′′1 = F ′′2 .

All updates in F ′′1 are fired by rules that have ∆r1 and either
r2 or rν2 in the body. Without loss of generality, any update u =
〈INS, q〉 ∈ F ′′1 is created by firing delta-rules of the following two
forms: u :- · · · , rν2 , · · · , ∆r1, · · · or u :- · · · , ∆r1, · · · , r2, · · · .

If it is the first case, then a corresponding delta-rule
u :- · · · , ∆r2, · · · , r1, · · · will be fired when 〈INS, r2〉 is

picked; and therefore, 〈INS, q〉 ∈ F ′′2 .
For the second case, a corresponding delta-rule
u :- · · · , rν1 , · · ·∆r2 · · · will be fired; and therefore 〈INS, q〉 ∈

F ′′2 also. Consequently, F ′′1 ⊆ F ′′2 . We can use similar reasoning
to show that F ′′2 ⊆ F ′′1 . Combining the above two, F ′′2 = F ′′1 .
Therefore F1 ] F2 = F ′1 ] F ′2. Finally, we can conclude that
permuting two insertion updates leaves the final state unchanged.

Assume that U = DEL. We show the proof for the direction.
For the reverse direction the proof is exactly the same, but where
the names r1 and r2 are flipped.

We need to show that the updates generated are the same no
matter which insertion update is fired first.

Let’s assume that the initial state s = 〈K,U , ∅, ∅〉.
Let F1 = firRules(〈DEL, r1〉,K \ {rν1},R),

F2 = firRules(〈DEL, r2〉,K \ {r1, r
ν
1 , r

ν
2},R).

Let F ′2 = firRules(〈DEL, r2〉,K \ {rν2},R),
F ′1 = firRules(〈DEL, r1〉,K \ {r2, r

ν
2 , r

ν
1},R).

In the first execution sequence, F1 contains updates generated
by firing delta-rules that contain ∆r1 in the body using the initial
views with rν1 deleted, and F2 contains updates generated by firing
delta-rules that contain ∆r2 in the body using the views where r1

is already delted from the view.
In the second execution sequence, F ′2 contains updates gener-

ated by firing delta-rules that contain ∆r2 in the body using the
initial views with rν2 deleted, and F ′1 contains updates generated
by firing delta-rules that contain ∆r1 in the body from the state
where r2 is already deleted from the view.

We need to show that F1 ] F2 = F ′1 ] F ′2.
It is not hard to see that F1 is a superset of F ′1 because in the

second execution sequence, r2 is already deleted from the view
before firing update to r1. Similarly, F ′2 is a superset of F2. Let us
assume that F1 = F ′1 ] F ′′1 , and F ′2 = F2 ] F ′′2 . We just need to
show that F ′′1 = F ′′2 .

All updates in F ′′1 are fired by rules that have ∆r1 and either
r2 or rν2 in the body. Without loss of generality, any update u =
〈DEL, q〉 ∈ F ′′1 is created by firing delta-rules of the following two
forms: u :- · · · , rν2 , · · · , ∆r1, · · · or u :- · · · , ∆r1, · · · , r2, · · · .

If it is the first case, then a corresponding delta-rule
u :- · · · , ∆r2, · · · , r1, · · · will be fired when 〈DEL, r2〉 is

picked; and therefore, 〈DEL, q〉 ∈ F ′′2 .
For the second case, a corresponding delta-rule
u :- · · · , rν1 , · · ·∆r2 · · · will be fired; and therefore 〈DEL, q〉 ∈

F ′′2 also. Consequently, F ′′1 ⊆ F ′′2 . We can use similar reasoning
to show that F ′′2 ⊆ F ′′1 . Combining the above two, F ′′2 = F ′′1 .
Therefore F1 ] F2 = F ′1 ] F ′2. Finally, we can conclude that
permuting two insertion updates leaves the final state unchanged.
2

However, permuting a PSN-iteration that picks a deletion up-
date over a PSN-iteration that picks an insertion update might gen-
erate new updates. Consider a program consisting of the rule p :-

r1, r2 and assume that r2 is in the view. Furthermore, assume the
updates {〈INS, r1〉, 〈DEL, r2〉}. If the deletion update is picked
before the insertion update, no delta-rule is fired. However, if we
pick the insertion rule first, then the rule above is fired twice, once
propagating an insertion of p and the other propagating a deletion
of p. However, the new updates are necessarily conflicting up-
dates. This is formalized by the statement below. It is proved in a
similar way as Lemma 14. The side condition that r1 6= r2 cap-
tures the semantics of the pick command in that deletion updates
are only picked in the tuples to be deleted are already in the view.
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Lemma 15 (Permutation – different kind) Given and initial
state s

s
psn−→ (〈INS, r1〉)s1

psn−→ (〈DEL, r2〉)〈K′,U ′ ]∆, ∅, ∅〉
!

s
psn−→ (〈DEL, r2〉)s2

psn−→ (〈INS, r1〉)〈K′,U ′, ∅, ∅〉,
where r1 6= r2 and ∆ is a (possibly empty) multiset containing

pairs of complementary conflicting updates.

Proof We prove both directions at the same time.
Let
F1 = firRules(〈INS, r1〉,K ] {rν1},R),
F2 = firRules(〈DEL, r2〉,K ] {r1, r

ν
1} \ {rν2},R),

F ′2 = firRules(〈DEL, r2〉,K \ {rν2},R),
F ′1 = firRules(〈INS, r1〉,K \ {r2, r

ν
2} ] {rν1},R).

In the first execution sequence, F1 contains all insertion up-
dates created from the initial view by firing insertion delta-rules
that contain ∆r1 in their body. Similarly, F2 contains all the dele-
tion updates created by firing deletion delta-rules that contain ∆r2

in their body, with r1 inserted into the initial view.
In the second execution sequence, on the other hand, F ′2 con-

tains all the deletion updates created from the initial view by firing
deletion delta-rules that contain ∆r2 in their body. F ′1 contains
all the insertion delta-rules that contain ∆r1 in their body, with r2

deleted from the view.
We would like to show that F1 ] F2 = F ′1 ] F ′2 ]∆, where ∆

is a multiset of pairs of complementary conflicting updates.
The multiset F1 is clearly a superset of F ′1 since the latter is

obtained by executing rules when r2 is deleted from the initial
view. Similarly, F2 is a superset of F ′2 since the former is obtained
by executing rules when r1 is inserted into the view.

Let F1 = F ′1 ] ∆1 and F2 = F ′2 ] ∆2. We need to show that
∆1]∆2 contains a multiset of pairs of complementary conflicting
updates. More specifically, we can show that for any insertion
updates in u ∈ ∆1 there its complementary updates ū ∈ ∆2.

Updates that are in ∆1 are generated by firing delta-rules that
contain 〈INS, r1〉 and either r2 or rν2 in the body. Updates that are
in ∆2 are generated by firing delta-rules that contain 〈DEL, r2〉 and
either r1 or rν1 in the body. Next we show that there is one-to-one
mapping between the delta-rules that generate an update u in ∆1

and the delta-rules that generate an update ū in ∆2.
Any insertion update u in ∆1 is necessarily fired by rules of the

following two forms:
u :- · · · , rν2 , · · · , ∆r1, · · · , which we call a1

and u :- · · · , ∆r1, · · · r2 · · · , which we call a2.
Any deletion update u in ∆2 is necessarily fired by rules of the

following two forms:
u :- · · · , rν1 , · · · , ∆r2, · · · , which we call b1
and u :- · · · , ∆r2, · · · r1 · · · , which we call b2.
Notice that there is a one-to-one mapping between a1 and b2,

and a one-to-one mapping between a2 and b1. In other words, in

the first execution sequence, a1 is fired when 〈INS, r1〉 is picked,
and b2 is fired when 〈DEL, r2〉 is picked. Furthermore, a1 and b2
generates a pair of complementary conflicting updates, and so do
a2 and b1.

Therefore, F1]F2 = F ′1]F ′2]∆1]∆2, and ∆1]∆2 contains
pairs of complementary conflicting updates. 2

From PSN iterations to an SN iteration and back The second
operation we need for transforming a PSN execution into an SN
execution is merging a PSN-iteration with a complete-iteration to
form a bigger complete-iteration.

Similarly to the case when permuting PSN-iterations of differ-
ent kinds, merging PSN iterations may change the set of con-
flicting updates. For example, consider a program consisting of
a single rule p :- r,q, the initial view {q}, and the multiset
of updates {〈INS, r〉, 〈DEL, q〉}. If both updates are picked in a
complete-iteration, then an insertion update, 〈INS, p〉, is created
by firing the delta-rule 〈INS, p〉 :- ∆r,q and using the insertion
update 〈INS, r〉. Similarly a deletion update 〈DEL, p〉 is created by
firing the delta-rule 〈DEL, p〉 :- rν,∆q and the deletion update
〈DEL, q〉. However, if we break the complete-iteration into two
PSN-iterations, the first picking the deletion update and the sec-
ond picking the insertion update, then no delta-rule is fired. We
prove the following:

Lemma 16 (Merging Iterations) Let U be a multiset of updates
such that the multiset {u} ]H ⊆ U and let s = 〈K,U , ∅, ∅〉 be an
initial state.

s =⇒ ({u} ] H)〈K′,U ′ ] F1, ∅, ∅〉
!

s =⇒ (H)〈K2,U ′ ] {u} ] F ′1, ∅, ∅〉
psn−→ (u)〈K′,U ′ ] F2, ∅, ∅〉

Where F1 and F2 only differs in pairs of complementary con-
flicting updates.

Proof We start with the case when u is an insertion. Let u =
〈INS, p〉. By examining the two execution sequences, we know
that

F1 =
⊎
u0∈H]{u} firRules(u0,K ]HtνI ] {pν} \ HtνD ,R),

F ′1 =
⊎
u0∈H firRules(u0,K ]HtνI \ HtνD ,R),

F ′2 = firRules(u,K ]HtνI ]HtI ] {pν} \ HtνD ]HtD),R),
F2 = F ′1 ] F ′2

where we write HtνI ( HtνD respectively) to denote the multiset
that contains pν if and only if 〈INS, p〉 (〈DEL, p〉 respectively) is
in H. We write HtI ( HtD respectively) to denote the multiset that
contains p if and only if 〈INS, p〉 (〈DEL, p〉 respectively) is inH.

Let’s further rewrite F1 to be F ′′1 ] F ′′2
where F ′′1 =

⊎
u0∈H firRules(u0,K]HtνI ] {pν} \HtνD ,R), and

F ′′2 = firRules(u,K ]HtνI ] {pν} \ HtνD ,R).
F ′′1 is a superset of F ′1. Let F ′′1 = F ′1 ]∆I ]∆D.
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Any update 〈INS, r1〉 ∈ ∆I is generated by a delta-rule that
contains pν and an insertion update 〈INS, q〉 ∈ H in the body:
〈INS, r1〉 :- · · · , pν , · · · , 〈INS, q〉, · · · , which we call a1.
Any update 〈DEL, r′1〉 ∈ ∆D is generated by a delta-rule that

contains pν and a deletion update 〈DEL, q〉 ∈ H in the body:
〈DEL, r′1〉 :- · · · , pν , · · · , 〈DEL, q〉, · · · , which we call a2.
The relation between F ′′2 and F ′2 is more complicated. What we

can show is the following F ′′2 ]∆′I = F ′2 ]∆′′I where ∆′I = ∆I ,
and ∆′′I contains all the complimentary updates to the ones in ∆D,
nothing else.

We would like to show that there is a one-to-one mapping be-
tween the delta-rules that are fired to generate ∆I in the bigger
complete iteration (the first execution sequence), and the delta-
rules that are fired to generate ∆′I in the PSN iteration (the second
part of the second execution sequence).

The only updates that are in F ′2, but not in F ′′2 are due to HtI .
Therefore, all insertion updates in ∆′I are generated by firing delta-
rules that contain u and q, where 〈INS, q〉 ∈ H, in the body:
〈INS, r1〉 :- · · · , u, · · · , q, · · · , which we call b1.
By the definition of delta-rules, there is one-to-one mapping be-

tween a1 and b1. Consequently, ∆I = ∆′I .
We also need to show that there is a one-to-one mapping be-

tween the delta-rules that are fired to generate ∆′′I , and the delta-
rules that are fired to generate ∆D.

The only updates that are in F ′′2 , but not in F ′2 are due to HtD,
which is deleted from the view before the PSN iteration. There-
fore, all insertion updates in ∆′′I are generated by firing delta-rules
that contain u and q, where 〈DEL, q〉 ∈ H, in the body:
〈INS, r1〉 :- · · · , u, · · · , q, · · · , which we call b2.
By the definition of delta-rules, there is one-to-one mapping be-

tween a2 and b2. Consequently, ∆′′I contains all the complemen-
tary updates to those ones that are in ∆D, which we denote by
∆̄D.

Finally, we obtain the following: F ′′1 = F ′1 ] (∆I ] ∆D) and
F ′′2 ]∆I = F ′2] ∆̄D. We know the following by union both sides
of the above equations: F ′′1 ]F ′′2 ]∆I = F ′1](∆I]∆D)]F ′2]∆̄D.
We can conclude that F1 = F2 ] ∆D ] ∆̄D. Therefore, F1 and
F2 only differs in pairs of complementary conflicting updates.

Assume now for the second case that u = 〈DEL, p〉. By exam-
ining the two execution sequences, we know that

F1 =
⊎
u0∈H]{u} firRules(u0,K ]HtνI \ {pν} ] HtνD ,R),

F ′1 =
⊎
u0∈H firRules(u0,K ]HtνI \ HtνD ,R),

F ′2 = firRules(u,K ]HtνI ]HtI \ {pν} ] HtνD ]HtD),R),
F2 = F ′1 ] F ′2

Let’s further rewrite F1 to be F ′′1 ] F ′′2
where F ′′1 =

⊎
u0∈H firRules(u0,K]HtνI \ {pν} ]HtνD ,R), and

F ′′2 = firRules(u,K ]HtνI \ {pν} ] HtνD ,R).
F ′1 is a superset of F ′′1 . Let F ′1 = F ′′1 ]∆I ]∆D.

Any update 〈INS, r1〉 ∈ ∆I is generated by a delta-rule that
contains pν and an insertion update 〈INS, q〉 ∈ H in the body:
〈INS, r1〉 :- · · · , pν , · · · , 〈INS, q〉, · · · , which we call a1.
Any update 〈DEL, r′1〉 ∈ ∆D is generated by a delta-rule that

contains pν and a deletion update 〈DEL, q〉 ∈ H in the body:
〈DEL, r′1〉 :- · · · , pν , · · · , 〈DEL, q〉, · · · , which we call a2.
Similarly as in the first case, the relation between F ′′2 and F ′2

is more complicated. What we can show is the following F ′′2 ]
∆′D = F ′2 ] ∆′′D where ∆′D = ∆D, and ∆′′D contains all the
complimentary updates to the ones in ∆I , nothing else.

We show that there is a one-to-one mapping between the delta-
rules that are fired to generate ∆D in the bigger complete iteration
(the first execution sequence), and the delta-rules that are fired to
generate ∆′D in the PSN-iteration (the second part of the second
execution sequence).

The only updates that are in F ′2, but not in F ′′2 are due to HtI .
Therefore, all deletion updates in ∆′D are generated by firing delta-
rules that contain u and q in the body, where 〈INS, q〉 ∈ H:
〈DEL, r1〉 :- · · · , u, · · · , q, · · · , which we call b1.
By the definition of delta-rules, there is one-to-one mapping be-

tween a1 and b1. Consequently, ∆D = ∆′D.
We also need to show that there is a one-to-one mapping be-

tween the delta-rules that are fired to generate ∆′′D, and the delta-
rules that are fired to generate ∆I .

The only updates that are in F ′′2 , but not in F ′2 are due to HtD,
which is deleted from the view before the PSN-iteration. There-
fore, all deletion updates in ∆′′D are generated by firing delta-rules
that contain u and q in the body, where 〈DEL, q〉 ∈ H:
〈DEL, r1〉 :- · · · , u, · · · , q, · · · , which we call b2.
By the definition of delta-rules, there is one-to-one mapping be-

tween a2 and b2. Consequently, ∆′′D contains all the complemen-
tary updates to those ones that are in ∆I , which we denote by ∆̄I .

Finally, we obtain the following: F ′1 = F ′′1 ] (∆I ] ∆D) and
F ′′2 ]∆D = F ′2] ∆̄I . We know the following by union both sides
of the above equations: F ′′1 ]F ′′2 ]∆D = F ′1](∆I]∆D)]F ′2]∆̄I .
We can conclude that F1 = F2 ]∆I ] ∆̄I . Therefore, F1 and F2

only differs in pairs of complementary conflicting updates. 2

Lemma 16 actually give us for free, the ability to break a com-
plete SN iteration into several PSN iterations.

Dealing with Conflicting Update Pairs Next, we prove that
conflicting updates do not interfere with the final view when using
PSN executions. Intuitively, all updates generated by firing delta-
rules for conflicting updates are also conflicting updates. Further-
more, a pair of complementary conflicting updates generates pairs
of complement conflicting updates. Consequently, a PSN execu-
tion that contains a pair of complement conflicting updates in its
initial state can be transformed into another PSN execution that
does not contain these updates and that the final states of the two
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executions are the same. The following lemma precisely states
that.

Lemma 17 Let ∆ = {〈INS, p〉, 〈DEL, p〉} be a multiset contain-
ing a pair of complementary conflicting updates, then
〈K,U , ∅, ∅〉 psn

=⇒ s ! 〈K,U ]∆, ∅, ∅〉 psn
=⇒ s.

Proof We prove the reverse direction first, that is, how to con-
struct a PSN execution where the conflicting updates are not in its
initial state.

Assume that uIc = 〈INS, p〉 and uDc = 〈DEL, p〉
We first show that for any insertion update, u, created by firing

delta-rules that contains 〈INS, p〉 in the body, there is exactly one
deletion update ū that is created at an iteration no later than the
one where uDc is picked.

Let’s assume that u is created by firing the following delta-rule:
u :- b1, . . . , bn, 〈INS, p〉, bn+1, . . . , bn+m.
The update ū can be created either by a deletion update for bi

which is picked before uDc ; or by the time uDc is processed none
of the predicates (bi) in the body has been deleted, in which case
ū will be generated by firing the following delta-rule.

ū :- b1, . . . , bn, 〈DEL, p〉, bn+1, . . . , bn+m.
This means that only pairs of complementary conflicting up-

dates are propagated by the insertion and deletion of p. Using the
same reasoning above, these pairs of conflicting updates created
will also cause the propagation of conflicting pairs of updates only.
For the rest of the proof, we call all these updates as p-propagated
updates.

Then, in this subexecution, we use Lemma 15 to permute dele-
tion updates to the right of insertion updates eagerly. In the pro-
cess, new conflicting updates are generated, which will be dealt
later. Finally, we use Lemma 14 to permute insertion updates (re-
spectively, deletion updates), so that the propagated updates are
picked last and in the same order. That is, if the propagated in-
sertion update u1 is picked before the propagated insertion update
u2, then the deletion update ū1 is picked before ū2.

Next, we define ID executions. A PSN execution is an ID exe-
cution if it has the following form:

s0
psn

=⇒ (UI)s1
psn

=⇒ (UP )s2
psn

=⇒ (UD)s3
psn

=⇒ (U ′P )s4,
where for all u ∈ UI , u is a non-p-propagated insertion update,

for all u ∈ UP , u is a p-propagated insertion update, and for all
u ∈ UD, u is a non-p-propagated deletion update, and for all u ∈
U ′P , u is a p-propagated deletion update. Furthermore, for all u ∈
UP then ū ∈ U2 and vice-versa. We denote an ID execution as
s ID=⇒ s′.

We show that any PSN execution can be transformed into a se-
quence of two consecutive ID executions. The first ID execution
is formed by using repeatedly using Lemma 15 to permute dele-
tion updates to the right of insertion updates. In the process, new
conflicting updates are generated, which will be used to form the

second ID execution. In the end, we obtain a PSN-execution where
all insertion updates are picked before deletion updates. Now we
use Lemma 14 to permute insertion updates (respectively, deletion
updates), so that the p-propagated updates are picked after all the
non p-propagated updates are picked. This is possible because by
its definition, non p-propagated updates cannot be generated by
firing a delta-rule that uses p-propagated updates. Now we have
obtained our first ID execution. This is not a complete PSN run
because in the first step, we have generated new pairs of comple-
mentary conflicting updates.

Next, we construct the second ID execution by complete the ex-
ecution of the program. We eagerly pick non-p-propagated inser-
tion updates until only none is left, then we pick all p-propagated
insertion updates. After that, we pick non-p-propagated deletion
updates; then, we finish by picking all p-propagated deletion up-
dates.

Now we have obtained a complete run of PSN, of the following
form: 〈K1,U1, ∅, ∅〉

ID=⇒ 〈K2,U2, ∅, ∅〉
ID=⇒ 〈K3, ∅, ∅, ∅〉, where

the view in K2 is the same as the original PSN execution, which is
guaranteed by Lemma 15 and Lemma 14.

Next we show that we can prune an ID execution to contain only
non-p-propagated updates without changing the final view.

Given an ID execution,
〈K,U , ∅, ∅〉
psn

=⇒ (UI)〈K ] U tI ,U \ UI ] FI , ∅, ∅〉
psn

=⇒ (UP )〈K ] U tI ] U tP ,U \ UI ] FI \ UP ] FP , ∅, ∅〉
psn

=⇒ (UD)〈K ] U tI ] U tP \ U tD,
U \ UI ] FI \ UP ] FP \ UD ] FD, ∅, ∅〉

psn
=⇒ (U ′P )〈K ] U tI ] U tP \ U tD \ U ′tP ,

U \ UI ] FI \ UP ] FP \ UD ] FD \ U ′P ] F ′P , ∅, ∅〉
Let U ′ contain all the non-p-propagated updates in U , and we

generate a PSN execution that only pick non-p-propagated updates
as follows.
〈K,U ′, ∅, ∅〉
psn

=⇒ (UI)〈K ] U tI ,U ′ \ UI ] FI , ∅, ∅〉
psn

=⇒ (UD)〈K ] U tI \ U tD,U ′ \ UI ] FI \ UD ] F ′D, ∅, ∅〉
Compared with the original ID execution, we have the following

invariants.
First, K ] U tI ] U tP \ U tD \ U ′tP = K ] U tI \ U tD because U ′P

contains the complement of UP .
Second, U ′ \ UI ] FI \ UD ] F ′D contains only the non-p-

propagated updates in U \UI ]FI \UP ]FP \UD]FD \U ′P ]F ′P .
This is because the only updates that contain non-p-propagated up-
dates are U ′, FI and F ′D; and FD ⊇ F ′D.

We perform the above rewriting separately to both ID execu-
tions in 〈K1,U1, ∅, ∅〉

ID=⇒ 〈K2,U2, ∅, ∅〉
ID=⇒ 〈K3, ∅, ∅, ∅〉.

We obtain the following: 〈K1,U ′1, ∅, ∅〉
ID=⇒ 〈K2,U ′2, ∅, ∅〉

and 〈K2,U ′′2 , ∅, ∅〉
ID=⇒ 〈K3, ∅, ∅, ∅〉.
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The invariants tell us that U ′1 contains all non-p-propagated up-
dates in U1 and nothing else, and both U ′2 and U ′′2 contains all the
non-p-propagated updates in U2 and nothing else. Therefore, we
know that U1 = U ′1 ] {〈INS, p〉, 〈DEL, p〉}, and U ′2 = U ′′2 . Finally,
we obtain the valid PSN execution sequence: 〈K1,U ′1, ∅, ∅〉

ID=⇒
〈K2,U ′2, ∅, ∅〉

ID=⇒ 〈K3, ∅, ∅, ∅〉.
The proof for the relies on the fact that the PSN algorithmal-

ways terminates for non-recursice programs (Lemma 2). Given an
execution σ not containing the conflicting updates uIc and uDc in
its initial state, we construct the execution that contains these up-
dates in the initial view as follows: First, we add uIc and uDc to the
set of updates of all states in σ. Hence the last state contains only
the updates uIc and uDc . Now, we just run the Algorithm 1 until it
terminates to complte the execution. 2

Note that its proof relies on the termination arguments for PSN
algorithm for non-recursive programs. For recursive programs, it
is possible that a pair of complementary conflicting updates will
generate infinite number of complementary conflicting updates;
and therefore the transformation process may never terminate.

Correctness of Basic PSN Finally, using the operations above
we can prove the following theorem, which establishes that PSN
is sound and complete with respect to SN.

Theorem 18 (Correctness of PSN w.r.t. SN) Let s =
〈K,U , ∅, ∅〉 be an initial state. Then for non-recursive pro-
grams:

s
psn

=⇒ 〈K, ∅, ∅, ∅〉! s sn=⇒ 〈K, ∅, ∅, ∅〉.

Proof
Given a PSN execution, we construct an SN execution by in-

duction as follows: we use the first operation (Lemmas 14 and 15)
to permute to the left all the PSN-iterations that pick one element
in the initial state’s U set. The resulting execution has all PSN-
iterations in the same order as the first SN-iteration of an SN exe-
cution. After each permutation, we either generate new conflicting
updates, or suppressed the generation of conflicting updates that is
in the original execution. We apply Lemma 17 to transform the
rest of the execution into a valid PSN execution, but leave the final
state unchanged.

Next, we merge these PSN-iterations into an SN-iteration by
applying the second operation (Lemma 16). Again, we need to
apply Lemma 17 to transform the rest of the execution to account
for the difference in conflicting updates.

We repeat the above process with the PSN sub-execution. This
process will eventually terminate because there is a finite number
of updates (conflicting and non-conflicting), with each iteration of
the process, the sub-execution has fewer updates to generate.

For the converse direction, given an SN execution, we apply
Lemma 16 repeatedly to split SN-iterations and obtain a PSN ex-
ecution. Again we might need to apply the transformation de-
scribed in Lemma 17 in order to construct valid executions. 2

The above theorem states that the same derived tuples that are
created by SN are also created by PSN and vice-versa. Hence,
from Theorem 13, PSN is correct.

Corollary 19 (Correctness of basic PSN) Given a non-
recursive DDlog program P , a multiset of base tuples, E, a
multiset of updates insertion updates I and deletion updates D to
base tuples, such that Dt ⊆ E ] It, then Algorithm 1 correctly
maintains the view of the database.

Discussion The framework of using three basic commands:
pick, fire, and commit to describe PSN and SN algorithms can
be used for specifying and proving formal properties about other
SN-like algorithms. For instance, one can easily generalize the
proof above to prove the correctness of algorithms where nodes
pick multiple updates per iteration instead of just one update, as in
PSN-iterations; or the complete multiset of updates available, as
in SN-iteration. That is, we can transform an execution with arbi-
trary complete iterations into an SN execution and vice-versa. One
first breaks the complete-iterations into PSN-iterations, obtaining
a PSN execution. Then the proof follows in exactly the same way
as before. This means that when implementing such systems, a
node can pick all applicable updates that are in its buffer and pro-
cess them in one single iteration, instead of picking them one by
one, and the resulting algorithm is still correct.

5 Extended PSN Algorithm for Recursive
Programs

Algorithm 1 and Algorithm 2 use multiset-semantics. As a con-
sequence, termination is not guaranteed, when they are used to
maintain views of recursive programs. Consider the following re-
cursive program.

p(@1) :- a(@0) q(@2) :- p(@1) p(@1) :- q(@2)

Notice that p and q form a cycle in the dependency graph. Any
insertion of the fact p(@1) will trigger an insertion of q(@2) and
vice versa. Given an insertion of fact a(@0), neither Algorithm 1
nor Algorithm 2 will terminate because the propagation of inser-
tion updates of q(@2) and p(@1) will not terminate. Recursively
defined tuples could have infinite number of derivations because
of cycles in the dependency graph. In other words, in the multiset-
semantics, such tuples have infinite count. Neither Algorithm 1
nor Algorithm 2 have the ability to detect cycles.
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One way to detect such cycles is proposed in [13] in a central-
ized setting. The main idea is to remember for any fact p, the set
of facts, S, called derivation set, that contains all the facts that are
used to derive p. While maintaining the view, one checks whether
a newly derived tuple p appears in the set of facts supporting it.
If this is the case, then there is a cycle, and p has infinite count.
Whenever a tuple with infinite count is detected, we store it in a
second set,H, called infinite count set. Future updates of p are not
propagated to avoid non-termination.

The same idea is applicable to the distributed setting. We for-
malize this by attaching the derivation and infinite count sets, S
and H, to facts both in views and updates. A fact is now of the
form (p,S,H), where p is a predicate, S is the derivation set of
p, containing all the facts used to derive p, and H is a subset of
S containing all the recursive tuples that belong to a cycle in the
derivation and therefore cause p to have an infinite count. Tuples
have infinite count when they have a non-empty infinite count set.
In the example above, the view of the nodes would be:
{(a,∅), (p,{a},∅), (q,{p,a},∅), (p,{a,p,q},{p}),. . .}

where we elide the (@X) symbols. Notice that the fact p in
(p,{a,p,q},{p}), also appears in the set supporting it. This
means that p appears in a the cycle of a cyclic derivation; there-
fore, p is in the setH.

In order to maintain correctly the view, we adapt the transition
rules accordingly. A summary of the rules are shown in Figure 2.
Each pick rule in Figure 1 is divided into two rules. Once an
update u = 〈U, (p,S,H)〉 is picked from the multiset of updates
by using either the transition rule pickI and pickD, one needs to
first check whether the tuple is supported by a derivation tree that
has a cycle. That is, one needs to check if p ∈ S. If so, then p is
added to the set H; otherwise H remain unchanged. Notice that
the updated view of p in K uses the updated H set. The commit
rule is the same as before, except for the new presentation of facts.

The major changes in the operational semantics are in the fire
rule, where the derivation set and the infinite count set need to
be computed, when a delta-rule is fired and the propagation of
updates to tuples with infinite count need to be avoided. Given an
update 〈U, (bi,Si,Hi)〉 inserting or deleting a tuple, in addition
to computing all updates that are propagated from this update, we
also construct the corresponding derivation and infinite count sets,
S and H as follows. Assume that the update 〈U, p〉 is propagated
using a delta-rule with body bν1 , . . . , b

ν
i ,∆bi, bi+1, . . . , bn and the

facts (bi,Si,Hi) where 1 ≤ i ≤ n, then the derivation set for p
is Sp = {b1, . . . , bn} ∪ S1 ∪ · · · ∪ Sn and the infinite count set
Hp = H1 ∪ · · · ∪ Hn. In order to avoid divergence, we also need
to make sure that an update of a tuple with infinite count is not
resend. To do so, we only add the update 〈U, (p,Sp,Hp)〉 to the
multiset of updates U if p /∈ Hp. That is, it is not part of cycle that
has been already computed.

Returning to the previous example, when the update inserting
tuple p(@1) arrives for the second time at node 1, this update
would contain the derivation set S = {a(@0),p(@1),q(@2)}.
Since p(@1)∈ S, node 1 detects the cycle in the derivation and
adds the tuple p(@1) to the infinite count set H. As q(@2) is not
in H, the insertion update of q(@2) is sent to node 2. However,
when this update is processed, creating a new insertion of p(@1),
this new insertion is not sent back to 1 because p(@1) is in the
infinite count set, which means that it is part of a cycle that has
already been computed. Therefore, computation terminates. In
fact, we can guarantee the termination of PSN using the derivation
set and infinite count set on any recursive program, which is stated
as follows.

Theorem 20 (Finiteness of PSN that detects cycles) Let S be
an initial state and R be a DDlog program. Then all PSN exe-
cutions usingR and from S have finite length.

Proof Since we are assuming finite signature with no function
symbols, there is a finite number N of facts in a system. We use
a tuple with N elements, called state tuple, described next and the
lexicographical ordering among them to show termination. Given
a state of the system, the ith element of the state tuple contains
the the number of updates 〈U, (p,S,H)〉 ∈ U , such that i = |S|,
where |S| is the number of elements in S. This ordering is clearly
well founded. It is easy to show by induction on the length of runs
that there cannot be any update whose associated derivation set S
has more than N elements, since whenever a cycle is detected, an
update is not resend. Only when the set of updates is empty, U =
∅, can the least state tuple be reached. For any update message
u = 〈U, (p,S,H)〉, we denote |u| as the number of elements in
the multiset S.

We show that the value of the state tuple reduces with respect to
the lexicographical ordering after any PSN-iteration. After a PSN-
iteration, there are two possible ways that the multiset of updates
U is changed. The first case is when the picked update, u, does
not contain a cycle. Then whenever a rule is fired, an update, u′,
is propagated such that the |u| < |u′| since at least the tuple in u is
inserted into the derivation set of u′. Then the update u′ is inserted
in the set U , while the update u is removed from it. Therefore, the
value of the ith element in the state tuple, where i = |u|, is reduced
by one, while all the values of the elements appearing before are
untouched. The second case is when the update propagated is in
the set H of tuples with infinite count. In this case, the update is
not propagated and the total number of elements in U is reduced
by one. Therefore, the value of the state tuple associated to the
resulting state is also reduced. 2

Corollary 21 The PSN algorithm that detects cycles always ter-
minates.
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〈INS, (p(~t),S,H)〉 ∈ U and p(~t) ∈ S and H′ = H∪ {p(~t)}
〈K,U ,P, E〉 −→R 〈K ] {(pν(~t),S,H′)},U \ {〈INS, (p(~t),S,H)〉},P ] {〈INS, (p(~t),S,H′)〉}, E〉

[pick1
I ]

〈INS, (p(~t),S,H)〉 ∈ U and p(~t) /∈ S
〈K,U ,P, E〉 −→R 〈K ] {(pν(~t),S,H)},U \ {〈INS, (p(~t),S,H)〉},P ] {〈INS, (p(~t),S,H)〉}, E〉

[pick2
I ]

〈DEL, (p(~t),S,H)〉 ∈ U and p(~t) ∈ S and H′ = H∪ {p(~t)}
〈K,U ,P, E〉 −→R 〈K \ {(pν(~t),S,H′)},U \ {〈DEL, (p(~t),S,H)〉},P ] {〈DEL, (p(~t),S,H′)〉}, E〉

[pick1
D]

〈DEL, (p(~t),S,H)〉 ∈ U and p(~t) /∈ S
〈K,U ,P, E〉 −→R 〈K \ {(pν(~t),S,H)},U \ {〈DEL, (p(~t),S,H)〉},P ] {〈DEL, (p(~t),S,H)〉}, E〉

[pick2
D]

u ∈ P and F = firRules(u,K,R)

〈K,U ,P, E〉 −→R 〈K,U ] F ,P \ {u}, E ] {u}〉
[fire]

〈INS, (p(~t),S,H)〉 ∈ E
〈K,U ,P, E〉 −→R 〈K ] {(p(~t),S,H)},U ,P, E \ {〈INS, (p(~t),S,H)〉}〉

[commitI ]

〈DEL, (p(~t),S,H)〉 ∈ E
〈K,U ,P, E〉 −→R 〈K \ {(p(~t),S,H)},U ,P, E \ {〈DEL, (p(~t),S,H)〉}〉

[commitD]

Figure 2: Operational semantics for the basic commands that detect cycles

Correctness for PSN that Detects Cycles Finally, we need to
prove that the PSN algorithm that detects cycles maintains views
correctly in the presence of recursive programs. The proofs follow
the same steps as the proof for the correctness of the basic PSN
algorithm in Section 4. First, we extend the basic SN algorithm
(Algorithm 2) to deal with annotations for derivation and infinite
count sets by using the new transition rules in Figure 2. Then, we
prove that the extended SN algorithm is correct. Next, we relate
PSN executions to SN executions.

However we need to revisit the definition of correctness. We
have shown in the beginning of this section that the multiset se-
mantics for recursive programs include tuples with infinite counts.
That means that the view V and V ν could be infinite, which im-
plies that the updates that have to be computed (∆) could be infi-
nite as well. The definition for correctness only makes sense when
∆ is finite, since no terminating programs can compute infinite set
of updates. What the cycle-detection mechanism really does is to
represent the infinite number of derivations for a recursive tuple by
one derivation that contains only one cycle. We revise the defini-
tion for correctness accordingly to reflect the fact that the standard
resulting view V ν that we compare against is a finite multiset view
where a tuple that would have had infinite number of derivations
in traditional fixed-point semantics now has a finite number of rep-
resentative derivations. For instance, in a centralized setting, the
semi-naı̈ve evaluation algorithm described in [13] computes such
a finite (multiset) view for recursive programs.

Then in the proof of correctness of SN executions, we add a new
case when tuples with infinite counts are derived, that is, when
they are supported by a derivation with a single cycle. This is

indeed the case for any SN execution as the new fire rule does not
propagate new updates when such updates are processed.

Finally, the proofs that relate a PSN execution to an SN exe-
cution remain almost the same except that we have to consider
attaching annotations to tuples and updates; and that the termina-
tion argument for PSN is different. The transformations used in
that proof continue to be valid when using the transition systems
in Figure 2.

Corollary 22 (Correctness of PSN) Given any DDlog program
P , a multiset of base tuples, E, a multiset of updates inser-
tion updates I and deletion updates D to base tuples, such that
Dt ⊆ E ] It, then the PSN algorithm that detects cycles correctly
maintains the view of the database.

6 Related Work
Earlier works on incremental view maintenance focus on Datalog
programs in a centralized setting ([8, 6] to list a few). Whereas,
our work focuses on designing efficient algorithms for maintain-
ing views incrementally in a distributed setting. Compared to the
traditional DRed algorithm proposed in [8], our algorithm uses
multiset-semantics, while DRed uses set-semantics. As previously
discussed, the use of set-semantics requires DRed to re-deriving
tuples, a step which involves high communication overhead and
makes the use of DRed impractical in a distributed setting. Since
DRed is meant to work in a centralized setting, so it is a syn-
chronous algorithm, where updates created in one iteration are
necessarily processed in the following iteration. It is not clear
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to us whether DRed can be adapted to a distributed setting that
we consider here to produce correct results and at the same time
efficient.

In recent years, there has been several works tackling the prob-
lem of evaluating Datalog-like programs, and maintaining views
in a distributed setting. Our work is based on the original pro-
posal of PSN evaluation [11]. We extended the original proposal
in several ways. First, Loo et al. considered only linear recursive
terminating Datalog programs. We consider the complete Datalog
language including non-linear recursive programs. Second, we re-
laxed the assumptions in the original proposal: instead of assum-
ing that the transmission channels are FIFO, we do not make any
assumption about the order in which updates are processed. The
most important improvement is that the PSN algorithm proposed
in this paper is proven to terminate and maintain views correctly.
As pointed out in our previous work [14], the PSN algorithm as
presented in [11] may produce unsound results and the use of the
count algorithm [8] leads to non-termination.

Similarly to our approach, Liu et al. in [10] propose a PSN algo-
rithm that attaches annotations to tuples with provenance informa-
tion [5] to track duplicate derivations and avoid non-termination
due to cycles in recursive programs. However, Liu et al. only
track the base tuples used in the derivation. While our deriva-
tion set contains all facts (including base and intermediate derived)
used for each derivation. Using only base tuples, it is not possible,
without assuming that the transmission channels used are FIFO,
to differentiate an update that is the result of computing a cyclic
derivation from the remaining updates. When messages are pro-
cessed out of order, the algorithm proposed in [10] yields unsound
results. We show such an example in Appendix A. Finally, the al-
gorithm is only experimentally evaluated but not formally proven
correct.

In contrast to our approach, where we annotate tuples with the
set of facts used to derive them, MELD [4] simply attaches to tu-
ples the height of the derivation supporting them. They are able
to make many optimizations to the way in which updates are pro-
cessed. For instance, they do allow nodes to pick a deletion update
of a tuple that is supported by a derivation of a height greater than
the derivation of the same tuple appearing in the view. However,
simply attaching the height of derivations to tuples is not enough
to detect cycles in derivations and therefore it is not enough to
avoid divergence by itself. They address this problem by enforc-
ing the synchronization among nodes, that is, not allowing nodes
to compute until they receive the response from other nodes during
deletion. As expected, performance can be greatly affected since
an unbounded number of nodes might need to be synchronized at
the same time due to cascading tuples. We believe that their work
can directly leverage the results in this paper.

In an attempt to generalize Loo et al.’s work [11], Dedalus [3]

relaxes the set of assumptions above by no longer assuming that
messages always reach their destination. The main difficulty when
considering message loss is that the semantics does not relate
well with any semantics in the Datalog literature. Depending on
whether a message is lost or not, the final views computed by their
evaluation algorithms can be considerably different. Therefore,
it is not clear what is the notion of correctness in such systems.
We believe that probabilistic models where messages are lost with
certain probability can be used, and we leave this for future work.

Adjiman et al. in [2] use classical propositional logic to specify
knowledge bases of agents in a peer-to-peer setting. They prove
correct a distributed algorithm that computes the consequences of
inserting a literal, that is, an atom or its negation, to a node (or
peer). Since they use resolution in their algorithm, they are able
to deduce not only the atomic formulas that are derivable when
an insertion is made, but propositional formulas in general. While
they are mainly interested in finding the consequences resulting
from inserting a formula, we are interested in efficiently maintain-
ing a set of consequences that was previously derived. It is not
clear how their approach can be used to update consequence when
a sequence of insertions and deletions are made to the knowledge
base.

7 Conclusions and Future Work
This paper presents techniques for incrementally updating views
for distributed recursive Datalog programs in the presence of in-
sertions and deletions of base tuples. Our PSN algorithm im-
proves upon existing techniques in the following ways. First, it
is more bandwidth efficient than DRed [8], since it avoids unnec-
essary deletions and rederivations. Second, unlike its predeces-
sors [11, 10] the algorithm presented in this paper maintains views
correctly for general recursive programs, even in the presence of
message re-ordering. By annotating tuples with information about
its derivation, our algorithm can detect cycles in recursive pro-
grams. Most importantly, we prove that our PSN algorithm termi-
nates and that it maintains views correctly.

Besides the correctness of the algorithm itself, our ultimate goal
is to prove interesting properties about the programs that use dis-
tributed Datalog. The correctness results in this paper allow one to
first formally verify high-level properties of programs prior to ac-
tual deployment by relying on the well established semantics for
centralized Datalog, then using our result that the semantics for
Distributed Datalog and centralized Datalog coincide, the verified
properties carry-over to the distributed deployment.

In particular, our research group is interested in formal verifi-
cation of implementations of networking protocols prior to actual
deployment in declarative network setting [18, 19]. In order to
do so, we need to extend this work to include additional language
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features present in declarative networking including function sym-
bols and aggregates. Datalog programs with arbitrary functions
symbols may not terminate. We are investigating if we can extend
existing analysis techniques [9] developed for centralized Datalog
with function symbols to determine when DDlog programs with
function symbols terminate. It turns out that it is not an easy task
to develop efficient and correct algorithms that maintain views in-
crementally in the present of aggregate functions. We are look-
ing into adapting existing work, such as [16] in incremental view
maintenance in a centralized setting to fit our needs.
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A Problems of previous work in an asyn-
chronous setting

The main problem with the algorithm in [10] is that they do not
store enough information in the annotation of tuples to be able to
differentiate between when an update is due to a cyclic proof and
when an update arrived out-of-order. In particular, they annotate
tuples with provenance polynomials [5] constructed using only the
base tuples used to derive tuple and not the intermediate derived
tuples. For instance, consider the same DDlog program used in
Section 5 to illustrate that our PSN algorithm that detects cycles
terminates:

p(@1) :- a(@0)
q(@2) :- p(@1)
p(@1) :- q(@2)

The view in their setting for this program when a is true is
(a,{a}), (p,{a}), (q,{a}) where we elide the (@X) sym-
bols. All tuples are derived by only using the base tuple a

and therefore their annotations consist only of the monomial
a. Clearly, using annotations containing just base tuples is not
enough to detect cycles in derivations. For instance, an update in-
serting (p,{a}) could be derived due to the a derivation with no
cycles or due to a cyclic derivation obtained by using the last two
rules of program.

In order to avoid divergence, one would need to discard the lat-
ter type of updates, as in our PSN algorithm. They are able to
detect such updates but only when one assumes that all transmis-
sion channels are FIFO, that is, when messages are not reordered
and guarantee termination by discarding updates. To illustrate how
their algorithm works, consider again the program above and the
same view. Assume that there is a deletion of a, that is, the ex-
istence of the deletion update 〈DEL, (a,{a})〉. When this update
is processed, node 1 creates 〈DEL, (p,{a})〉, which on the other
hand is processed by node 2, creating the update 〈DEL, (q,{a})〉.
Finally, node 2 processes the latter, creating again the deletion up-
date 〈DEL, (p,{a})〉. When this update is received by node 1,
the tuple (p,{a}) is not in the view, since it was deleted by the
first deletion update. Therefore, node 1 can safely conclude, under
the assumption of FIFO channels, that the latter update is due to a
cyclic derivation. Hence it just discards it.

It is easy to show that discarding eagerly such deletion updates
yields unsound results when one relaxes the assumption of FIFO
channels. Consider the same program above, but two conflict-
ing updates: 〈DEL, (a,{a})〉 and 〈INS, (a,{a})〉. If the dele-
tion update is processed first by node 0, it will be discarded since
the tuple (a,{a}) is not present in its view. The insertion up-
date on the other hand would be processed, generating eventually
new insertion updates for all the tuples in the program. Hence,
the final view obtained by their algorithm is (a,{a}), (p,{a}),
(q,{a}), whereas the correct view is the empty set.
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