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Elasticity of Short DNA Molecules: Theory and Experiment for Contour
Lengths of 0.6–7 µm

Abstract
The wormlike chain (WLC) model currently provides the best description of double-stranded DNA elasticity
for micron-sized molecules. This theory requires two intrinsic material parameters—the contour length L and
the persistence length p. We measured and then analyzed the elasticity of double-stranded DNA as a function
of L (632 nm–7.03 μm) using the classic solution to the WLC model. When the elasticity data were analyzed
using this solution, the resulting fitted value for the persistence length pwlc depended on L; even for
moderately long DNA molecules (L = 1300 nm), this apparent persistence length was 10% smaller than its
limiting value for long DNA. Because p is a material parameter, and cannot depend on length, we sought a
new solution to the WLC model, which we call the “finite wormlike chain (FWLC),” to account for effects not
considered in the classic solution. Specifically we accounted for the finite chain length, the chain-end
boundary conditions, and the bead rotational fluctuations inherent in optical trapping assays where beads are
used to apply the force. After incorporating these corrections, we used our FWLC solution to generate force-
extension curves, and then fit those curves with the classic WLC solution, as done in the standard
experimental analysis. These results qualitatively reproduced the apparent dependence of pwlc on L seen in
experimental data when analyzed with the classic WLC solution. Directly fitting experimental data to the
FWLC solution reduces the apparent dependence of pfwlc on L by a factor of 3. Thus, the FWLC solution
provides a significantly improved theoretical framework in which to analyze single-molecule experiments over
a broad range of experimentally accessible DNA lengths, including both short (a few hundred nanometers in
contour length) and very long (microns in contour length) molecules.
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Abstract

The worm-like chain model (WLC) currently provides the best description of DNA elasticity. This

theory requires two intrinsic polymer parameters, the contour length L and the persistence length

p. In a combined experimental and theoretical study, we measured and then analyzed the elasticity

of dsDNA as function of L using the classic WLC model, for L between 632 nm and 7.03 µm. When

the elasticity data were analyzed using the classic WLC, the fitted value of p depended L. Therefore

we developed the finite worm-like chain solution (FWLC) by including three important effects: the

finite length of the chain, bead rotation and boundary conditions. After incorporating these three

corrections, our FWLC solution was used to predict elasticity curves and fit experimental data.

First, we generated elasticity data with the FWLC and then analyzed the resulting force-extension

curves with the classic WLC solution, similar to the standard experimental analysis. These results

qualitatively reproduced the reduction of p with L seen in experimental data fit when analyzed with

the classic WLC solution. We then showed that directly fitting experimental data to the FWLC

model reduces the dependence of p on L by 3-fold. Thus, the FWLC model provides a significantly

improved theoretical framework in which to analyze single-molecule experiments over a broad range

of experimentally accessible DNA lengths, including both short and very long molecules.
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Introduction

Protein-nucleic acid interactions are essential to life, governing fundamental genomic processes

such as replication, transcription, translation, splicing, and DNA repair. Pioneering single-molecule

experiments have yielded new insight into the mechanical behavior of individual DNA molecules (1–

4). Subsequently, single-molecule force experiments have investigated a diverse set of proteins that

interact with DNA, including polymerases (5–10), helicases (11–16), phage portal proteins (17),

topoisomerases (18), exonucleases (19, 20), endonucleases (21), and histones (22, 23). In one

realization of common experimental geometries (Fig. 1), a processive nucleic-acid enzyme, bound

to a DNA molecule, is anchored to a surface (24). The other end of the DNA molecule to a bead

held in an optical trap. The introduction of ATP (or NTPs for polymerases) leads to enzymatic

motion that shortens the DNA molecule, pulling on the trapped bead. These experiments yield a

wealth of information about translocation rates (5–10, 12–17), pauses (6, 19, 24), and step sizes of

the enzyme (13, 25). Moreover, the application of force allows the enzyme’s motion to be measured

as a function of applied load (5, 7, 8, 17, 21).

Single molecule force experiments, independent of the specific experimental geometry, require a

model to deduce the polymer’s intrinsic contour length (L) from measurements of force and exten-

sion (24). This force-independent length allows accurate comparison between ensemble biochemical

translocation rates (measured in base pairs per second) and physical velocities (nm/s) measured in

single molecule assays.

To date, the worm-like chain model (WLC) provides the best description of DNA elasticity

(4, 24, 26) and is the definitive model for interpreting single molecule protein-DNA experiments.

Moreover, the WLC has become the standard model to characterize the elastic properties of RNA

(27) and proteins (28) as well. The WLC predicts the average end-to-end extension x of a semiflex-

ible polymer, given a force F applied to the ends of the molecule. The theory requires two intrinsic

polymer parameters, the contour length L and the persistence length p. The contour length is equal

to the number of monomers in the chain times the distance per monomer. For double-stranded

DNA (dsDNA), this is the number of base pairs times the rise per base pair along the helix (0.338

nm/bp for B-form DNA). The persistence length characterizes the bending stiffness of the polymer
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and depends on the molecule’s local elastic behavior. Though there is a slight ionic dependence, p

for dsDNA is ∼50 nm as determined by traditional bulk techniques (29, 30), and more recently by

single molecule experiments (2, 4, 24, 26).

The standard mathematical treatment of WLC, which relates F to the fractional extension x/L

(31), is exact in the limit L/p → ∞. Yet single-molecule experiments with dsDNA molecules (and

other double stranded nucleic acids) often use short (32) to moderate length (9) molecules (L/p ∼

6-20). Failure of the WLC model to accurately describe DNA elasticity over an experimentally

useful range of lengths could lead to incorrect determination of p, L, and enzymatic rates. Precise

knowledge of L allows enzymatic pauses to be related to the underlying DNA sequence (19, 33).

Accurate measurement of p verifies that only a single molecule of DNA links the bead to the surface

(24). Therefore, the correct modeling of DNA elasticity over a range of lengths is essential to the

precise and accurate analysis of single molecule experiments.

In a combined experimental and theoretical study, we measured and then analyzed the elasticity

of dsDNA as a function of L using the classic WLC solution. The successful theory, applied to

experimental data, should yield a fitted value of p independent of L, since p is a local, intrinsic

property of the polymer. However, when the elasticity data was analyzed using the classic WLC,

the deduced value of p depended L for contour lengths over the range 632 nm to 7.030 µm. Such

an unphysical length dependence of p may occur because the traditional WLC solution does not

include finite-length effects.

Thus we developed the finite worm-like chain solution (FWLC) by including three effects impor-

tant to real experiments: finite length of the chain, rotation of the bead and the boundary condition

at the chain’s anchor points. We incorporated finite-length effects and the boundary conditions by

using the correct contour length and specifying the boundary conditions at each end of the polymer.

We addressed bead rotations by averaging over rotational fluctuations. This explicit treatment is

required because experiments measure the bead’s position; molecular extension is then calculated

by subtracting the bead’s radius. This analysis is only correct when the polymer-bead attachment

is in line with the direction of the force. Fluctuations of the bead transverse to the stretching axis

introduce an error in this measurement. For polymers with L of less than 1.3 µm (L/p ≤ 25), we

show that these effects are significant (>10%).
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After incorporating these three corrections, we generated elasticity data with the FWLC and

then analyzed the resulting force-extension curves with the classic WLC solution. These results

qualitatively captured the reduction of p with L seen in experimental data fit with the classic

WLC solution. Additionally, we show that directly fitting experimental data to the FWLC model

reduces the dependence of p on L by 3-fold. Thus, the FWLC model provides a significantly

improved theoretical framework in which to analyze single-molecule experiments over a broad range

of experimentally accessible DNA lengths, including both short and very long molecules.

Materials and Methods

DNA ladder synthesis and sample preparation

We prepared double-stranded DNA by polymerase chain reaction (PCR; GeneAmp XL PCR Kit,

Applied Biosystems, Foster City, CA) using one digoxigenin-labeled and one biotin-labeled primer

(Integrated DNA Technologies, Coralville, IA). These labels enabled us to attach a DNA molecule at

one-end to a streptavidin coated cover slips and at the other end to anti-digoxigenin coated bead.

DNA molecules ranging in size from 1870 bp to 7138 bp were amplified using double-stranded

M13 Phage DNA (M13mp18 plasmid, Bayou Biolabs, Harahan, LA) as the template. For the

longest DNA studied (20.8 kbp), we used a portion of the lambda-bacteriophage genome supplied

with XL PCR kit. The PCR products were purified from agarose gels (QIAquick Gel Extraction

Kit, QIAGEN Inc., Valencia, CA). We prepared anti-digoxigenin beads by covalently attaching

anti-digoxigenin to aldehyde-sulfate beads (0.49-µm; Interfacial dynamics (IDC), Portland, OR),

following the protocol adapted from IDC. We prepared bead-DNA complexes by mixing beads and

DNA (5:1 ratio; ∼250 pM beads) in wash buffer (WB; 20 mM Tris-HCl (pH 7.5), 100 mM KCl, and

3 mg/ml bovine serum albumin (BSA)) for 30 minutes. Prior to use, buffers were filtered through

0.2 µm filters. Experiments were done in epoxy-stabilized flow cells (19) with a sample volume

15 µl constructed with KOH-cleaned microscope cover slips, double sticky tape, five-minute epoxy

and microscope slides. We initially incubated the flow cells with biotinylated BSA (125 µg/ml in

100 mM phosphate buffer (pH 7.5); Vector Laboratories) for 30 minutes. After washing with WB,

we incubated the flow cells with streptavidin (10 µg/ml in WB; Vector Laboratories) for 15-20
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minutes. After further washing, we flowed in bead-DNA complexes into the flow cells at 370 pM

beads. After 20 min., we washed the flow cells 1 ml of stretching buffer (10 mM phosphate buffer

(pH 7.5) and 3 mg/ml BSA, TWEEN-20) and sealed them with nail polish. This ionic condition

was chosen to match previous measurements reported by Wang et al. (24).

Optical Trap

Our optical trapping microscope, based on earlier work (34, 35), used a 1064-nm laser for trapping

and a 810-nm laser for deducing bead motion via back focal plane (BFP) detection (36). From the

light incident on the quadrant photo diode (QPD), we determined the normalized difference along

the x- and y-axes using custom-built electronics (bandwidth, as tested by a blinking 850-nm diode,

is ∼250 kHz) with built-in, programmable anti-aliasing filters. The normalized differences of the

QPD electronics, as well as the sum signal, were digitized at 16-bit resolution. To convert volts

to position in nm-length scale, we first needed to calibrate a closed-loop PZT mirror (S-330.2SL,

Physik Instrumente, Germany). This PZT mirror was imaged by a pair of lenses onto the back

focal plane of the microscope objective, such that rotations of the mirror led to translations of the

laser focus in the microscope’s imaging plane. We calibrated the PZT mirror by scanning a stuck

bead in a grid using a calibrated 3-axis, closed-loop PZT stage (P517.3CD, Physik Instrumente,

Germany) and determining the PZT mirror voltages associated with the center of the stuck bead at

each stage position. After this one time calibration, we could translate an optically trapped bead

through the fixed, stationary detector beam to generate a Volts-per-nanometer reference curve.

Trap stiffness, at 6 different laser powers, was determined using the equipartition theorem at

a trap height of 445 nm from the surface and verified to within 3% using power spectral analysis.

As expected, this calibration yielded a linear relationship between trap stiffness and optical power

that was used in subsequent DNA stretching experiments.

DNA stretching and data analysis

To compute the DNA’s elasticity accurately, the location of the DNA’s attachment to the cover

glass, i.e., its tether point must be accurately aligned to the optical trap. The tether point’s vertical
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position was found by monitoring the change in forward-scattered light as a trapped, tethered bead

was brought into surface contact by raising the stage (19). The stage was then lowered the stage by

300 nm, though the trap’s motion is attenuated by the index of refraction difference between the

cover glass and the water (37). We next performed a 2D elasticity-centering procedure using the

instrument in a position-clamp mode (24). To minimize vertical motion of the bead in the optical

trap, we set the position clamp to 40 nm from the trap center, which corresponds to at most 80 nm

relative displacement in z. Nonetheless, we made sure that the sensitivity in x changed less than

1% over 200 nm vertical displacement of a bead relative to the trap center. With an initial trap

stiffness of 0.03 pN/nm, the position clamp became active at 1.2 pN. After two rounds of this x-y

alignment and a second round of vertical alignment, we measured the elasticity of the DNA along

the x-axis in response to stretching in both the positive and negative direction. At each extension,

we digitized 2000 or 5000 data points at 120 kHz, depending on the applied force. We increased

the extension by moving the PZT stage in increments of 1-10 nm depending on the length of the

DNA substrate and the applied force. The resulting 1D elasticity curve was analyzed based on the

2D experimental geometry (24) to generate the extension and force along the stretching axis. We

fit each F vs x trace to an improved analytic approximation of the WLC model (26), which was

symmetrized to simultaneously fit the data for both positive and negative stretching relative to the

tether point. This fit returns three values, pwlc, L and ∆, where pwlc is the persistence length, L is

the contour length and ∆ is the location of the tether point.

Theoretical analysis

WLC model formulation

Here we review the basic assumptions of the WLC model, then describe extensions to the usual

WLC solution necessary to describe relatively short molecules and the experimental geometries

schematically sketched in Fig. 2.

The WLC model assumes an inextensible polymer: the contour length L of the molecule cannot

be changed by applied force. For double-stranded DNA, the overstretching transition, which occurs

for applied force around 60 pN, is a dramatic change in contour length; however, lower applied
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forces (up to approximately 10 pN) respect the inextensibility constraint (26, 38, 39). The polymer

is assumed to possess an isotropic bending rigidity, characterized by the persistence length, p.

The persistence length is the length scale over which thermal fluctuations randomize the chain

orientation. (In principle, the rod also resists twist. However, in many experiments, including ours,

the twist is unconstrained and can be ignored.) We note that when considering single finite-length

molecules, we are not working in any “thermodynamic limit”. Therefore, different ensembles are

not guaranteed to be equivalent (40–42). In this paper, we work in the ensemble relevant to most

experiments, where the applied force is fixed, and we calculate the extension.

The WLC is formulated in terms of the WLC energy, which includes the bending energy (Hooke’s

law in the chain curvature) and the work done by the applied force. The WLC energy (in units of

the thermal energy kBT ) is

E = −fx +

∫ L

0
ds

p

2
κ2 (1)

Here f (F divided by the thermal energy kBT ) is applied in the ẑ direction, s denotes arc length,

and the total extension of the chain is z. The curvature can be defined in terms of arc-length

derivatives of the chain coordinate (Fig. 3). If the chain conformation is described by a space curve

r(s) and the unit vector tangent to the chain is t̂(s), then κ =
∣

∣

∣

∂2
r

∂s2

∣

∣

∣
=

∣

∣

∣

∂t̂

∂s

∣

∣

∣
. Note that the chain

extension can be calculated as x =
∫ L

0 ds ẑ · t̂.

We rescale by dividing all lengths, by the persistence length p, so the scaled energy is

E =

∫ ℓ

0
ds′

(

κ′2

2
− f ′ẑ · t̂

)

, (2)

where ℓ = L/p, f ′ = fp, s′ = s/p, and κ′ = κp. We will drop the primes in the remainder of the

paper.

To determine the extension for a given applied force requires averaging over different polymer

conformations. This leads to a path integral formulation of the statistical-mechanics problem in

the tangent vector to the chain (30, 43). If the ends of the chain are held at fixed orientations, the
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partition function of the chain is

Z =

∫

Dt̂ exp

[

−

∫ ℓ

0
ds

(

1

2
(∂st̂)

2 − f ẑ · t̂

)]

, (3)

where the integral in Dt̂ is over all possible paths between the two endpoints of the chain with

the specified orientations. The partition function can be reformulated as a propagator. (We use

notation where the total probability amplitude is denoted by Z or Ztot, and the propagator, a

conditional probability distribution, is denoted by Z (̂t, s; t̂′, s′). Both of these quantities are referred

to as the partition function in the literature.) The propagator connects the probability distribution

for the tangent vector at point s, ψ(̂t, s) to the same probability distribution at point s′:

ψ(̂t, s) =

∫

dt̂′ Z (̂t, s; t̂′, s′) ψ(̂t′, s′). (4)

From this relation, one can derive a Schrödinger-like equation which describes the s evolution of

ψ (4):
∂ψ

∂s
=

(

∇2

2
+ f cos θ

)

ψ. (5)

Here ∇2 is the two-dimensional Laplacian on the surface of the unit sphere and cos θ = ẑ · t̂.

Boundary conditions at chain ends

For relatively short DNA molecules, the boundary conditions at the ends of the chain must be con-

sidered (44). The boundary conditions are specified by two probability density functions, ψ(̂t, s = 0)

and ψ(̂t, s = L). Our goal is to use these two constraints and the propagator Z (̂t, s; t̂′, s′) to deter-

mine the total partition function Ztot. Physically, this corresponds to beginning with ψ(̂t, s = 0),

the initial probability distribution for the tangent angle at the s = 0 end of the chain, then apply-

ing the propagator Z (̂tf , L; t̂
i
, 0) to determine the probability distribution at the other end of the

chain. However, the calculated distribution at the end of the chain,
∫

dt̂i Z (̂tf , L; t̂
i
, 0) ψ(̂t, s = 0)

does not necessarily correspond to the specified boundary condition ψ(̂t, s = L). To integrate the

constraint on the tangent vector at s = L with the Markovian relation given by Eq. 4, we project

the s = L probability distribution onto the boundary condition, or, alternatively, imagine propa-
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gating to s = L − ǫ and then demanding that ψ be continuous via a δ function δ(t̂f − t̂′L−ǫ). In

this case we find

Ztot =

∫

dt̂i dt̂f dt̂′ ψ(̂tf , L)δ(t̂f − t̂′L−ǫ)Z (̂t′, L − ǫ; t̂i, 0)ψ(̂ti, 0). (6)

If we perform the integration over t̂′ then we can write the projection as:

Ztot =

∫

dt̂i dt̂f ψ(̂tf , L)Z (̂tf , L; t̂
i
, 0)ψ(̂ti, 0). (7)

In this paper, we will focus on three specific boundary conditions: unconstrained, half-constrained,

and normal, which are sketched in Fig. 4A-C and described in more detail below.

Bead rotational fluctuations

Rotational fluctuations of the bead, inherent in the experiments, can be explicitly included in the

theory. Here we describe the extension due to a bead at one end of the chain, with the other end of

the chain fixed to a surface (the geometry sketched in Fig. 2B; the generalization to consider beads

at both ends of the polymer is straightforward). In this case, the theory predicts the extension to

the center of the bead as measured in the experiments, not just the molecule extension. We assume

that the bead is spherical and the fluctuations in the polymer-bead attachment are azimuthally

symmetric about the ẑ axis.

The unit vector n̂ points from the center of the bead to the polymer-bead attachment, as

sketched in Fig. 4D. Thus the bead’s contribution to the energy of a fluctuation with a given n̂

is FRn̂ · ẑ, where R is the bead radius. Note that the energy is minimized when n̂ = −ẑ, and

for other bead orientations the energy increases. This gives a restoring torque on the bead which

increases as FR increases. We write the rescaled energy including this term as

E = frn̂ · ẑ +

∫ ℓ

0
ds

(

κ2

2
− f ẑ · t̂

)

, (8)
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where r = R/p. The partition function of the chain is

Z =

∫

Dt̂ exp

[

−

∫ ℓ

0
ds

(

1

2
(∂st̂)

2 − f ẑ · t̂

)]
∫

constr
dn̂ exp (−frn̂ · ẑ) , (9)

where the first integral is over all possible paths between the two endpoints of the chain, and the

second integral is over all allowable vectors n̂. Below we evaluate the second integral, thereby

performing the average over fluctuations in n̂.

Mathematical Methods

Here we describe the calculation of the force-extension relation, the main quantity of interest in

single-molecule experiments. We must first calculate the tangent-vector probability distribution

ψ(̂t, s) for all s along the chain. The distribution satisfies Eq. 5 above. This PDE can be solved

using separation of variables in s and t̂, where the angular dependence is expanded in spherical

harmonics (4).

ψ(̂t, s) =
∞

∑

j=0

Ψj(s)Yj0(̂t). (10)

Each value of j corresponds to a different component of Ψ. We assume azimuthal symmetry, so

only the m = 0 spherical harmonics, with no φ dependence, are included. In the basis of spherical

harmonics, the operator in Eq. 5 is a symmetric tridiagonal matrix H with diagonal terms

Hj,j = −
j(j + 1)

2
, (11)

and off-diagonal terms

Hj,j+1 =
f(j + 1)

√

(2j + 1)(2j + 3)
. (12)

The vector of coefficients at point s is given by the matrix exponential of H:

Ψ(s) = esHΨ(0). (13)
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This expression allows us to compute the probability distribution of the tangent vector orientation

at any point along the chain. This result is exact if the infinite series of spherical harmonics is used.

In practice, the series must be truncated for numerical calculations. Our calculations use N = 30

unless otherwise specified.

The partition function is then calculated from the inner product

Z = ΨT (s = ℓ)eℓHΨ(s = 0), (14)

=
∑

j,k

Ψj(s = ℓ)[eℓH ]jkΨk(s = 0). (15)

The extension at a given applied force is

x

L
=

1

ℓ

∂ lnZ

∂f
. (16)

This formula applies for a chain of any length.

Finite-length correction

To calculate the force-extension relation we must determine M = eℓH (Eq. 13 and 15). Because

H includes at least one positive eigenvalue, the entries M grows rapidly with ℓ. This increase can

lead to numerical overflow errors when computing M . However, we are interested not in the entries

of the matrix but in the logarithmic derivative of the partition function, and a rescaling can avoid

the overflow problem.

Let A = eH and denote by λ∗ the largest eigenvalue of A. Then M = Aℓ. If we define A = A/λ∗,

we have M = λℓ
∗
Aℓ. Thus A has eigenvalues with magnitude less than or equal to 1. The partition

function can be written

Z = λℓ
∗
ΨT (s = ℓ)AℓΨ(s = 0). (17)

The logarithm of the partition function is then

lnZ = ℓ lnλ∗ + ln[ΨT (s = ℓ)AℓΨ(s = 0)]. (18)
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In the usual WLC solution, only the first term is considered (4), an approximation which is exact

in the limit ℓ ≫ 1. The second term is the correction to lnZ due to finite-length effects.

Boundary conditions

The boundary conditions at s = 0 and s = ℓ affect the force-extension relation, because they affect

the partition function (Eq. 15). The functional form of a specific boundary condition is given by

the vector of coefficients Ψ(s = 0), which is determined by the projection of ψ(t̂, s) onto spherical

harmonics. To apply different boundary conditions, we simply determine the partition function for

different vectors Ψ(s = 0) and Ψ(s = ℓ) (44).

In this paper, we consider three types of boundary conditions (Fig. 4A-C). First, in the “un-

constrained” boundary condition the tangent vector at the end of the chain is free to point in any

direction on the sphere (in 4π of solid angle, Fig. 4A). In real experiments, however, the boundary

conditions are more constrained. If the polymer is attached to a surface about a freely rotating

attachment point, we might expect “half-constrained” boundary conditions (Fig. 4B), where the

tangent vector at the end of the chain can point in any direction on the hemisphere outside the

impenetrable surface. Half-constrained boundary conditions can be implemented experimentally

with a flexible attachment between the chain and the surface (45). We also consider perpendicular

boundary conditions, where the tangent vector at the end of the chain is parallel to the ẑ axis,

normal to the surface (Fig. 4C).

For the unconstrained boundary condition, ψ(t̂) is independent of cos θ. Therefore Ψj =
∫

d cos θ 1 Pj−1(cos θ), which gives Ψ = (1, 0, · · · , 0). For the half-constrained boundary condi-

tion, Ψj =
∫ 1
0 d cos θ Pj−1(cos θ) and the leading coefficients of Ψ are (1, 0.8660, 0, -0.3307, 0,

0.2073, 0). Finally, for the perpendicular boundary condition Ψj =
∫

d cos θ δ(cos θ− 1)Pj−1(cos θ)

and the coefficients of Ψ are all equal to 1. (Note that for the computation of the force-extension

relation, it is not necessary to properly normalize the probability distribution, because we are com-

puting the derivative of the logarithm of Z. Our expressions for the probability distribution vectors

will neglect the constant normalization factor.)

In our results, we perform some calculations for the one-bead experimental geometry. In this

case, we assume that the s = 0 end of the chain is attached to the surface and the bead is attached
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at s = L.

Bead rotational fluctuations

The bead rotational fluctuations lead to an effective boundary condition (at the end of the poly-

mer) that depends on applied force and bead radius. For the single-bead experimental geometry

(Fig. 2B), Equation 9 gives the partition function of the system including bead rotational fluctu-

ations. We can perform the integral over n̂ to find the probability distribution of t̂(ℓ), that is, is

the effective boundary condition at the end of the polymer. The integral over n̂ is

g(̂t(ℓ), ẑ) =

∫

constr
dn̂ e−frn̂·ẑ. (19)

Because the direction of n̂ is constrained relative to the chain tangent t̂(ℓ), this integral is a function

of t̂(ℓ). By azimuthal symmetry, it depends only on the scalar t̂(ℓ) · ẑ. Accordingly we can express

Eq. 19 in the form g(̂t(ℓ) · ẑ), where g is the probability distribution of tangent angles at s = ℓ.

(Note that we neglect the normalization constant for g.) Expanding in spherical harmonics, we

write

g(̂t(ℓ) · ẑ) = g(cos γ) =
∞

∑

j=0

Ψj(s = ℓ)Yj0(γ). (20)

The effective boundary condition depends on both the applied force and the radius of the bead.

The physical character of the chain-bead attachment determines the constraints in the integral of

Eq. 19, and therefore controls the Ψj .

For the two-bead experimental geometry (Fig. 2C), the partition function includes integrals

over bead rotational fluctuations for both ends of the chain, and the effective boundary condition

applies at both ends of the polymer.

Suppose that the polymer-bead attachment is half-constrained, so the tangent vector is free in

a hemisphere (Fig. 4B). Then the integral of Eq. 19 is constrained by t̂(ℓ) · n̂ < 0, or

g(̂t · ẑ) =

∫

t̂·n̂<0
dn̂ e−frn̂·ẑ. (21)

To evalute the integral, we choose a polar coordinate system where t̂ · ẑ = cos γ, t̂ points along
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the polar axis, and φ = 0 corresponds to the ẑ direction. Therefore ẑ = (sin γ, 0, cos γ), n̂ =

(sin θ cos φ, sin θ sinφ, cos θ), and n̂ · ẑ = sin θ cos φ sin γ + cos θ cos γ. We can then write g in terms

of the Bessel function Jo.

g(̂t · ẑ) =

∫ 2π

0
dφ

∫ 0

−1
d cos θ e−fr(sin θ cos φ sin γ+cos θ cos γ), (22)

=

∫ 0

−1
d cos θ e−fr cos θ cos γ

∫ 2π

0
dφ e−fr sin θ cos φ sin γ , (23)

= 2π

∫ 0

−1
d cos θ e−fr cos θ cos γJo(−ifr sin θ sin γ). (24)

Note that
∫ π

0 exp(z cos x) = πJo(iz), and the integral from 0 to 2π is even about π. We show some

values of this function in Fig. 5 for different applied forces. As expected, for small applied force

and small bead radius, the probability distribution approaches a constant value (independent of

cos γ). However, for large applied force, the probability distribution approaches the half-constrained

distribution one would expect in the absence of bead rotational fluctuations.

Because cos θ is integrated over negative values in Eq. 24, the term e−fr cos θ cos γ diverges as fr

increases. However, we only calculate the dependence of g on cos γ (correct normalization is not

required). Therefore we replace the term e−fr cos θ cos γ in the integral with the term e−fr(cos θ cos γ+1).

To determine the effective boundary condition due to the rotationally fluctuating bead requires

that we expand integrals of the form given in Eq. 24 in spherical harmonics. Direct numerical pro-

jection of the integral onto spherical harmonics leads to large errors, because numerical integration

of rapidly oscillating functions (such as the higher-order spherical harmonics) is inaccurate. To

solve this problem, we used an interpolating basis ((46), section 3.1.4). This allows the coefficients

of the spherical harmonics to be determined by evaluation of Eq. 24 at specific points (correspond-

ing to the zeros of the Legendre polynomials). The integral in Eq. 24 was evaluated numerically

using Gauss-Legendre quadrature.

The effective boundary condition due to bead rotational fluctuations is shown in Fig. 5, where

we plot Eq. 24 for different values of the applied force; the curves are normalized so the curve lies

between 0 and 1 and has mean 0.5. For high applied force, rotational fluctuations require more

energy and large-angle fluctuations are rare. Therefore, in the limit FR → ∞, the probability
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distribution approaches that of the chain-bead attachment (in this case, a step function). However,

for smaller FR, the bead rotational fluctuations “smear out” the probability distribution, making

the effective tangent angle boundary condition approach a constant, independent of cos γ. For

small FR, the boundary condition approximates the unconstrained boundary condition. For large

FR, the effective boundary condition approaches the boundary condition that would occur with

no bead.

Features of the FWLC solution

FWLC predictions converge to WLC predictions as contour length increases

As expected, the FWLC predictions converge to the WLC predictions as the polymer contour

length increases. Figure 6 shows the predicted fractional extension x/L as a function of the chain

contour length L (for fixed applied force). Predictions of the classic WLC solution are independent

of contour length. However, for the FWLC the predicted fractional extension deviates from the

usual WLC prediction for smaller values of L/p. In all cases, the FWLC predictions converge to

the classic WLC results as L/p → ∞.

Fitting FWLC curves to the classic WLC solution gives varying apparent persistence

length

To develop intuition for the differences between the FWLC and the classic WLC solution, we fit

predicted force-extension data (generated with the FWLC) to the WLC solution of Bouchiat et

al. (26). We find that the contour length is typically fit well by the WLC model (Fig. 7), but

a systematic error in the fitted value of the persistence length occurs. The apparent persistence

length decreases with contour length (Fig. 7B) when bead rotational fluctuations are included in

the model, in a manner qualitatively consistent with our experimental observations.

We emphasize that our fitting result is not directly comparable to the fitting of experimental

data, because our simulated “data” are not noisy. However, the qualitatively similar trend in

the apparent persistence length as a function of contour length suggests that the FWLC captures

important physics for relatively short chains.
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FWLC force-extension behavior depends on boundary conditions

We illustrate the force-extension curves for different boundary conditions and L/p = 10 in Fig. 8.

We find that the more constrained boundary conditions lead to the larger changes relative to

the traditional WLC solution: as expected, the more constrained boundary conditions typically

lead to larger extension at low force. Therefore, the force-extension curves for the FWLC with

unconstrained boundary conditions are closest to the classic WLC predictions.

We can use simple entropic arguments to understand the dependence of chain extension on

boundary conditions. When the applied force is low, many different chain conformations are prob-

able. Therefore the boundary conditions and bead rotational fluctuations exert greater influence

on the chain extension. Unconstrained boundary conditions maximize the number of allowable

conformations. In this case the entropy is maximized, and the polymer extension is low: increas-

ing the extension requires excluding many chain conformations, which requires more work. More

constrained boundary conditions restrict the number of conformations that are possible, leading to

lower entropy and therefore a larger extension. At low force, the most constrained boundary con-

ditions typically lead to the largest extension. We illustrate this idea with the limit of a perfectly

rigid rod that is constrained at one end to be perpendicular to the surface. The infinite rigidity

means that the molecule must be perfectly straight. The boundary conditions require that the

polymer take only one conformation, perpendicular to the surface. In other words, the boundary

conditions severely restrict the number of available conformations, and thereby increase the pre-

dicted extension. (If the boundary conditions are unconstrained, the rod rotates to point in many

different directions and its average extension is lower).

Predicted force-extension behavior of a polymer attached to bead(s)

As discussed above and shown in Fig. 5, for small FR the boundary condition with a bead ap-

proaches the unconstrained boundary condition. This typically leads to a smaller extension than

would occur in the absence of a bead. For large FR, the effective boundary condition approaches

the boundary condition that would occur with no bead; therefore there is little difference between

the predicted extension with and without a bead at high applied forces.
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We note that two opposing trends occur as the bead radius varies: when the bead is smaller,

the fractional error made by subtracting R from the measured extension to estimate the molecule

extension is smaller, simply because one is subtracting a smaller value. However, for smaller R the

restoring torque on the bead for a given F is also smaller, which leads to larger angular fluctuations

for smaller beads.

At very low forces, our FWLC solution gives inaccurate predictions, because it does not explic-

itly include the excluded-volume effects between the bead and the wall (47). If the force is very

low, the predicted extension would imply that the bead overlaps with the wall (or the other bead).

Typically we find that applied force > 80 fN is required to prevent predicted bead-wall overlap in

our theory. Although the FWLC does lead to unphysical predictions at very low forces, the simple

model of the bead rotational fluctuations is useful for larger values of the force.

Results and discussion

DNA elasticity analyzed with WLC model

To determine any limitations in the WLC model for shorter chains, we systematically measured the

elasticity of DNA for a broad range of DNA lengths (632 - 7030 nm) using an optical trap (Fig. 9).

DNA molecules were attached to streptavidin-coated cover glass via biotin at one end and to an

anti-digoxigenin-coated polystyrene bead via digoxigenin at the other end. We optically trapped

the bead and moved the anchored end of the DNA relative to the optical trap using a three-axis,

closed-loop PZT stage (Fig. 1). We measured the resulting bead displacement xbd and force (Fx =

ktrap xbd) as a function of distance xDNA along the x-axis. Finally, we calculated the force F and

the molecular extension x along the DNA axis based on the 2D geometry (24). We fit each F vs x

trace to an improved analytic approximation of the WLC model (26). This fit returns three values,

pwlc, L and ∆, where pwlc is the persistence length, L is the contour length and ∆ is the location

of the tether point (Fig. 9A). We then repeated this procedure for many individual molecules at

each length and for nine-different length molecules ranging from 632 to 7030 nm.

Individual measurements of pwlc from different molecules of the same length showed significant

variation (∼7 %) that could mask any dependence of pwlc on L. We attribute the majority of this
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variation in pwlc to variations in the radius (R) of individual beads not to differences in individual

DNA molecules. Thus, individual measurements of pwlc at each length were averaged from more

than 15 molecules; we report the mean and standard error of pwlc at each length.

Having averaged this random error in pwlc, our measurements revealed a substantial variation in

the average value of pwlc with L (Fig. 9), referred to as pwlc hereafter for simplicity. For the longest

chains studied (7030 nm), we measured pwlc to be 50.5 nm. Our determination of pwlc decreased

by 8.5 nm or 17% for a DNA length of 632 nm. Indeed, the rate of decrease in pwlc increased with

decreasing length (Fig. 9C), suggesting that, for even shorter chains, this unphysical reduction in

the persistence length would be even more severe.

We sought an analytic expression to capture the experimentally observed reduction pwlc with

L. Over the range of lengths measured, our data were well modeled by

pwlc =
p∞

1 + (a · p∞)/L
(25)

with p∞ = 51.51 (± 0.31) and a = 2.78 (± 0.12) as shown in Fig. 9C. This formula also enables us to

determine a length-independent persistence length p∞, which is 1.0 nm larger than pwlc determined

for L = 7030 nm. We caution that this experimental definition of p∞ is not based on a theoretical

model and the extrapolation to infinitely long chain has not been experimentally tested for DNA

molecules longer than L = 7030 nm. Nonetheless, it is desirable to have such a length-independent

persistence length; we eliminate the ambiguity of which pwlc to use in calculating the number of

persistence lengths in the molecule (L/p). Using this result, we also plot pwlc vs. L/p∞ (Fig. 9C),

a dimensionless variable that quantifies the finite length of the chain in the statistically relevant

parameter L/p∞ and provides a potential comparison between dsDNA and other macromolecules

described by WLC models (27, 28).

Dependence of pwlc on experimental parameters

Although our FWLC theory model suggests a reduction in pwlc with decreasing L (Fig. 7), we

looked for potential experimental artifacts that could cause this reduction (Fig. 10). First, we

varied the minimum absolute force Fmin used in fitting the data. As shown in Fig. 9A, we typically
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excluded the data closest to the origin due to limitations in the optical trapping geometry (24). This

arbitrary minimum force did not affect our results (Fig. 10); pwlc for two different-length molecules

(666 and 2413 nm) showed less than 1% variation for Fmin ≤ 0.6 pN. Thus, our determination of

pwlc was robust to substantial changes in Fmin.

Next, we varied the maximum force Fmax used in fitting the data. This arbitrary maximum

force did affect our results (Fig. 10B); two different length molecules (666 and 2413 nm) showed

a systematic reduction in pwlc with increasing Fmax. The magnitude of the reduction for the two

different lengths was similar, though with an offset. We quantified this reduction to be -1.8 nm/pN

by fitting the pwlc for the 666-nm data to a line over the measured force range (4-8 pN). Additional

data on a few DNA molecules stretched up to 12 pN suggests a continued linear decrease.

As the focus of this article is on the entropic stretching regime of DNA addressed by the WLC

model, we limited our maximum applied force to 8 pN. Above 8 pN, enthalpic stretching starts

to become increasingly important (24). Yet, the standard WLC model does not include enthalpic

stretching, rather it computes entropic stretching, which, at 8 pN of applied force, leads to an

extension of 95% of the contour length. Adding to a stretch modulus, as is normally done (24), can

lead to unphysically large persistence lengths unless the data is taken to quite high a force. Thus

we limited the applied force to 8 pN. An auxiliary benefit of this moderate maximum force was that

we were able to use smaller beads that in turn reduced the experimental geometric constraints.

To review the geometric constraints of the tethered particle in our optical trapping assay, a

larger lateral displacement from the trap center leads to a larger vertical displacement (24). Small

variations in pwlc with L could also arise from an incorrectly calibrated optical trap and/or an

increasing vertical motion (zbd) of the trapped bead. While zbd is not directly measured, it is

accounted for based on the experimental geometry. To address the first issue, we used a software-

based position clamp (24) that varies the trap stiffness (ktrap) to keep the bead (xbd) at a constant

displacement (xclamp) from the trap center. Keeping the bead at a constant position reduces

possible errors, including non-linearity in the trapping potential, and incorrect position calibration.

Yet, for this position clamp to be beneficial, the linearity of ktrap with laser power Plaser needs

to be excellent. We assured this linearity in ktrap by measuring and actively stabilizing the laser

power (35). The position clamp was active over the force range of 1.2 pN to 8 pN. In addition,
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we sought to minimize zbd in the optical trap by setting xclamp = 40 nm to reduce other potential

artifacts, such as variation in ktrap with zbd. Such an artifact might affect our results because zbd

is dependent on the length of DNA studied; the angle θ increases as L decreases (Fig. 1). Thus it is

noteworthy that measurements of pwlc at different xclamp did not change between xclamp = 30 and

40 nm over the range of lengths studied. This demonstrates that experimentally determined values

of pwlc were robust and not due to a systematic variation in pwlc with L due to trapping geometry.

By reanalyzing all of our data with Fmax = 6 pN, we observed a systematic increase in pwlc

vs. Fmax for all DNA lengths measured (Fig. 10). However, the magnitude of this offset (p6pN
wlc −

p8pN
wlc ) was fixed at ∼3 nm and did not depend on L (Fig. 10D). Thus, our primary experimental

observation of a reduction in pwlc with decreasing L does not depend on Fmax although the absolute

magnitude of pwlc does.

While we did not experimentally change R, we theoretically investigated the effect of bead

size. This analysis, based on elasticity data generated by our finite WLC model that includes

affects of bead size and rotational fluctuations, demonstrates that the predicted F vs. x traces are

insensitive to R over the valid force range (80 fN < F < 8 pN) as shown in Fig. 11. This experimental

(Fig. 10) and theoretical analysis (Fig. 11), along with the aforementioned experimental procedures,

suggests that our observed reduction in pwlc with decreasing L is real. Additionally, two complete,

though initial data sets, taken at separate times using independent calibrations yielded statistically

indistinguishable results for the variation of pwlc with L.

Reduced dependence of p on L using FWLC model

Fitting our elasticity data to the WLC model (Fig. 9C) led to a systematic and unphysical reduction

of pwlc with L. Thus, we developed the finite worm-like chain solution (FWLC) by including three

effects neglected in the classic solution to the WLC: the finite length of the chain, boundary

conditions and bead rotation (see Methods). After incorporating these three corrections, we show

that fitting experimental data to the FWLC model reduced the dependence of p on L by 3-fold

(Fig. 12). The fraction difference in ∆p for the shortest molecules studied (632 nm) decreased

from 18.3 % to 6.8 %, where ∆p = px - p∞ and px is the persistence length determined using
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either the WLC or the FWLC model (Fig. 12), blue and red, respectively). Thus, the FWLC model

provides significantly improved theoretical framework in which to describe the elasticity single DNA

molecules over a broad range of experimentally accessible DNA lengths.

Conclusions

In summary, we have experimentally demonstrated a significant limitation in the classic WLC

solution. The persistence length, one of two required parameters for the WLC model, is a material

property related to bending stiffness and it should not depend on length. Yet, for DNA molecules

of even moderate length (L = 1300 nm, L/p∞ = 25), elasticity data analyzed with the classic

WLC model show an unphysical reduction of pwlc by 10 %. Moreover, many recent single molecule

experiments use significantly shorter double stranded nucleic acids because of the increased signal-

to-noise for resolving small, even 1 bp motion (25, 33). Yet, within the context of the WLC model,

our data shows that using shorter molecules lead to unwanted systematic errors as the rate of

fractional error in pwlc is rapidly increasing with decreasing length.

Thus, we developed the finite worm-like chain theory (FWLC) to predict the elasticity behavior

of polymers over a broad ranging of experimentally accessible length, including very short polymers

(L/p = 1-10) . In addition to overcoming the standard assumption in the WLC solution - a very

long polymer (L/p → ∞) - our model incorporates two additional corrections to the WLC solution:

(i) chain-end boundary conditions and (ii) bead rotational fluctuations. By fitting experimental

elasticity data with FWLC model, we find a 3-fold reduction in the apparent decrease of p with L.

While this 3-fold improvement is significant and validates the FWLC incorporates the most-

important, previously neglected physical effects, there is a still a small residual dependence of p on

L. This discrepancy suggests the need to incorporate additional elements in future work beyond

those already included in our model. For instance, in our experiments, the DNA molecule is pulled

at an angle θ relative to the surface (Fig. 1) though we theoretically model the DNA as being pulled

vertically upward (Fig. 2B).

Another class of potential physical effects becomes important at low forces, including the chain-

chain, chain-wall, chain-bead, and bead-wall steric interactions. In our current calculations, we
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needed to apply ∼80 fN to keep the average position of the bead from physically overlapping with

the cover slip. We expect such terms to be most important at very low (F < 100 fN) or zero applied

force. Interpretation of “zero force” experiments, such as the popular tethered particle assay, is

becoming increasingly sophisticated as theoretical work shows the presence of a small, but non-zero

entropic force (∼100 fN) (47). This previously unrecognized force can lead to alteration in kinetics

of DNA looping (48). However, this theory uses the classic WLC model to model and to interpret

experimental data. Our study shows that use of the WLC model may be a significant limitation,

since most DNA looping experiments use short DNA molecules (L ≤ 300 nm) (49). Thus, we

expect that incorporation of the FWLC into this existing intellectual framework (47) will lead to

further refinement in the interpretation of tethered particle data.

Our model has an important and testable prediction: the determination of pwlc with different

trapping geometries should lead to different results. We report pwlc vs. L for the popular, surface-

coupled optical trapping assay where the DNA molecule is attached at one end to a bead (Fig. 1).

We predict that similar experiments conducted with a dual-bead, dual trap assay should lead to

an even larger unphysical decrease in pwlc with L, than seen in our experiments (Fig. 2). This

prediction highlights the importance of correctly modeling the whole experiment (Fig. 2B and C)

rather than simply the elasticity of an isolated DNA pulled directly across its ends (Fig. 2A).

In addition to the FWLC model’s improved description of the polymer elasticity, our model

provides a clear answer to an important problem in experiments that use short polymers; the

observed decrease in pwlc with L is neither a failure in experimental calibrations nor multiple

polymers attached to a single bead. Rather, it is a limitation in the WLC theory. Our results

should give assurance to experimentalists who use pwlc to screen bead-DNA complexes for single

rather than multiple DNA molecules attachment. While a 50 % decrease in pwlc is the hallmark

of two side-by-side DNA molecules attached to a single bead, a 20 % decrease was difficult to

interpret. The origin of this decrease is now explained and the experimentalist is free to study such

a molecule with confidence.

Overall, the FWLC provides a single theoretical model to analyze single molecule experiments

over a broad range of experimentally accessible lengths. The FWLC will lead to more accurate and

precise work with shorter polymers and thereby facilitate future discoveries in nucleic acid-enzyme
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interactions. Moreover, by elucidating the origin of a significant error in interpreting DNA elasticity

(18 % for L = 632 nm), our work should aid in the adoption of DNA as a molecular force standard

(50).
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Figure Legends

Figure 1.

Cartoon illustrating the experimental geometry (not to scale). A DNA molecule (green) is linked

at one end to a surface. The opposite end of the DNA is attached to a bead held in an optical trap

(orange). The trap center is offset a lateral distance xDNA from the surface attachment point. The

bead displacement in both axes (xbd and zbd) is measured from the center of the trap (dashed line)

to the center of the bead (solid line). The vertical distance of the trap center from the surface is

htrap. The extension, x, of the DNA along the stretching axis can be determined from the geometry

(24)

Figure 2.

Sketch of idealized experimental geometries for single-molecule force experiments with nucleic acid

polymers. The total molecule extension is x. (A) Idealized pulling geometry in which force is

applied directly to the ends of the molecule. (B) One-bead geometry. The molecule is attached at

one end to a surface (glass slide or coverslip) and at other end to a bead. Force is applied to the

center of the bead. (C) Two-bead geometry. The molecule is attached at both ends to beads.

Figure 3.

Variables used to describe chain conformations. Force is applied in the ẑ direction. The arc length

along the chain is s, and the vector r(s) = (x(s), y(s), z(s)) is the coordinate of the chain at arc

length s. The vector t̂(s) is the unit vector tangent to the chain at s.

Figure 4.

Sketch of the boundary conditions. (A) Unconstrained boundary conditions. The tangent vector

at the end of the chain (short arrow) point in all directions relative to the direction of applied force

(notched arrowhead) with equal probability. (B) Half-constrained boundary conditions. Due to

a constraint (such as the presence of a solid surface normal to the direction of applied force) the
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tangent vector at the end of the chain can point only in the upper half-sphere. (C) Perpendicular

boundary conditions. The tangent vector is constrained to point only normal to the surface in

the direction of the applied force. [Note that the boundary conditions are necessary for both ends

(s = 0 and s = L) of the chain.] (D) Variables used to describe bead rotational fluctuations. The

vector n̂ points from the center of the bead to the polymer-bead attachment. The angle θ between

the ẑ direction and the bead-chain attachment is defined by cos θ = −n̂ · ẑ. The angle γ is defined

by cos γ = t̂(L) · ẑ, where t̂(L) is the tangent vector at the end of the chain. The bead has radius

R.

Figure 5.

Effective chain-end boundary conditions induced by bead rotational fluctuations. The unnormalized

probability density g(t̂·ẑ) is shown versus cos γ = t̂·ẑ for a bead of radius R = 250 nm. The different

curves correspond to different values of the applied force. In this calculation the attachment of the

chain to the bead is half-constrained: in the absence of bead rotational fluctuations, the probability

density is zero for cos γ < 0 and constant for cos γ > 0. This step function is approached for large

force. For smaller values of FR the probability density is smeared out, and approaches a constant

value (independent of cos γ).

Figure 6.

Convergence of the FWLC-predicted extension to the classic WLC prediction for large L. The

predicted fractional extension x/L is shown as a function of the contour length L (at fixed applied

force). The different curves correspond to different theoretical assumptions: (i) the classic WLC

solution, calculated using the method of ref. (4), (ii) the FWLC with unconstrained boundary

conditions at both ends of the chain, (iii) the FWLC with half-constrained boundary conditions at

both ends of the chain, and (iv) the FWLC with perpendicular boundary conditions at both ends

of the chain (see Fig. 4). The different panels show different applied forces: (A) 0.1 pN, (B) 1 pN.

The polymer persistence length is p = 50 nm. Note that the WLC prediction is independent of

contour length, and the FWLC predictions converge to the WLC prediction as L increases. The
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convergence occurs more quickly for higher applied force (note different y-axis scales for different

panels). For low applied force, the more constrained boundary conditions lead to larger predicted

fractional extension (see text).

Figure 7.

Results of fitting FWLC model predictions to the classic WLC solution. The fitted value of the

persistence length p∞ is shown as a function of contour length L. The polymer persistence length is

p = 50 nm. (A) No bead. The different curves correspond to the unconstrained, half-constrained,

and perpendicular boundary conditions at both ends of the chain. The apparent p decreases most

for the half-constrained boundary conditions. The apparent persistence length decreases by more

than 10 nm as L decreases from 105 to 100 nm. (B) One or two beads attached to the chain ends,

with half-constrained boundary conditions at both ends of the chain.

Figure 8.

Force-extension curves predicted by the FWLC model for L = 500 nm (L/p = 10) and different

boundary conditions. The different curves correspond to the classic WLC solution and the FWLC

with unconstrained, half-constrained, and perpendicular boundary conditions at both ends of the

chain. The predicted extension for all boundary conditions converges at high force. For low applied

force below 80 fN (gray shade), the more constrained boundary conditions lead to larger predicted

extension though our model may not adequately address steric interactions at these forces (see

text).

Figure 9.

Experimental elasticity results. (A) Elasticity measurement of the 864-nm long DNA tether (ma-

genta) stretched up to 8 pN in the positive and negative direction. A fit to the WLC model (black)

returns three values, pwlc, L and ∆, where pwlc is the persistence length, L is the contour length

and ∆ is the location of the tether point. For the trace shown, the fitted values were 45.0 (± 0.6),

-0.2 (± 0.1) nm and 863.0 (±0.4) nm respectively. Data near the origin (1.2·R) is not used in the
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analysis due to experimental geometric constrains, where R is the radius of the trapped bead. (B)

Force-versus-extension traces for a range of DNA lengths, 632 nm (lt. blue), 666 nm (lt. green),

756 nm (gold), 864 nm (magenta), 1007 nm (blue), 1514 nm (green), 2013 nm (orange), 2413 nm

(purple), and 7030 nm (wine). Only the positive portion of the full records is shown for clarity.

(C) Persistence length (mean ± S.E.) as a function of DNA length (top axis). The fit (green line)

represents an empirical approximation to the experimental data over the range of DNA lengths

studied where pwlc = p∞/(1 + a · p∞/L) and yielded a persistence length (p∞; dashed line) of

51.5 nm for an infinitely long DNA molecule. Analytical continuation of this curve outside the

experimentally tested length range is shown (dotted line). Since pwlc depends on L, we plot the

pwlc as a function of the number of persistence lengths (L/p∞) by using the length-independent p∞

(bottom axis).

Figure 10.

Dependence of pwlc on experimental parameters (A) Percent variation in persistence length (∆p/p0);

mean ± S.E.) as a function of minimum force Fmin used in fitting the data for two different DNA

length, 666 nm (magenta) and 2413 nm (purple) where ∆p = p0−pF and p0 is the pwlc determined

from fitting all of the data and pF is the pwlc determined from the fit after excluding data below

an absolute value Fmin in both the positive and negative direction. (B) Variation in persistence

length (mean ± S.E.) as a function of highest force (Fmax) used in fitting the data for two different

DNA length, 666 nm (magenta) and 2413 nm (purple). A linear fit (dashed line) to the data yields

a dependence of pwlc on Fmax of -1.8 nm/pN. (C) Persistence length (mean ± S.E.) as function of

DNA length at two different Fmax (6 and 8 pN) shows a systematic offset (as described in B). (D)

The difference between the two traces in panel C shows a constant offset, suggesting the observed

reduction of pwlc as a function of L is robust, although its absolute magnitude depends on Fmax.

Figure 11.

Force-extension curves predicted by the FWLC model for L = 500 nm (L/p = 10) with one bead.

We implemented half-constrained boundary conditions at both ends of the chain but included bead



Elasticity of short DNA molecules 34

rotational fluctuations. The predicted molecular extensions, x (after the bead radius has been

subtracted) agree with the no-bead prediction for large force, but decrease more rapidly as the

force decreases. Such reduction in x becomes more significant for bigger sized bead: The extensions

of two different beads (R = 100 and 250 nm) are indistinguishable over the theoretically valid force

range (80 fN < F < 8 pN). Below 80 fN (gray shade), the predicted x for R = 250 nm bead

decreases faster than x for R = 100 nm bead.

Figure 12.

Comparison between finite and classic WLC model. (A) Persistence length determined by fitting

experimental data to the classic WLC model (pwlc, red) and the finite WLC model (pfin, blue) as a

function of DNA length. (B) Fractional error in the fitted p from p∞ showing a ∼3-fold reduction in

the length dependence of pfin as compared to pwlc. Ideally, p, an intrinsic property of the molecule,

would be independent of L. Error bars represent the standard error in the mean.
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