
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

3-2015

MAGICCARPET: Verified Detection and Recovery for Hardware-MAGICCARPET: Verified Detection and Recovery for Hardware-

based Exploits based Exploits

Cynthia Sturton

Matthew Hicks

Samuel T. King

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Cynthia Sturton, Matthew Hicks, Samuel T. King, and Jonathan M. Smith, "MAGICCARPET: Verified
Detection and Recovery for Hardware-based Exploits", . March 2015.

MS-CIS-15-04

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/1014
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_reports%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_reports%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/1014
mailto:repository@pobox.upenn.edu

MAGICCARPET: Verified Detection and Recovery for Hardware-based Exploits MAGICCARPET: Verified Detection and Recovery for Hardware-based Exploits

Abstract Abstract
Abstract—MAGICCARPET is a new approach to defending systems against exploitable processor bugs.
MAGICCARPET uses hardware to detect violations of invariants involving security-critical processor state
and uses firmware to correctly push software’s state past the violations. The invariants are specified at
run time. MAGICCARPET focuses on dynamically validating updates to security-critical processor state. In
this work, (1) we generate correctness proofs for both MAGICCARPET hardware and firmware; (2) we
prove that processor state and events never violate our security invariants at runtime; and (3) we show
that MAGICCARPET copes with hardware-based exploits discovered post-fabrication using a combination
of verified reconfigurations of invariants in the fabric and verified recoveries via reprogrammable
software. We implement MAGICCARPET inside a popular open source processor on an FPGA platform.
We evaluate MAGICCARPET using a diverse set of hardware-based attacks based on escaped and
exploitable commercial processor bugs. MAGICCARPET is able to detect and recover from all tested
attacks with no software run-time overhead in the attack-free case.

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
MS-CIS-15-04

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/1014

https://repository.upenn.edu/cis_reports/1014

Technical Report - 2015

MAGICCARPET: Verified Detection and
Recovery for Hardware-based Exploits

Cynthia Sturton and Matthew Hicks and Samuel T. King and Jonathan M. Smith

Abstract—MAGICCARPET is a new approach to defend-
ing systems against exploitable processor bugs. MAGIC-
CARPET uses hardware to detect violations of invari-
ants involving security-critical processor state and uses
firmware to correctly push software’s state past the viola-
tions. The invariants are specified at run time.

MAGICCARPET focuses on dynamically validating up-
dates to security-critical processor state. In this work, (1)
we generate correctness proofs for both MAGICCARPET
hardware and firmware; (2) we prove that processor state
and events never violate our security invariants at run-
time; and (3) we show that MAGICCARPET copes with
hardware-based exploits discovered post-fabrication using
a combination of verified reconfigurations of invariants
in the fabric and verified recoveries via reprogrammable
software.

We implement MAGICCARPET inside a popular open
source processor on an FPGA platform. We evaluate
MAGICCARPET using a diverse set of hardware-based
attacks based on escaped and exploitable commercial
processor bugs. MAGICCARPET is able to detect and
recover from all tested attacks with no software run-time
overhead in the attack-free case.

I. INTRODUCTION

Secure systems exactly meet expectations. Software sys-
tems, even those intended to be fault-tolerant or secure,
trust in hardware to provide certain security properties.
In an ideal world we might prove that a processor
satisfies all of these properties for all possible traces
of execution. An example property that we expand on
in the paper is privilege escalation will not occur. In
the real world, while such a proof is critical, it remains
infeasible. Current approaches to verifying hardware
include:
(1) Full functional verification: the processor imple-
mentation is formally verified against its specification.
Formal verification of hardware is a mature field and
hardware companies perform extensive verification of
hardware modules [14], [56], [45]. However, complete
verification of a modern processor remains intractable.
Statically verifying that, for example, hardware privilege
escalation will never occur is beyond the reach of the
state of the art in formal verification.
(2) Testing: extensive test suites are run against the
processor. Today, bugs in the hardware that leave it
vulnerable [3], [64], [65] still elude such tests. For
example, the errata document for Intel’s Core 2 Duo

processor family [5] contains information on 129 known
bugs.

To protect software from exploitable processor bugs
left behind by conventional, design time verification we
propose a reconfigurable run-time verification system
named MAGICCARPET. MAGICCARPET is a new and
effective approach to verifying security properties in
hardware. Instead of verifying that a property holds
for all executions, MAGICCARPET introduces a monitor
that detects when the current execution violates the
property. The monitor is small, simple, and most im-
portant, verifiable. Property violations trigger a switch
of execution to our small, verified simulator to allow
the processor to make forward progress securely.

A sketch of the verification approach is to build a
provably correct reference monitor and prove that for all
possible traces of execution a violation of the security
property of interest will be detected, independent of how
the violation occurs or what the root cause is; that is,
any trace violating the property will be detected at the
point of violation. Significantly, MAGICCARPET also
demonstrates a provably correct way to make forward
progress once a violation is detected.

The benefits of this approach are: (1) we can make
guarantees that a security-critical property will not be
violated, (2) we can precisely state what guarantees are
achieved, and (3) the verification task becomes feasible.

The drawback of this approach is that it can not
promise that there is no exploitable logic in the pro-
cessor, but can promise that any security consequences
are limited by the properties being monitored.
The paper presents five contributions:

• MAGICCARPET, the first configurable defense
strategy against exploitable processor defects

• An hardware implementation of MAGICCARPET
and an evaluation that shows MAGICCARPET’s
effectiveness against escaped exploitable bugs from
commercial processors

• Automated, formal verification of the invariant
monitor hardware

• Automated, formal verification of the recovery
firmware

• Automated monitor generation and validation to
reduce the threat of misconfigurations

Software

Recovery

(a) (b) (c) (d)

design time run time

ISA
state

ISA
state

ISA
state

Assertions

Exception

ISA
state

Assertions

Figure 1: Processor design flow with MAGICCARPET: (a) Hardware description
language implementation of the instruction set, with unintentional bugs. (b)
Malicious designer adds intentional errors to the processor. (c) MAGICCARPET
is added to the design as the last action [62], with taps directly on the outputs of
ISA state storing elements. (d) MAGICCARPET dynamically verifies properties
encoded into the fabric, triggering the recovery firmware in the event of a
violation.

II. THREAT MODEL
A. Lifecycle assumptions
Referring to Figure 1, we assume we are the last ones
to touch the processor design, our reference monitor
(see Section IV) is inserted into the design and it is
not tampered with. The trusted computing base for
MAGICCARPET includes the specification and verifica-
tion process and tools, the fabric configuration, and the
hardware tools.

B. Architectural assumptions
We assume that the ISA specification is correct [21], as a
basis for trust is needed by MAGICCARPET. We assume
that any hardware modifications or errors exhibit their
effects at the ISA level to enable runtime exploitation
by the attacker, since the ISA is the processor’s interface
to software. We require that MAGICCARPET has an
uncorrupted view of committed ISA-level state. We
start from the assumption that it is possible to verify
the correctness of an ISA-level state transition using
only the current ISA-level state and the instruction. We
discuss the limits of this assumption in section VIII.
Finally, the focus of our work is the integer core of the
processor; we assume the memory hierarchy is correct.

C. Firmware assumptions
MAGICCARPET’s recovery firmware has six phases
(shown in Figure 2): entry; clean-up; fetch; decode;
recode and execute; and exit. While we use formal
verification to prove some aspects of the firmware, other
portions are not amenable to formal verification or are
better addressed through functional verification. As de-
scribed in Section VI-E, we formally verify our recode
routines and the instruction decomposition aspects of
the decode phase. In addition to what we formally ver-
ify, we rely on MAGICCARPET invariants to validate the
execution of our recoded routines. Therefore, we must
trust the entry and exit routines, the clean-up routines,
and the unverified parts of the decode logic. We provide
details of these assumptions in Section VI-F. This paper

focuses on the core of the processor, so errors that can
affect the fetch phase of the recovery firmware are out of
scope; thus we trust that the simulator correctly fetches
the software-level instruction.

Software
Stack

Recovery
Firmware

Assertion violated

return to software

entry exit

Time

exception

fetch
and

decode

recode
and

execute

Figure 2: Recovery in MAGICCARPET: A property violation invokes the recov-
ery firmware. Recovery is a repeated process of fetching an instruction from
software, decoding it, recoding it, and then executing the recoded instruction
stream. The recovery firmware returns control back to software when it reroutes
execution around the exploitable defect. The green/light portions of the recovery
firmware’s execution are formally verified, while the red/dark portions are not.
The fabric monitors the firmware’s execution.

D. Attacker model
The attacker is free to take any actions not precluded
by our assumptions, either in hardware or in software.
This includes an attacker capable of creating and/or
exploiting a hardware defect to overcome software
protections, such as access controls. An example would
be a defect that causes the processor to return from an
exception without restoring the privilege level.

Note that exploitable processor bugs are both uninten-
tional [24] and intentional [30], [36]. Our threat model
includes both sources and our approach is oblivious to
intent as MAGICCARPET looks only at effect.

III. MAGICCARPET OVERVIEW
MAGICCARPET is a combined hardware/software sys-
tem for protecting software from exploitable defects in
deployed processors. MAGICCARPET enforces security
invariants, which are properties of the ISA necessary
to ensure the security of software running on the pro-
cessor. An example invariant that we will return to
is that “the processor transitions from user mode to
supervisor mode if, and only if, there is an interrupt
or exception.” Any processor implementation that meets
the specification must satisfy this property. Proving that
this property holds for an implementation requires a
proof across all possible execution traces—currently an
intractable task. To sidestep the daunting complexity of
the task, we introduce a small, verified monitor that dy-
namically verifies security properties: MAGICCARPET
verifies only the current execution. Needing to respond
to new threats, we implement the security invariants
on a reconfigurable assertion fabric. To handle the rare
case of an invariant violation, we provide a verified
firmware that attempts to transform software’s execution
to circumvent the defect. Four key principles guide our
design:

2

Recovery
Firmware

Software

Processor

Assertions

Exception
support

1

2

3

4

Figure 3: Detection and recovery in MAGICCARPET: 1) Software runs while
assertions implemented in verified hardware check the processor’s state for
specification violations; 2) A violation triggers an exception; 3) In-flight
contaminated state is flushed and control passes to verified recovery firmware;
4) The ISA-level state is backed up, and firmware fetches, decodes, recodes,
and executes a software simulation, then loads updated ISA-level state from the
simulation into the processor and returns from the exception.

1) Formally verify added components. MAGICCAR-
PET should protect against processor vulnerabilities
without adding new ones.

2) Maintain current instruction set architecture (ISA)
abstractions. MAGICCARPET should fix processor
imperfections transparently to existing software.

3) Keep the common case fast. MAGICCARPET
should only add overhead in the rare case that a
processor violates one of MAGICCARPET’s secu-
rity invariants.

4) Make adoption practical. MAGICCARPET’s design
and implementation should work well with current
industry standards, and should be open source to
facilitate adoption.

As shown in Figure 3, MAGICCARPET’s hardware
monitors security invariants and triggers firmware to
recover from violations detected at run-time. MAGIC-
CARPET hardware consists of a set of assertions on
architecturally visible states and events. This approach
allows MAGICCARPET hardware to track security in-
variants that are high-level enough to make expressing
and reusing security invariants easy, but sufficiently
low-level to catch violations effectively and efficiently.
MAGICCARPET firmware is a software layer interposed
between the processor and the software stack. MAGIC-
CARPET hardware invokes the firmware when it detects
a violation. The firmware takes control of the processor,
simulating, in software, the necessary ISA-level state
transitions. This approach allows the processor to make
correct forward progress without affecting upper layers
of software.

A. Running example
Security invariants are statements of properties of the
ISA that must be true of a secure implementation. In
the MAGICCARPET design, invariants are dynamically
verified by one or more assertions over architecturally
visible state.

Consider the following component of the example
security invariant from Section I: I0

.
= A change in

processor mode from low privilege to high privilege is
caused only by an exception or a reset.

Invariant I0 is a statement that the instruction set
specification says must be true of the system at all points
of execution.
I0 can be written as a concrete assertion in terms of

the ISA-level state in the following way:
A0

.
= assert(risingEdge(SR[SM]) → (NPC[31 : 12] = 0) ∧

risingEdge(SR[SM]) → (NPC[7 : 0] = 0) ∨
risingEdge(SR[SM]) → (reset = 1)),

where SR[SM] represents the supervisor mode bit
of the processor’s status register, and an exception is
indicated by the next program counter, NPC, pointing
to an exception vector start address. The address will
always be of the form 0x00000X00 (the “X” indicates
a don’t-care value).1

We break A0 into three component assertions:
Aa

.
= assert(risingEdge(SR[SM]) → (NPC[31 : 12] = 0))

Ab
.
= assert(risingEdge(SR[SM]) → (NPC[7 : 0] = 0))

Ac
.
= assert(risingEdge(SR[SM]) → (reset = 1))

Each of these individual assertions are evaluated at
each step of execution and the results are appropriately
combined to form a statement that is equivalent to A0.
This example continues in Section IV-A.

B. MAGICCARPET components and interactions
MAGICCARPET components and their interactions are
shown in Figure 3. Software executes normally on the
processor while assertions implemented in hardware
check the processor’s state for specification violations.
The assertions verify that a proposed ISA-level state
update is valid given the instruction and the current
(already verified) ISA-level state. If the proposed state
is valid, no assertions fire, the processor is allowed
to commit the proposed state to the ISA level, and
execution continues. On the other hand, if an assertion is
violated, MAGICCARPET triggers an exception causing
any contaminated in-flight state to be flushed, and the
recovery firmware to take control.

The recovery firmware backs-up the current archi-
tecturally visible state of the processor; these are the
registers describing the current state of execution of
the software. The firmware performs any additional
ISA-level state clean-up which is invariant specific.
After the firmware creates a consistent state, it fetches

1This might seem as if it leaves the door open for a processor attack
that escalates privilege while executing at an address that matches the
form 0x00000X00, but it does not. Pages in that address range have
supervisor permissions set which implies that code executing in that
address range is already in supervisor mode. If the processor attack
attempts to allow user mode execution of supervisor mode pages,
MAGICCARPET includes an invariant to detect such misbehavior.

3

ISA-‐level	 State	 NPC	 INSN	 PC	

Rou1ng	

Logic	

Merge	

Assert	

Logic	 Logic	

Assert	

Logic	 Logic	

Assert	

Logic	

…

32-‐bits	

32-‐bits	

Config	

Config	

Config	

out	

Config	

Figure 4: MAGICCARPET fabric: the Routing block sends ISA-level state
elements to the Logic blocks; the Logic blocks condense multi-bit state and
constant inputs down to a single bit output that is sent to the Assert block;
the Assert block compares the previous value of its inputs to the current value,
outputing the result as a one bit value to the Merge block; the Merge block
combines the Assertion block results to form a higher-level result that indicates
if the programmed invariants still hold; this result is tied to the processor’s
exception generation logic.

the instruction pointed to by the software’s PC at the
time of the assertion violation, then decodes, recodes,
and executes the instruction, updating the saved state
of the software. This process of fetch, decode, and
recode and execute is repeated until execution passes the
vulnerable state or transition. At that point, the recovery
firmware loads the updated architecturally visible state
of the software layer back into the processor and passes
control back to the software layer. Figure 2 highlights
how MAGICCARPET’s recovery mechanism operates.
The entire process is transparent to the software layer,
which remains unaware of any processor vulnerabilities
or protections.

One key aspect of the recovery firmware is that it sim-
ulates instructions using a different sequence of instruc-
tions to avoid re-triggering the imperfection, similar to
BlueChip [33]. For example, MAGICCARPET simulates
multiply instructions using shifts and adds. However,
MAGICCARPET improves on BlueChip by using proof-
based program verification to formally verify the cor-
rectness of this recoding. In addition, MAGICCARPET
runs as an invisible firmware layer beneath the system
software, which is a stark contrast to the BlueChip
model of modifying the operating system and enables
MAGICCARPET to protect any operating system and
application without modification.

IV. DESIGN
MAGICCARPET has two main components: the invariant
monitor, and the recovery mechanism. The invariant
monitor is implemented in hardware and is responsible
for detecting violations of ISA state invariants. Should
it detect such a violation, it issues an exception that
causes control to pass to the recovery mechanism. The

SR	 RESET	 NPC	

SR[SM]	

out	 :=	 (a	 ∨	 b)	 ∧	 c	

risingEdge(p)	 ∧ 	 ~q	

NPC[31:12]	 ==	 0	 SR[SM]	 NPC[7:0]	 ==	 0	 SR[SM]	 Reset	

out	

risingEdge(p)	 ∧ 	 ~q	 risingEdge(p)	 ∧ ~q	

p	 p	 p	 q	 q	 q	

a	 b	 c	

Figure 5: Fabric configured with a macro assertion that detects incorrect
privilege escalations.

recovery mechanism is implemented in software; its role
is to allow the processor to make safe forward progress.

A. Invariant monitor
Previous work [34] shows that it is possible to use low
cost ISA-level assertions as security invariant monitors.
In that work, the assertions are “baked-in” to the pro-
cessor. The problem, as pointed out by the authors, is
that baking-in the assertions makes it impossible for
users to add new invariants in response to vulnerabilities
discovered post-deployment. This limitation makes the
approach incomplete given an adversarial threat model.
In fact, the authors point out that almost 30% of the
processor vulnerabilities escaped the first version of
their system. Given this, it is clear that the adversarial
threat model of this paper demands a more flexible
approach. Thus, in MAGICCARPET, we build a run-
time reconfigurable invariant fabric (we call it the
configurable assertion fabric) that allows the addition
of new assertions to MAGICCARPET post-deployment.

The configurable assertion fabric, depicted in Fig-
ure 4, reads in ISA-level state and outputs a signal indi-
cating whether any of the programmed invariants were
violated. The configurable assertion fabric is essentially
a programmable finite state machine. The configuration
data programs the machine with which invariants to
check and the ISA-level state acts as the input to
the machine. The number of invariants it can monitor
concurrently depends on the complexity of the associ-
ated component assertions and the number of assertion
blocks built into the configurable assertion fabric. The
modularity of the configurable assertion fabric makes it
possible for us to provide a tool that takes a number
of assertions and automatically generates a hardware
implementation of the configurable assertion fabric.

Using the example assertions of Section III-A, we
now describe each module in the configurable assertion
fabric, shown in Figure 5. In our system, we refer to

4

ISA State Description Bits
PC Program counter. 32
INSN Current instruction. 32
PPC PC of last committed instruction. 32
NPC PC+4. 32
EAR Effective address register, saved upon exception. 32
SR Status/Supervision register. 17
ESR SR at the time of an exception. 17
EPC PC at the time of an exception. 32
IMMU SXE Instruction page is supervisor mode and executable. 1
MMU UXE Instruction page is user mode and executable. 1
MMU EN Instruction MMU enabled. 1
GPR WR General purpose registers are write enabled. 1
GPR ID GPR written to. 5
GPR DATA Data written to the GPR. 32
DADDR Address of data coming into CPU. 32
DATA Data coming into CPU. 32
OPB Operand B from instruction: OP target, OPA, OPB. 32

Table I: The ISA-level state available to the Routing block.

Aa, Ab, and Ac as component assertions, and A0 as
simply an assertion. The difference being that Anumber

is the implementation of an invariant (a combination
of component assertions), where Aletter represents a
component assertion (corresponding to one assertion
block in the configurable assertion fabric).

Routing: The Routing block is responsible for feeding
the desired ISA-level state to the Logic blocks. The
configuration data determines what state element gets
routed to which Logic block. Table I lists the ISA state
that is available to the Routing block. To accommodate
arbitrary outputs, each Routing block output is 32-bits
wide, with zero padding as required. In our running
example, SR[SM] is output to Logic blocks 0, 2, and
4; NPC is output to Logic blocks 1 and 3; and reset
is output to Logic block 5—as shown in Figure 5.

Logic: Each Logic block implements a configurable
comparator operator. Given two inputs A and B, the
configuration data can select one of the comparison
operators in {=, 6=, <,≤, >,≥}. Additionally, the con-
figuration data can choose to mask off some portion of
A or B, or both, or it can substitute a constant value
for the value in B. Returning to our running example,
Logic block 1 will evaluate NPC&0xfffff000 = 0
and output the result; Logic block 3 will evaluate
NPC&0x000000ff = 0 and output the result; and
Logic block 5 will evaluate reset = 1 and output
the result. Logic blocks 0, 2, and 4 will evaluate
SR[SM] = 1 and output the result.

Assert: The Assert block implements component as-
sertions of the form p → q, possibly across several
clocks cycles (e.g., if p is true then 3 cycles later, q
is true). If it is ever the case that p is true while q
is false, the assertion is triggered and the output of
the Assert block will be high. In our example, each
of Aa, Ab, and Ac are implemented in their own Assert
block. In our fabric, the consequent, q, is always a
combinational proposition over ISA state at a single
step of execution: it is stateless and is given by the
current value sent by the Logic block. However, the
antecedent, p, can be a sequential proposition over ISA

state: it is potentially stateful, possibly depending on
previous values sent from the Logic block. For example,
the individual assertions in our example all have the
antecedent risingEdge (SR[SM]). This proposition is
true at time t if and only if SR[SM] is low at time
t − 1 and high at time t. The Logic block will output
a signal that is high whenever SR[SM] is high and
the Assert block will determine when a rising edge of
SR[SM] is seen. Our fabric allows antecedents in one
of three forms: p ∈ {True,¬st−1 ∧ st, st−n}. In other
words, p can be defined as True, in which case the
assertion will trigger whenever q is false; or p can be
defined to be the rising edge of some ISA state s; or p
can be defined to be the value of ISA state s at time
t− n, where n is also configurable.

The Assert block uses industry standard OVL asser-
tions [29], [6], widely used during testing and sim-
ulation of hardware designs. OVL has a variety of
constructs, ranging from simple combinational asser-
tions to complex, stateful assertions. The configurable
assertion fabric uses only four OVL assertions and our
experiments show that these are sufficient to implement
all 18 of the invariants used in our evaluation. The
assertions are:

• always(expression): expression must always be true
• edge(type, trigger, expression): expression must be

true when the trigger goes from 0 to 1 (type =
positive)

• next(trigger, expression, cycles): expression must
be true cycles instruction clock ticks after trigger
goes from 0 to 1

• delta(signal, min, max): when signal changes
value, the difference must be between min and
max, inclusive

Merge: The Merge block takes the outputs from
the Assert blocks and combines them as prescribed
by the configuration data. The merge block is a con-
figurable truth table. The inputs to the truth table are
the Assert block outputs, e.g., the component assertions
Aa, Ab, and Ac in our running example. The function
defining how the component assertions combine (i.e.,
the out function) is configurable at run time. In our
implementation, to reduce scaling issues, the truth table
is implemented as a hierarchy of look-up tables. For
example, with 16 Assert blocks, rather than a single
look-up table with 216 rows, the fabric would have 4
look-up tables with 6 inputs (26 rows) each. The outputs
of the 3 first-level look-up tables make up the input to
a second-level look-up table, the output of which is the
output of the Merge block.

We can now complete our running example. Let erra

be the output of the Assert block for Aa, and let err b

and err c be the output of the Assert blocks for Ab and
Ac, respectively. Remembering that the output of each
Assert block will be high when the assert triggers, i.e.,

5

when the invariant is violated, we combine the results
of the component assertions in the following way.

err0 = (erra|err b)&err c

As desired, err0 will be high whenever A0 is false, i.e.,
whenever the A0 assertion is triggered.

Configuration data: The configuration data is pro-
vided by trusted, low level, software (e.g., the system
BIOS) at initialization (originally, we imagine config-
uration coming from processor or motherboard man-
ufacturers). It is the mechanism by which the con-
figurable assertion fabric is configured and portions
of the configuration data are fed into each block at
the appropriate stage. Built in to the design of each
block is a check that the incoming configuration data
is well-formed. Badly formed configuration data results
in disabling the entire configurable assertion fabric. In
this case, the output of Merge will always be low—
the processor is unprotected, but usable. To avoid mis-
configurations, we show in Section V that it is possible
to use formal methods to validate configuration against
common mistakes.

V. VERIFICATION
A. Configurable Assertion Fabric
We used Cadence SMV [42] for the verification of
the configurable assertion fabric. Cadence SMV is a
BDD-based [13] symbolic model checker for finite state
systems. It can operate directly on Verilog, which means
that our verification was done directly on the synthe-
sizable RTL (register transfer level) description of our
configurable assertion fabric, rather than on a model of
the fabric. For each component of the reference monitor
shown in Figure 4, we verified that the implementation
meets the specification. The Verilog source code for
each module, the formal specifications, and the linear
temporal logic (LTL) formulas we used for verification
are available on our website [1].

The first step of the verification effort was to for-
malize a complete specification of each component.
The components are relatively simple, and in most
cases, formally specifying their behavior involved little
more than extracting the information from the design
documents. However, in a couple of cases, the effort
of formalizing the specification brought out ambiguities
in the design and it was necessary to revisit the design
phase of the process. We discuss two such instances
here.

The Routing block is implemented as a series of
MUXes. For each, the input lines are the available
components of ISA state and the select line is driven
by configuration data. Although the synthesized config-
urable assertion fabric has a fixed number of input lines
to each MUX, in the Verilog source code the number
of input lines and the width of the select signal are
given as parameters. It is possible for select to have
values which do not map to any available input line

to the MUX. For example, if the MUX had 100 32-
bit input lines, select would need to be 7 bits wide,
but some values of select (values 100-127) would not
map to any valid ISA state component. In the English-
language design document the maximum value of select
was given as an integer that exactly matched the number
of input signals to the MUX; it was not possible for
select to ever have a value that was out of range for
the MUX. This undefined behavior quickly became
apparent when we tried to formalize the specification.
As a result, we went back to the design phase and
introduced the configInvalid signal. The configInvalid
signal gets propagated through each of the components
in the configurable assertion fabric. Each component can
set the configInvalid signal if necessary, but can never
clear it. In the case of the Routing block, configInvalid
is set whenever select has an invalid value.

A second design decision that came out of our speci-
fication effort was the realization that configuration data
should be stable. That is, the configuration for the con-
figurable assertion fabric should not be able to change
on each clock step. Rather, when MAGICCARPET is
enabled, the configuration data should be frozen. This
was implicitly assumed by the design, but we had to
make the assumption explicit during the verification.
Currently, our system does not prevent configuration
data from changing while MAGICCARPET is active, we
expect that adding that constraint to the system will not
be difficult.

Routing and Logic: The Routing and Logic blocks
contain only combinational logic: the output depends
only on the current inputs. For each module, we verified
its correctness by specifying the correct output for all
possible combinations of input, and then proving that
the implementation meets the specification.

Assert: Unlike the previous two blocks, Assert con-
tains sequential logic, and therefore, internal state.
Recall that the Assert block implements assertions of
the form p → q, where p is in one of three forms:
assert always (p = True), assert on rising edge
(p = ¬st−1 ∧ st), and assert after n clocks (p = st−n).
A select input is used to choose which form p will take;
it is provided by the configuration data. The signals s
and q are each driven by the out signal of a Logic block.

For the verification of the Assert block, we case split
on the select input and separately verify the behavior
of the block for each possible value of select . During
the course of verification, we found an error in the
configInvalid signal. A logical AND was used where
an OR was needed. This was the only implementation
error we found during verification.

Merge: The Merge block calls for software formal
verification as opposed to hardware formal verification.
It is implemented as a look-up table and the configura-
tion data provides the contents of the table. The behavior
of the block is entirely determined by the values in

6

〈configuration〉 |= 〈assertOp〉 {〈binaryOp〉 〈assertOp〉} ;
〈assertOp〉 |= [〈unaryOp〉]〈assert〉
〈unaryOp〉 |= !
〈binaryOp〉 |= AND | OR
〈assert〉 |= 〈always〉 | 〈edge〉 | 〈next〉 | 〈delta〉
〈always〉 |= ALWAYS (〈logicBlock〉)
〈edge〉 |= EDGE (〈logicBlock〉 , 〈logicBlock〉)
〈next〉 |= NEXT (〈INTEGER〉 , 〈logicBlock〉 , 〈logicBlock〉)
〈delta〉 |= DELTA (〈INTEGER〉 , 〈INTEGER〉 , 〈isaState〉)

〈logicBlock〉 |= 〈masked〉 〈compareOp〉 (〈masked〉 | 〈INTEGER〉)
〈masked〉 |= 〈isaState〉 [AND 〈INTEGER〉]

〈compareOp〉 |= EQ | NEQ | GT | GTE | LT | LTE
〈isaState〉 |= see Table I

Figure 6: E-BNF grammar supported by the reprogrammable invariant fabric.

the table. This means that verifying the Merge block
requires validating the configuration data, which we
cover next.

Discussion: Ultimately, the fabric’s behavior is de-
termined by the configuration data and it is up to the
the processor/motherboard manufacturer to provide a
correct configuration. A misconfigured fabric could fail
to provide the intended protections. We show that it is
possible to use formal verification to guard against mis-
configurations in three ways. First, we protect against
invalid configurations that would result in unpredictable
results. We verify that if any of the individual compo-
nents report an invalid configuration, then the composed
fabric will not fire any assertion failures. This behavior
represents a trade-off in the design space. On the one
hand, an accidentally misconfigured fabric, which will
never trigger an assertion, is not protecting the user as
the user probably expects. On the other hand, never
firing in the presence of misconfigured data has the
benefit of being a stable behavior—it is what exists
today. An alternative is to always fire when the fabric
is misconfigured, but this would give an attacker an
avenue for launching a denial of service attack—making
MAGICCARPET a new avenue of attack, something we
go to great lengths to avoid.

Second, we built a software tool to generate the con-
figuration data from higher-level assertion statements.
Although only prototypical, we hope that further devel-
oping this tool will make generating correct configura-
tion data relatively easy for the user. Figure 6 shows the
grammar the the tool implements.

Third, we built a validation tool that performs the
following sanity checks on the configuration data:

• Are any of the assertions unsatisfiable?
• Are any assertions tautologically violated?
• Are there zero assertion checks configured?

• Does the configuration imply that an assertion
check will fail at every step of execution?

If any of these tests come back positive, a misconfigu-
ration error is reported along with information about the
offending assertion(s). The user can run this tool before
loading the configuration data into MAGICCARPET. We
used the z3 SMT solver [23] as the back end to this
tool. We tested its performance over randomly generated
configuration data for varying numbers of assertion
blocks. Figure 7 shows the results of that experiment.
The saw-tooth pattern is a result of the hierarchical look-
up tables used to implement the merge block. As the
table in the last level fills up, more calls to the SMT
solver are needed and the total validation time increases.
Once a new level in the hierarchy is introduced, the table
in the last level is mostly empty and, while each call
to the solver takes longer, there are many fewer calls
for a net gain in time. It is necessary to note that while
we formally verify the functional correctness of each
module in the configurable assertion fabric, we manu-
ally audit the connection between modules. That is, we
manually check that every module’s output signals are
appropriately tied to the next module’s input signals.
There is no logic involved in the composition and our
naming convention made the checks straightforward.
Our end-to-end verification of the invalid configuration
signals, mentioned above, does not rely on this manual
audit.

VI. RECOVERY FIRMWARE

When the invariant monitor detects that the processor
has violated one of the monitored invariants, an ex-
ception is triggered and control passes to the recov-
ery firmware. The firmware is responsible for helping
software safely execute sections of code that violate a
security-critical processor invariant. MAGICCARPET’s

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 5 10 15 20 25 30 35 40

V
al

id
at

io
n

ru
n

tim
e

(s
)

Assertions supported by fabric

Figure 7: Running time of the configuration validation tool for randomly
generated configuration data of consisting of varying number of assertions.
For each fabric size, we run the configuration validation tool on 30 randomly
generated configurations. The mean runtime of validating the 30 sets along with
the 95% confidence interval.

recovery mechanism repurposes the processor’s built-
in exception handling logic as a checkpointing and
rollback mechanism, avoiding the complex and heavy-
weight hardware structures required by other propos-
als [55]. A key observation is that the processor ex-
ception handling mechanism already provides a version
of checkpointing and rollback, just with a checkpoint
window spanning from the fetch stage to right before
the instruction’s changes are committed to the ISA-level
state (e.g., three stages on the traditional MIPS 5-stage
processor). When a MAGICCARPET exception occurs,
the processor flushes in-flight state and passes control
to MAGICCARPET’s recovery firmware.

The recovery firmware pushes software state forward
by simulating processor execution of the troublesome
code. It does so by translating each instruction to an
equivalent sequence of instructions that does not include
the original instruction, i.e., a subset of the original
ISA. By changing the set of available instructions, the
firmware mutates the original instruction stream to one
that achieves the same ending ISA-level state, but which
takes a different path, with different intermediate states.
This protects against reactivating both instruction- and
state-sensitive processor defects. Figure 2 provides an
overview of how recovery works. The mechanism con-
sists of entry and exit routines, state clean-up routines,
routines that fetch and decode instructions from soft-
ware, and recoding routines. We discuss each of these
components below.

Figure 8 provides an overview of how the recovery
process works to push software execution forward,
around processor bugs by recoding the original instruc-
tion stream and executing the recode stream on the
processor. MAGICCARPET’s recovery firmware consists
of entry and exit routines, routines that fetch and decode
instructions from software, and recoding routines.

save sw state

...
STB
...

load sw state

...
LD
OR
AND
STW
...

Processor
execution
stream

recode

1

2

5

6

3
4

Figure 8: MAGICCARPET’s recovery mechanism: 1) Software executing nor-
mally on the processor 2) When the configurable assertion fabric detects a
processor invariant violation, control passes to the recovery firmware which
backs-up the software’s state and exception registers. 3) The recovery firmware
fetches, decodes, recodes, and 4) executes several instructions from the software
level. 5) Once past the error, the recovery firmware loads the processor with the
software state in the simulator and passes control back to the software level. 6)
Software resumes normal execution

A. Hardware/firmware interface
One of MAGICCARPET’s goals is to not increase the
complexity of the processor, but some added complexity
is required to support software-level recovery. It is
important for correct recovery that the firmware know
the source of the invariant violation. This requires the
addition of an ISA-level register that the firmware can
read to direct state clean-up and recoding. Another
issue is that invariant violations can occur even in
software that is executing with interrupts disabled. This
means that invoking the firmware could overwrite spe-
cial purpose registers not backed-up by software. To
solve this issue, MAGICCARPET adds ghost versions of
all exception registers and creates an additional ghost
register to be used as a temporary holding place for
the recovery firmware’s entry routine—we usually put
software’s stack pointer there. Without this extended
interface between hardware and the firmware, it is
impossible to invoke the recovery firmware without
losing some crucial state.

Another addition to the hardware/firmware interface
is a set of registers that allow for loading configuration
data into the fabric. There are three 32-bit registers: one
for data, another for address, and a final register for
alerting the fabric that the address and data are valid
(called strobe).

B. Firmware/software interface
When the processor issues a bug detection exception,
MAGICCARPET’s recovery firmware is tasked with
pushing the state of the software layer forward, so
that it can continue executing on its own, past the
invariant violating code. After the recovery firmware
saves the current state of the software layer (as stored
in the processor), initializes itself, and determines what
invariant was violated, it is ready to assist the software
layer. This requires that the firmware first clean-up

8

any contaminated state not flushed by the exception.
As explained in Section VII, there are three clean-
up methods (of different overhead) that depend on
the invariant violated. Once the state is consistent, the
firmware starts by reaching into the address space of the
software layer to read instructions and data values. The
recovery firmware does this by manually walking the
TLBs (if the MMU was enabled at the time of detection)
and fetching the required value straight from memory.

MAGICCARPET firmware then simulates the inter-
rupted software using a different set of instructions
to avoid re-exercising the exploitable processor logic.
Although our simulation is general purpose and our
technique of simulating instructions using a different
set of instructions enables MAGICCARPET to avoid a
wide range of defects, our hardware/firmware interface,
by exposing which invariant was violated allows for ad
hoc recovery routines. The custom recovery routines are
more efficient than our general purpose simulator, but
the simulator is at least a reliable backstop.

Entry and Exit: When the monitor detects a pro-
cessor invariant violation and triggers an exception,
control passes to the recovery firmware’s entry routine.
The entry routine starts by saving the current state of
software, i.e., general-purpose registers, the exception
registers, and stack pointer. MAGICCARPET includes
special purpose, ISA-level registers for this purpose.
Once the software’s state has been saved and the state
cleaned, simulation begins at the instruction pointed to
by the saved PC. This is the instruction that software
was executing when the violation occurred. The new
registers are protected by MAGICCARPET hardware: ac-
cess is allowed only when the current instruction pointer
is within a specified, hardcoded memory range—the
memory used by MAGICCARPET firmware and made
unavailable to the OS or other software by the hardware.

After simulating all of the instructions that were in the
processor pipeline at the time of the invariant violation,
the firmware restores the software-level state back into
the processor and returns control of the processor to
the software layer. Because an attempt at recovery
may itself violate an invariant, the recovery firmware
is designed to handle recursive invariant violations,
although only if they occur outside of the entry and
exit sequences (Section VI-C).

Fetch and Decode: Starting from the last committed
instruction, the recovery firmware fetches and decodes,
on an instruction-by-instruction basis, instructions from
the software layer. Doing so requires reaching into the
address space of the software layer to read instructions
and data values. If necessary, the firmware manually
walks the TLB of the software layer before fetching the
required value from memory.

The decode process works by breaking an instruction
into meaningful chunks as dictated by the instruction set
specification, e.g., opcode, operands, and constant. Once

the opcode is known, the simulator calls the associated
instruction recoding routine.

Recode and Execute: The recode routine simulates
the interrupted software using a different set of machine
instructions. This avoids re-exercising the exploitable
processor logic. An example recoding used in MAG-
ICCARPET’s recovery firmware is replacing a multiply
instruction with a series of shifts and adds. To avoid
adding bugs to the system by incorrectly recoding
instructions, we formally verify the equivalence of the
recoded instruction stream to the software-level instruc-
tions that they replace—detailed in Section VI-E.

C. Handling recursive violations
Recovery in MAGICCARPET is a trial and error process.
Because an attempt at recovery may itself violate an
invariant, MAGICCARPET is designed to handle recur-
sive violations—outside of the entry and exit sequences.
This allows the recovery firmware to keep changing the
sub-ISA used to recode the original instruction stream,
increasing the odds of recovery. The ability to handle
recursive violations also allows recovery firmware de-
signers to sacrifice likelihood of recovery in favor of
lower average run time overheads; since they can also
try the safer recovery method if the faster method fails.
Experimental results in Section VII highlight the differ-
ence in speed of two different recovery approaches.

The first obstacle to handling recursive invariant vio-
lations is protecting the ISA-level state that taking and
exception atomically updates. MAGICCARPET handles
this by creating a special stack for all atomically updated
registers. The recovery firmware stores a pointer to the
most recent frame at a known address in it memory
space. Since the frames are all the same size, traversing
between the frames of different recovery firmware in-
vocations is trivial. All atomically updated registers and
the pointer are saved/updated in the entry routine and
the most recent frame is unloaded into their associated
registers in the processor and the pointer decremented
in the exit routine.

The second obstacle is that the recovery firmware can-
not simulate itself. This creates problems when invariant
violations occur while the recovery firmware is fetching
or decoding instructions from software, i.e., not actually
recoding or executing the recoded instruction stream.
In these cases, which the recovery firmware knows by
inspecting the address associated with the violation,
recovery will just restart in hopes that the act of taking
the exception was enough of a disturbance to avoid the
violation. To avoid live locks due to this restriction, we
avoided complex control paths in the fetch and decode
code to make its execution pattern very regular. None of
the attacks used in our evaluation threatened the fetch
or decode parts of the recovery firmware. If they did,
we could easily recode the recovery firmware to work
around the vulnerability. If the recovery firmware is
recoding or executing the recoded instruction stream, it

9

will restart the simulation process, but with a different
recoding algorithm.

D. Software managed reliability
Results from experiments (Section VII), where MAG-
ICCARPET was tasked with monitoring an increasing
number of bugs, expose the problem of false bug detec-
tions. Bug detector resources are finite (Section VII),
therefore, when MAGICCARPET needs to monitor for
activations of multiple bugs, there is a chance that the
bug signatures will involved the same state values. To
prevent contamination due to missed bug activations,
MAGICCARPET must combine competing bug signa-
tures in a pessimistic way, creating the potential for false
positives.

Dynamically enabling and disabling bug detectors can
reduce false detections while maintaining a consistent
ISA-level state. Since bug signatures in MAGICCAR-
PET are dynamically reconfigurable, both hardware and
software have an opportunity to manage which bugs
detectors are active. In the case of software, MAGIC-
CARPET extends the processor’s interface with software,
allowing software to manage its own reliability and run
time overheads by controlling which processor bugs it’s
exposed to and when. Experimental results validate the
power of this mechanism to reduce false detections,
increasing software performance.

E. Proving correctness
Because MAGICCARPET firmware simulates instruc-
tions without using the instruction it is simulating, the
recovery firmware is more complex than a traditional
instruction-by-instruction simulator. For example, we
simulate add instructions using a series of bit-wise
Boolean operations, shifts, and comparisons to check
for carry and overflow states. These bit-manipulation
operations are difficult to reason about manually, which
motivates our use of formal methods to prove the
correctness of our implementation.

The code that we prove falls into three categories.
First, we prove correct helper functions that we compose
together to simulate instructions. Examples include sign
extend, zero extend, and overflow and carry logic for
arithmetic operations. For each function we formalized
its specification and verified the implementation against
the specification. Second, we prove correct simulation
of the ISA instructions. For example, we prove that a
series of shifts and adds are equivalent to a multiply
instruction. The alternative implementation never uses
the simulated instruction. Third, we specify and prove
correct the first phase of the decode logic. We prove
that during simulation, the decode logic correctly slices
an instruction into its component parts (e.g., opcode,
mode, and operand). We do not verify the mapping
from opcode to alternative implementation. For exam-
ple, we do not verify that a multiply instruction from
the software layer always invokes the multiply recoding

routine in our simulator. All of our source code, with
our specifications, can be found on our web site [1].

To verify our implementation, we used VCC [19].
VCC enables sound verification of functional proper-
ties of low-level C code. It provides ways to define
annotations of C code describing function contract spec-
ification. Given the contracts, VCC performs a static
analysis, in which each function is verified in isolation,
where function calls are interpreted by in-lining their
contract specifications. Our verification efforts, which
took place after all conventional software tests were
passed, revealed subtle bugs in our sign extend helper
function and our divide instruction implementation that
were caused by implicit, yet incorrect, assumptions we
made when writing the simulator (mostly to do with
signed vs unsigned numbers). These implicit assump-
tions were revealed as bugs when formal verification
made them explicit.

The results of our verification effort is approximately
3000 lines of formal specification—very similar to the
number of lines of code. Verification with VCC is quick,
on the order of minutes. Even with tight feedback loops
between firmware developer and the tester, formal ver-
ification exposed three bugs in our code. Interestingly,
the processor bug from the processor we use that has
eluded several attempts at patching [47] is related to the
same signed vs unsigned issues that caused the bugs
reported by VCC in our simulator implementation.

F. Assumptions
Here we elaborate on the assumptions stated in Sec-

tion II-C. The firmware makes three assumptions:
1) The processor is in a state that can be interrupted

by the exception generated by an invariant viola-
tion.

2) The recovery firmware’s entry and exit routines
execute without violating an invariant. To allow for
handling of recursive invariant violations, the first
and last action the recovery firmware performs is
backing-up to and restoring from memory the state
overwritten by the processor when it handles an
exception (e.g., the Status Register).

3) The recovery firmware correctly decodes the
software-level instruction. While we do prove that
the firmware correctly decomposes instructions
into its constituent parts, e.g., opcode and imme-
diate, we do not prove that, given the opcode,
the simulator correctly executes the appropriate
recoding routine.

G. Approach weaknesses
Complete recovery is not always possible, even if all
the assumptions in Section II-C hold. Generally, if there
is insufficient vulnerability-free redundancy available or
the recoding routines do a poor job at exploiting the
vulnerability-free redundancy, recovery will fail. One
concrete example for our implementation is a defect

10

involving a write or read from the byte-bus (a low
bandwidth peripheral bus used by our processor). As its
name implies, the byte-bus is an 8-bit wide peripheral
bus that can only be accessed at the byte level. If there
is a flaw in the processor involving byte-bus accesses,
there is no way for MAGICCARPET firmware to recode
execution around the bug.

Possible approaches to handling this type of failure
includes simply updating the recovery firmware or even
extending the ISA further to allow MAGICCARPET
to communicate cases of incomplete recovery to the
software level. Another option is for processor designers
to ensure that functionality that has the least redundancy
is verified the most.

VII. MAGICCARPET EVALUATION
This section describes a FPGA-based implementation
of MAGICCARPET and how we test that implemen-
tation with an array of attacks based on exploitable
bugs found in commercial processors. This section also
details the four different recovery strategies required
to push software past all the attacks in our test bed.
Lastly, this section looks at hardware overheads due to
different sized configurable assertion fabrics and how
MAGICCARPET scales to more complex processors.

A. Implementation
To evaluate the performance and efficacy of MAG-
ICCARPET we implement it inside the OR1200 [46]
processor. The OR1200 is an open source, 32-bit RISC
processor with a 5-stage pipeline, separate data and in-
struction caches, and MMU support for virtual memory.
It is popular as a research prototype and has been used
in industry as well [51]. The processor is representative
of what you would see in a mid-range phone today.

For the invariant fabric, we build a program that
automatically generates the fabric hardware when given
the number of Assert blocks that the fabric must support.
Besides making it easy to explore the impact of tuning
different fabric parameters, using a tool to generate the
fabric creates a regular naming and connection pattern
that allows us to verify the structural connections of
arbitrary fabrics using an induction type approach.

For a complete system, capable of booting Linux, we
implement the processor and fabric combination as the
heart of a system-on-chip that includes DD2 memory, an
Ethernet controller, and a UART controller. We imple-
ment the system-on-chip on the FPGA that comes with
the Xilinx XUP-V5 development board [25]. We con-
servatively clock the system at 50 MHz. Section VII-D
explores the hardware overheads required by different
configurations of MAGICCARPET.

B. Effectiveness
To study how well MAGICCARPET protects a vulner-

able system against attack, we weakened the OR1200
by introducing the 14 vulnerabilities listed in Table II.

ID De- Rec- Stra-
Synopsis tect over tegy

1 Privilege escalation by direct access
√ √

C
2 Privilege escalation by exception

√ √
C

3 Privilege anti-de-escalation
√ √

C
4 Register target redirection

√ √
C

5 Register source redirection
√ √

S
7 Disable interrupts by SR contamination

√ √
S

10 EPCR contamination on exception exit (to PC)
√ √

S
13 Register source redirection

√ √
S

8 EEAR contamination
√ √

C+S
9 EPCR contamination on exception entry (from PC)

√ √
C+S

6 ROP by early kernel exit
√ √

B+S
11 Code injection into kernel

√ √
B+S

12 Selective function skip
√ √

B+S
14 Disable interrupts via micro arch

√ √
B+S

Table II: Attacks based on previously discovered exploitable processor errata
from AMD processors [34], ordered by increasing recovery complexity. For
each, can MAGICCARPET detect it (Detect)?, correct any ISA state contamina-
tion and push software execution around it (Recover)?, and recovery strategy
(Strategy: C - correction; S - Simulate; B - backtrack) used.

The vulnerabilities come from previous research that
identified exploitable processor errata from several years
of AMD processor errata [4], [34]. These errata capture
the types of exploitable processor bugs that escape
current verification methodologies. To map each erratum
into an attack, we take its effect and connect it as the
payload to a variety of stealthy triggers.

The previous paper that proposed the attacks also built
them directly into the processor. Our goal is to show that
the MAGICCARPET is expressive enough to allow us to
implement all the same invariants on the configurable
assertion fabric. To this end, we configured the fabric
with the 18 assertions described in Tables III and IV.

For each attack, we write a program for the OR1200
that triggers the attack and reports if the attack was suc-
cessful. Table II provides the results of this experiment:
MAGICCARPET is expressive enough to implement all
18 invariants, thus it can detect each attack.

C. Recovering from the attacks
Detecting attempted attacks is only part of a complete
system—otherwise every attack becomes a denial-of-
service attack. The other half of the challenge is main-
taining an ISA-level state consistent with the specifica-
tion and helping software to continue to execute safely
in spite of processor imperfections. To show that MAG-
ICCARPET meets this challenge, we verify that software
makes forward progress and that the state of software
is consistent with the instruction set specification. The
column labeled “Recover” in Table II shows, for each
attack, if MAGICCARPET’s recovery firmware is able
to undo any contamination and then ensure software’s
forward progress.

The result of this experiment is that we are able
to recover from all attacks. This experiment also re-
veals that there are four possible recovery strategies.
The lowest overhead recovery is “Correction,” which
involves resetting the contaminated ISA-level state to a
safe value (e.g., setting the processor mode to user mode

11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 5 10 15 20 25 30 35 38

O
ve

rh
ea

d
(x

 b
as

el
in

e)

Assertions supported by fabric

none
one state

top 6
both

Figure 9: Hardware overhead with respect to the number of assertions supported
by the configurable assertion fabric, evaluated at four optimization levels. The
vertical line represents the number of Assert blocks required to implement the
seven assertions needed to detect all of our attacks. 38 is the number of Assert
blocks to implement all invariants.

if the privilege escalation macro assertion fires) and
then continuing execution. The next level of recovery
is “Simulate.” “Simulate” occurs when there is no
contaminated state to correct, but MAGICCARPET must
help software to make forward progress by recoding the
instruction stream to bypass the attack. The simulator
introduces large increases in overhead compared to
“Correction”-level recovery. “Simulate with backtrack”
is the third recovery strategy. It is similar to “Simulate,”
but involves starting simulation from an earlier (already
executed) instruction. This strategy is useful for control
flow oriented violations. The final and most costly
recovery strategy is “Simulate with correction.” This is
needed when an attack contaminates a value that cannot
be recalculated simply by backtracking. In this case
the recovery firmware must recalculate the value itself.
While able to recover contaminated values in each of
our experiments, it is possible that full clean-up may
not be possible. In this case, the recovery firmware can
simulate at process terminating event to kill the process,
e.g., seg. fault.

D. Evaluating the cost of MAGICCARPET
Experiments with a wide range of attacks demonstrate
that MAGICCARPET is effective at both detecting and
recovering from exploitable processor defects. But what
is the cost of MAGICCARPET protections? Here, we
evaluate the cost of MAGICCARPET in terms of the
hardware overheads of the reconfigurable invariant fab-
ric and the software run time overheads due to the re-
covery firmware. As a reference point, previous work on
deployed bug patching (see Section IX) entails hardware
overheads of up to 200% and run time overheads of up
to 100% in the common case.

Processor designers can select the number of asser-
tions supported by MAGICCARPET’s invariant fabric:
they can tradeoff assertion support for hardware over-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

none one state top 6 both

O
ve

rh
ea

d
(x

 b
as

el
in

e)

Fabric design

Figure 10: Timing delay overhead, averaged across all fabric sizes, with respect
to the number of assertions supported by the configurable assertion fabric at
four optimization levels.

head. To show the hardware overheads associated with
different sized fabrics, we used our fabric generation
tool to build fabrics with support for as little as 1
assertion to as many as 38 assertions (the number
required to implement all the invariants in Table IV).

Figure 9 shows how the hardware area overhead
changes as the number of assertions supported by
the configurable assertion fabric increases. Similarly,
Figure 10 shows how the hardware delay (determines
the maximum clock frequency) overhead changes as
the number of assertions supported by the configurable
assertion fabric increases. Each figures contains data at
four points in the fabric design space: (none) no opti-
mization, the fabric favors expressibilty over overheads.
(one state) previous work shows that 83% of invariants
targeted at protecting against security-critical processor
bugs only use the first of two state inputs of the
Logic block. Thus, “one state” represents using Logic
blocks with only one state input. This optimization
also reduces the number of required Routing blocks by
50%. (top 6) is an optimization on the Routing block
that leverages the observation that 76% of invariants
require the same six ISA-level state items. Thus, “top
6” represents replacing the Routing blocks with new
Routing blocks that only handle the six most frequently
used state elements. Finally, (both) represents a fabric
with both of the aforementioned optimizations.

To identify opportunities for future optimization we
explore the relative composition of each fabric block
to the overall fabric. Figure 11 shows, for each opti-
mization level, how much each block type contributes
to overall hardware area of the fabric. This experiment
shocked us: we ran this experiment after applying
the “top 6” optimization, but before we thought that
we needed the “one state” optimization. Before this
experiment, we were under the impression that the
crossbar switch nature of the Routing block and the fact
that there are four Routing blocks for each Assertion

12

 0

 0.2

 0.4

 0.6

 0.8

 1

none one state top 6 both

Co
m

po
sit

io
n

Fabric design

routing
logic

assertion
merge

Figure 11: Proportion of fabric area each fabric component contributes. Note
that these results do not capture wiring overhead, to which the Routing block
is the dominate contributor.

block make the Routing block the main contributor to
overhead. Figure 11 clearly shows that the Logic block
is the main contributor; hence, we design the “one state”
optimization.

There is still plenty of opportunity for overhead
reductions, but that level of engineering effort is out
of scope for this paper.

E. Generalizing the results
Building a hardware prototype of MAGICCARPET is
essential both as a way to expose implicit assumptions
and as a way to discover traits of our approach (e.g.,
that the Logic block is the largest component of the
fabric’s hardware overhead; we thought that it was the
Routing block). For the hardware prototype, we chose
the OR1200 because it is a mature and open source
processor implementation on which we could build
and evaluate our MAGICCARPET design. The choice
to focus on building the system in real hardware leaves
unanswered the question of how our approach scales to
the x86 class of processors.

We expect that the MAGICCARPET design will scale
well. Complexity in commercial processors largely
comes from optimizations meant to increase perfor-
mance. These optimizations add state below the level
of the software interface, i.e., without changing the
architecturally visible state. MAGICCARPET, on the
other hand, monitors only the architecturally visible
state (for example, the CPU registers and general pur-
pose registers). This means that it is possible that
while MAGICCARPET would be more complex on more
complex processors, its overhead relative to the rest of
the processor would be less than our prototype.

While we expect the hardware aspects of MAGIC-
CARPET to scale well, the effort required to build and
verify the decode and recode logic in MAGICCAR-
PET’s firmware would grow considerably for commer-
cial processors—roughly linear with the number of in-
structions in the ISA. To concretize this scaling, it took

two graduate students two weeks to build and verify
the recovery firmware for the OR1200. Given that there
is almost a two-order magnitude increase in number of
instructions from OR1200 to x86, we expect that the
effort required for a commercial processor would be 400
person-weeks—less than a year for a 10 person team:
reasonable for a large company. Additionally, being at
the ISA level reduces the changes required when porting
MAGICCARPET between processor families.

VIII. LIMITATIONS
MAGICCARPET focuses on protecting security-

critical processor state, it does not attempt to address
processor exploits that target general-purpose state, ex-
ploits that target the memory hierarchy, or to prevent
side channel emanations. MAGICCARPET relies on the
observation that there is a security-critical portion of
processor state and that the processor updates this
state in a few, simple ways. General-purpose processor
state contradicts this: there is a plethora of general-
purpose state and it is updated in a myriad of ways. To
apply MAGICCARPET to general-purpose functionality,
the increase in state would cause the routing block
to become more complex and the myriad of ways to
update general-purpose state would cause a dramatic
increase in logic block complexity. Additionally, it is
unclear if including general-purpose state would re-
quire MAGICCARPET to support more types of OVL
assertions. From a more pragmatic level, adding such
complexity and overhead to the processor comes with
questionable benefit—possibly making formal verifi-
cation of MAGICCARPET intractable: research shows
that software can protect itself against general-purpose
processor imperfections with little run-time overhead
and no added hardware complexity [16].

Note that it is possible, especially in the case of
malicious processor imperfections, that a contamination
of a general-purpose register can make its way—with
the help of unwitting privileged software—into ISA-
level state protected by MAGICCARPET. In these sit-
uations, software can leverage its flexibility advantage
over hardware and patch itself so that it doesn’t trigger
the malicious imperfection or so that it doesn’t blindly
carry potentially malicious values into protected state.
It is also possible to use previous research in a targeted
manner to verify the computation of values that will
eventually be stored in protected state.

Another limitation of the MAGICCARPET’s monitor
hardware is the fabric configuration data. While we do
show that it is possible and low overhead to validate
aspects of the configuration using formal methods (e.g.,
the configuration does not cause constant invariant vi-
olations), we do not prove that a configuration does
what the designer intends it to do. To reduce the threat
of misconfigurations, we designed and formally verified
that the fabric blocks (i.e., routing, logic, assertion, and
merge) fail gracefully when misconfigured—essentially

13

disabling the fabric. Unfortunately, at the system level, a
misconfigurations leaves software exposed to processor
vulnerabilities and slowdowns due to false firmware
activations. It is important to note that because MAGIC-
CARPET operates below software, software attacks can-
not leverage MAGICCARPET to control a compromised
host.

The main limitation for recovery is the amount of
functional redundancy in the processor. Since MAGIC-
CARPET recodes instructions from the software stack in
an attempt to execute around the processor imperfection,
recovery depends on the existence of another sequence
of instructions that yields an identical ISA-level state
without activating the same or any other malicious
circuit. This limitation did not manifest in any of our
experiments, but it does exist.

Finally, as with any reference monitor [54], MAGIC-
CARPET can not enforce properties that require knowl-
edge of more than the current trace of execution such as
properties about determinism and non-interference [18].

IX. ADDITIONAL RELATED WORK

MAGICCARPET has multiple components that extend
into several different lines of research; such as pro-
cessor verification, patching processor bugs, detecting
malicious circuits, and recovering from processor faults.
This section frames MAGICCARPET with respect to
related work in those areas.

A. Hardware verification
The formal verification of hardware is a mature field.
The functional verification of small, mostly stateless
components of hardware implementations against a
specification written in a C-like language has been well
studied [17], [28], [35], [38], [37], [39]. The verification
task becomes more difficult as the hardware becomes
more complex. Burch and Dill demonstrated how to
verify a pipelined processor implementation against an
unpipelined specification using an automated technique
akin to symbolic execution in software [15] and many
others have since expanded the technique to apply to
more complex processors [14], [48], [56]. More pow-
erful, but less automated techniques based on theorem
proving have been studied and applied to specialized
hardware modules such as the floating point func-
tions [31] as well as the processor pipeline [57], [43].
Alternatively, more automated model-checking based
techniques have also been explored [45]. While many
advances have been made, full functional verification of
an implementation of a modern processor core is still
out of reach for today’s technology. By monitoring a
set of invariants, MAGICCARPET guarantees that the
current execution meets a set of security properties
without requiring complete verification of the processor.

B. Processor bugs
Theo de Raadt [24] linked Intel errata to potential secu-
rity vulnerabilities in the OpenBSD operating system.
Subsequent attacks [40], [26], [10] used errata as a
foothold. To understand the magnitude of exploitable
processor bugs, Hicks et al. identified and classified a
set of processor errata that eluded testing and functional
verification and can debase software protections [34].
We use this classification in our evaluation of MAGIC-
CARPET to exemplify escaped and exploitable processor
vulnerabilities.

One approach to detecting bugs that escape verifica-
tion is adding redundant but diverse computations, much
like an always-on version of MAGICCARPET’s recovery
firmware. DIVA [9] is a processor bug patching mecha-
nism using redundant implementations of an instruction
set internal to a single processor. In DIVA, a simplified
checker core verifies the computation results of the full-
featured core before the processor commits the results
to the ISA level. It requires complex interconnections
between the checker core and the processor and the
checker core must be extremely simple to allow formal
verification. These requirements preclude performance
optimizations, thereby limiting system performance. In
contrast, MAGICCARPET adds overhead only when the
processor violates an assertion.

Another approach to handling processor bugs is
signature-based detection of bug activations. Constan-
tinides et al. [20] and Phoenix [53] use low-level
hardware state (flip-flops) to form bug signatures and
monitor the run time state of the processor for matches.
Such approaches can detect more imperfections than
MAGICCARPET, but: (1) they require two extra flip-
flops for every flip-flop in the design, and (2) heavy
contention on opcode flip-flops limit the number of bugs
that can be monitored concurrently [32].

Semantic Guardians [60] is a third approach. These
are assertions on low-level state that fire at runtime
whenever the processor enters a state that was not
functionally verified. This avoids the heavy contention
for shared resources in signature-based approaches, as
unverified states have independent assertion circuits.
The challenge comes from the many states not seen
during verification; building an assertion per unseen
state is infeasible.

C. Design-time malicious circuits
Malicious designers [59] may add intentional bugs to
the processor. King et al. [36] and Hicks et al. [33]
demonstrate three possible system-level attacks, show-
ing that it is possible for malicious circuits to be
footholds for software-level attacks.

Unused Circuit Identification (UCI) [33] attempts to
identify and remove suspicious circuits from processors
by re-purposing test cases used in functional verification
to find circuits that do not seem to affect the processor’s

14

behavior. FANCI [63] extends UCI’s circuit identifica-
tion idea by avoiding a binary notion of trust, which can
be defeated [58], as well as removing the need to trust
the verification test cases. FANCI explores the input
space, counting the number times a circuit affects the
state of the processor, generating a continuous notion
of trust in a circuit, and exposing a tradespace where
designers can trade more time at the design stage for in-
creased trust in the design. General-purpose algorithms
for bypassing UCI and FANCI analyses have since been
developed [58], [66]. These defenses and attacks hint
that the general problem of assuring that hardware is
free from attack is equivalent to proving that the proces-
sor is free from bugs. MAGICCARPET is orthogonal to
design-time testing approaches: MAGICCARPET allows
processor designers to respond to processor vulnerabil-
ities post-deployment, thus MAGICCARPET is able to
respond to attacks missed by UCI and FANCI.

TrustNet and DataWatch[61] monitor communication
between processor pipeline stages ensuring that, given
the input, the output contains the correct amount of data.
Although these mechanisms prevent significant classes
of attacks, they succumb to some hardware-based at-
tacks in the literature (e.g.,, the memory redirection
attack from Hicks et al. [33]) that are carried out via
data modifications rather than additions or subtractions
of data. As shown in Section VII, MAGICCARPET can
check for too much, too little, or incorrect data.

Recently, researchers have proposed protecting soft-
ware from malicious hardware by using assertions to
focus on attack effect rather than properties of the
attack implementation. Security Checkers [11], [12] and
SPECS [34] add assertions to the processor that monitor
for security violations at run time. MAGICCARPET
extends this notion of monitoring security properties at
run time to an adversarial model in which an attacker
is aware of the defenses and attempts to bypass them.
With Security Checkers and SPECS any escaped attack
compromises the system for the life of the system.
Contrast this with MAGICCARPET, whose entire goal
is to respond to the escaped processor vulnerabilities at
run time. MAGICCARPET also diverges from Security
Checkers and SPECS with its ability to allow unaltered
software to continue execution on vulnerable hardware
and through the pervasive use of formal methods.

D. Software-level assertions
Software-level assertions have been proposed to detect
processor defects. SWAT [41], [52] is a system that
periodically checks for anomalous software behavior,
e.g., deadlock or kernel panic, as a sign of processor
errors. While over 70% of randomly inserted single-bit
faults are covered, SWAT is unable to detect any of the
errata-based attacks of Section VII.

Pham et al. [49], [50] use the hardware invariants
available, e.g., in AMD-V’s [7] Hardware-Assisted Vir-
tualization (HAV), to implement HyperTap, a hypervi-

sor scheme to provide reliability and security monitor-
ing. HyperTap’s invariants are used to enforce properties
in the software stack above the hardware, which is
trusted. It is clear that software requires assistance from
hardware to protect against a wide range of security
vulnerabilities, including processor bugs [8].
E. Recovery
Recovery using checkpoint/rollback is well-explored
and low overhead solutions exist [55], [22], [27], but
re-execution is inadequate to move software state past
a malicious circuit.

Software simulation of portions of an ISA is used
in microprocessors lacking hardware floating point
units [2]. Narayanasamy et al. [44] extend this idea
to processor bug patching by using simple, ad hoc,
instruction rewriting routines to avoid triggering the
bug. They sketch software-based recovery strategies for
five errata. BlueChip [33] is a recovery mechanism
targeted at malicious circuits implemented as a Linux
device driver. It further extends the Narayanasamy et
al. approach. While this prior work uses software to
recover from processor defects, three differences exist.
First, we formally verify MAGICCARPET’s recovery
routines. Second MAGICCARPET implements recovery
as a firmware layer, preserving the ISA abstractions
expected by software and allowing full-system recov-
ery, in contrast to BlueChip. Third, MAGICCARPET’s
hardware support for recursive activations and wider
range of recovery routines greatly improve the scope
of recovery.

X. CONCLUSION
MAGICCARPET is a new defense against hardware-
based security exploits. MAGICCARPET adds verified
hardware to a processor to detect run-time failures of se-
curity invariants. Detections trigger a transfer of control
to verified recovery firmware that briefly simulates soft-
ware using equivalent instruction sequences, enabling
safe forward progress on the vulnerable hardware.
MAGICCARPET’s configuration fabric allows processor
designers to respond to newly discovered vulnerabilities
at run time. Experiments show that MAGICCARPET is
effective at detecting and recovering from a range of
real-world processor vulnerabilities.

MAGICCARPET effectively protects software from
exploitable hardware by pushing the task of dealing
with the vulnerability to a higher, more flexible, and
more verifiable level. We made pervasive use of formal
methods when implementing MAGICCARPET hardware
and firmware. We argue that this style of design, where
we focus our formal verification efforts on the hardware
and software responsible for monitoring the security
relevant portion of the processor, represents a viable al-
ternative to full functional correctness. The bottom line
is that we can make stronger security guarantees for a
processor with a significantly smaller verification effort
than would be required for full functional correctness.

15

REFERENCES

[1] Anonymous citation for blind review.

[2] ARMv4 Instruction Set, Issue C, April 1998.

[3] MIPS Technologies. MIPS R4000PC/SC Errata, Processor Rev.
2.2 and 3.0, May 1994.

[4] Revision Guide for AMD Athlon 64 and AMD Opteron Pro-
cessors. Technical report, Advanced Micro Devices, August
2005.

[5] Intel Core 2 Extreme Processor X6800 and Intel Core 2 Duo
Desktop Processor E6000 and E4000 Sequence – Specification
Update. Technical report, Intel Corporation, May 2008.

[6] Accellera Systems Initiative. Open verification library working
group. http://www.accellera.org/activities/committees/ovl.

[7] AMD. AMD64 Virtualization Codenamed “Pacifica” Technol-
ogy: Secure Virtual Machine Architecture Reference Manual,
May 2005.

[8] D. Arora, A. Raghunathan, S. Ravi, and N. K. Jha. Enhancing
security through hardware-assisted run-time validation of pro-
gram data properties. In Proc. CODES+ISSS, pages 190–195.
ACM, 2005.

[9] T. M. Austin. DIVA: a reliable substrate for deep submicron
microarchitecture design. In Proc. ACM/IEEE MICRO, pages
196–207, Haifa, Israel, November 1999.

[10] E. Biham, Y. Carmeli, and A. Shamir. Bug attacks. In Proc.
CRYPTO, pages 221–240, 2008.

[11] M. Bilzor, C. Irvine, T. Huffmire, and T. Levin. Security Check-
ers: Detecting Processor Malicious Inclusions at Runtime. In
Proc. IEEE HOST, pages 34–39, 2011.

[12] M. Bilzor, C. Irvine, T. Huffmire, and T. Levin. Evaluating
security requirements in a general-purpose processor by com-
bining assertion checkers with code coverage. In Proc. IEEE
HOST, pages 49–54, 2012.

[13] R. E. Bryant. Symbolic boolean manipulation with ordered
binary-decision diagrams. ACM Comput. Surv., 24(3):293–318,
Sept. 1992.

[14] J. R. Burch. Techniques for verifying superscalar microproces-
sors. In Proceedings of the 33rd annual Design Automation
Conference, pages 552–557. ACM, 1996.

[15] J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessor control. In Computer Aided Verification, pages
68–80. Springer, 1994.

[16] J. Chang, G. A. Reis, and D. I. August. Automatic instruction-
level software-only recovery. In Proc. DSN, pages 83–92, 2006.

[17] E. Clarke and D. Kroening. Hardware verification using
ANSI-C programs as a reference. In Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 308–311.
IEEE Computer Society Press, 2003.

[18] M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal
of Computer Security, 18(6):1157–1210, 2010.

[19] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies. VCC: A
practical system for verifying concurrent C. In TPHOLs 2009,
pages 23–42, 2009.

[20] K. Constantinides, O. Mutlu, and T. Austin. Online Design
Bug Detection: RTL Analysis, Flexible Mechanisms, and Eval-
uation. In Proc. MICRO, pages 282–293, 2008.

[21] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and
O. Schwarz. Formal Verification of Information Flow Security
for a Simple ARM-Based Separation Kernel. In Proc. CCS,
2013.

[22] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An

Architectural Framework for Software Recovery of Hardware
Faults. In Proc. ISCA, pages 497–508, 2010.

[23] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver.
In TACAS 2008, pages 337–340, 2008.

[24] T. de Raadt. Intel core 2. openbsd-misc mailing list, June 2007.
[25] Digilent Inc. Xupv5 development board. http:

//www.digilentinc.com/Products/Detail.cfm?NavTop=
2&NavSub=599&Prod=XUPV5.

[26] L. Duflot. CPU Bugs, CPU Backdoors and Consequences on
Security. In Proc. ESORICS, pages 580–599, 2008.

[27] S. Feng, S. Gupta, A. Ansari, S. A. Mahlke, and D. I. August.
Encore: Low-cost, Fine-grained Transient Fault Recovery. In
Proc. MICRO, pages 398–409, 2011.

[28] X. Feng and A. J. Hu. Early cutpoint insertion for high-level
software vs. RTL formal combinational equivalence verifica-
tion. In ACM/IEEE Design Automation Conference (DAC),
pages 1063–1068. ACM, 2006.

[29] H. Foster, K. Larsen, and M. Turpin. Introduction to the New
Accellera Open Verification Library. In DVCon06: Proceedings
of the Design and Verification Conference and exhibition, 2006.

[30] I. Hadzic, S. K. Udani, and J. M. Smith. FPGA Viruses. In
Proc. FPL, pages 291–300. Springer, 1999.

[31] J. Harrison. Formal verification of floating point trigonometric
functions. In Proceedings of the Third International Conference
on Formal Methods in Computer-Aided Design, FMCAD ’00,
pages 217–233, London, UK, UK, 2000. Springer-Verlag.

[32] M. Hicks. Practical Systems for Overcoming Processor Imper-
fections. PhD thesis, University of Illinois Urbana-Champaign,
April 2013.

[33] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M.
Smith. Overcoming an Untrusted Computing Base: Detecting
and Removing Malicious Hardware Automatically. In Proc.
IEEE Security and Privacy, pages 159–172, 2010.

[34] M. Hicks, C. Sturton, S. T. King, and J. M. Smith. SPECS: A
Lightweight Runtime Mechanism for Protecting Software from
Security-Critical Processor Bugs. In Proc. ASPLOS, 2015. to
appear.

[35] A. J. Hu. High-level vs. RTL combinational equivalence: An
introduction. In International Conference on Computer Design
(ICCD), pages 274–279. IEEE, 2007.

[36] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou.
Designing and implementing malicious hardware. In Proc.
USENIX LEET, April 2008.

[37] A. Koelbl, J. R. Burch, and C. Pixley. Memory modeling
in ESL-RTL equivalence checking. In ACM/IEEE Design
Automation Conference (DAC), pages 205–209. IEEE, 2007.

[38] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley. Solver technology
for system-level to RTL equivalence checking. In Conference
on Design, Automation and Test in Europe (DATE), pages 196–
201, 2009.

[39] A. Koelbl and C. Pixley. Constructing efficient formal models
from high-level descriptions using symbolic simulation. In-
ternational Journal of Parallel Programming, 33(6):645–666,
2005.

[40] S. Lemon. Researcher to Demonstrate Attack Code for Intel
Chips. http://www.pcworld.com/article/148353/security.html,
July 2008.

[41] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S.
Adve, and Y. Zhou. Understanding the Propagation of Hard
Errors to Software and Implications for Resilient System De-
sign. In Proc. ASPLOS, pages 265–276. ACM, 2008.

[42] K. McMillan. The Cadence SMV Model Checker. http://www.
kenmcmil.com/smv.html, 2007.

16

http://www.accellera.org/activities/committees/ovl
http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=599&Prod=XUPV5
http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=599&Prod=XUPV5
http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=599&Prod=XUPV5
http://www.pcworld.com/article/148353/security.html
http://www.kenmcmil.com/smv.html
http://www.kenmcmil.com/smv.html

[43] S. P. Miller and M. Srivas. Formal verification of the AAMP5
microprocessor: A case study in the industrial use of formal
methods. In Proceedings of the 1st Workshop on Industrial-
Strength Formal Specification Techniques, WIFT ’95, pages 2–,
Washington, DC, USA, 1995. IEEE Computer Society.

[44] S. Narayanasamy, B. Carneal, and B. Calder. Patching pro-
cessor design errors. In Proc. IEEE ICCD, pages 491–498,
October 2006.

[45] E. Nurvitadhi, J. Hoe, T. Kam, and S. Lu. Integrating formal
verification and high-level processor pipeline synthesis. In
Proceedings of the 9th Symposium on Application Specific
Processors (SASP). IEEE, 2011.

[46] OpenCores.org. OpenRISC OR1200 processor. http://
opencores.org/or1k/OR1200 OpenRISC Processor.

[47] OpenRISC.net. OpenRISC.net mailing list. http://lists.openrisc.
net.

[48] V. Patankar, A. Jain, and R. Bryant. Formal verification of an
ARM processor. In Proceedings of the Twelfth International
Conference on VLSI Design, pages 282–287, 1999.

[49] C. Pham, Z. Estrada, P. Cao, Z. Kalbarczyk, and R. Iyer.
Reliability and Security Monitoring of Virtual Machines Using
Hardware Architectural Invariants. In Proc. DSN, 2014.

[50] C. Pham, Z. J. Estrada, P. Cao, Z. Kalbarczyk, and R. K.
Iyer. Building Reliable and Secure Virtual Machines Using
Architectural Invariants. IEEE Security and Privacy, 12(5):82–
85, Sept 2014.

[51] R. Rubenstein. Open Source MCU core steps in to power third
generation chip, January 2014. http://www.newelectronics.co.
uk/electronics-technology/open-source-mcu-core-steps-in-to-
power-third-generation-chip/59110/.

[52] S. Sahoo, M.-L. Li, P. Ramachandran, S. Adve, V. Adve, and
Y. Zhou. Using likely program invariants to detect hardware
errors. In Proc. DSN, pages 70–79, 2008.

[53] S. R. Sarangi, A. Tiwari, and J. Torrellas. Phoenix: Detecting
and Recovering from Permanent Processor Design Bugs with
Programmable Hardware. In Proc. MICRO, pages 26–37, 2006.

[54] F. B. Schneider. Enforceable Security Policies. ACM TISSEC,
3(1):30–50, Feb. 2000.

[55] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood.
SafetyNet: Improving the Availability of Shared Memory Mul-
tiprocessors with Global Checkpoint/Recovery. In Proc. ISCA,
pages 123–134, Anchorage, Alaska, May 2002.

[56] S. Srinivasan and M. Velev. Formal verification of an Intel XS-
cale processor model with scoreboarding, specialized execution
pipelines, and impress data-memory exceptions. In Proceedings
of the First ACM and IEEE International Conference on Formal
Methods and Models for Co-Design. ACM and IEEE, 2003.

[57] M. Srivas and S. Miller. Applying formal verification to a
commercial microprocessor. In Proceedings of the Asia and
South Pacific Design Automation Conference, 1995.

[58] C. Sturton, M. Hicks, D. Wagner, and S. T. King. Defeating
UCI: Building stealthy and malicious hardware. In Proc. IEEE
Security and Privacy, pages 64–77, 2011.

[59] Trust-Hub. https://www.trust-hub.org/.
[60] I. Wagner and V. Bertacco. Engineering Trust with Semantic

Guardians. In Proc. DATE, pages 743–748, 2007.
[61] A. Waksman and S. Sethumadhavan. Tamper Evident Micro-

processors. In Proc. IEEE Security and Privacy, 2010.
[62] A. Waksman and S. Sethumadhavan. Silencing hardware

backdoors. In Proc. IEEE Security and Privacy, 2011.
[63] A. Waksman, M. Suozzo, and S. Sethumadhavan. FANCI:

Identification of Stealthy Malicious Logic Using Boolean Func-
tional Analysis. In Proc. CCS, pages 697–708, 2013.

[64] Xen.org security team. [xen-announce] xen security advisory
7 (cve-2012-0217) - pv. Xen mailing list, June 2012.

[65] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code. In Proc.
IEEE Security and Privacy, pages 79 –93, May 2009.

[66] J. Zhang, F. Yuan, and Q. Xu. DeTrust: Defeating hard-
ware trust verication with stealthy implicitly-triggered hardware
trojans. In Conference on Computer and Communications
Security. ACM, 2014.

17

http://opencores.org/or1k/OR1200_OpenRISC_Processor
http://opencores.org/or1k/OR1200_OpenRISC_Processor
http://lists.openrisc.net
http://lists.openrisc.net
http://www.newelectronics.co.uk/electronics-technology/open-source-mcu-core-steps-in-to-power-third-generation-chip/59110/
http://www.newelectronics.co.uk/electronics-technology/open-source-mcu-core-steps-in-to-power-third-generation-chip/59110/
http://www.newelectronics.co.uk/electronics-technology/open-source-mcu-core-steps-in-to-power-third-generation-chip/59110/

XI. APPENDIX A: INVARIANTS
The tables here are from [34] and re-printed with the authors’ permission.

ID MAGICCARPET Invariant OVL Assertion-based Implementation
1 Execution privilege matches page privilege always((SR SM & MMU SXE) ‖ (SR SM & MMU UXE))
2 SPR = GPR in register move instructions posedge(INSN = l.MTSPR, SPR = GPR)

3 Updates to exception registers make sense posedge((PC & 0xFFFFF0FF) = 0, (EEAR = EA) && (EPCR = SR[DSX] ? PPC-4 : PPC) && (ESR =
(SR & 0xFFFFDFFF)))

4 Destination matches the target posedge(GPR WRITTEN, GPR TARGET = (INSN & TARGET MASK))

5 Memory value in = register value out posedge((INSN = l.LWZ) ‖ (INSN = l.LHZ) ‖ (INSN = l.LHS) ‖ (INSN = l.LBZ) ‖ (INSN = l.LBS), GPR
= MEM BUS)

6 Register value in = memory value out posedge((INSN = l.SW) ‖ (INSN = l.SH) ‖ (INSN = l.SB), GPR = MEM BUS)

7 Memory address = effective address posedge((INSN = l.SW) ‖ (INSN = l.SH) ‖ (INSN = l.SB) ‖ (INSN = l.LWZ) ‖ (INSN = l.LHZ) ‖ (INSN
= l.LHS) ‖ (INSN = l.LBZ) ‖ (INSN = l.LBS), ADDR CPU = ADDR BUS)

8 Privilege escalates correctly posedge(SR[‘OR1200 SR SM], (RST = 1) ‖ (PC = 0x00000X00))

9 Privilege deescalates correctly posedge(INSN = l.RFE, SR[‘OR1200 SR SM] = ESR[‘OR1200 SR SM]) && posedge((INSN = l.MTSPR)
&& (INSN target = SR), SR[‘OR1200 SR SM] = GPR SOURCE[‘OR1200 SR SM])

10 Jumps update the PC correctly next((INSN = JMP) ‖ (INSN = BR), PC = EA, 2)
11 Jumps update the LR correctly next((INSN = JMPL) ‖ (INSN = JMPLR), LR = PPC+4, 2)
12 Instruction is in a valid format always((INSN & Class Mask) = Class) && ((INSN & Reserved Mask) = 0)

13 Continuous Control Flow delta(PC, 4, 4) ‖ assert((INSN = JMP) ‖ (INSN = BR) ‖ (INSN = RFE)) ‖ assert((PC & 0xFFFFF0FF) =
0)

14 Return from exception updates state correctly next(INSN = l.RFE, (SR = ESR) && (PC = EPCR), 1)

15 Reg change implies that it is the instruction target
(posedge(GPR Written, (INSN & OPCODE MASK) = (20-2F, 06, 38)) && posedge(GPR Written, (INSN
& TARGET MASK) = GPR Written Addr)) ‖ posedge(GPR9 Written, ((INSN & OPCODE MASK) =
JAL) ‖ ((INSN & OPCODE MASK) = JALR))

16 SR is not written to a GPR in user mode posedge(GPR WRITTEN, GPR TARGET 6= SR)

17 Interrupt implies handled next((INSN & 0xFFFF0000) = 0x20000000, ((PC & 0x00000F00) = 0xE00) ‖ ((PC & 0x00000F00) =
0xC00), 1)

18 Instruction not changed in the pipeline next(IF flush & ICPU ack & IF freeze, INSN F = INSN MEM) ‖ next(ID freeze, INSN =
INSN F) ‖ next(EX freeze, INSN E = INSN)

Table III: Invariants developed to protect against security-critical processor bugs

ID MAGICCARPET Invariant Description
1 The privilege of the memory page the current instruction comes from matches the privilege of the processor.
2 Instructions that load a special-purpose register (privileged) with a value from a general-purpose register load do not modify the general-purpose register value.

3
The OR1200 has three registers that save the state of software when an exception occurs. The EPCR stores the PC at the time of the exception, the ESR stores
the status register (SR), and the EEAR stores the effective address at the time of the exception. This invariant fires when any of these exception registers are
not updated correctly.

4 The register update as the result of executing an instruction is the register specified as the target register by the instruction.
5 In memory loads, the value stored in the target register is exactly the value from the memory subsystem.
6 In memory stores, the value sent to the memory subsystem is exactly the value of the register specified in the store instruction.
7 The address sent to the memory subsystem is exactly the effective address given the GPR values and instruction contents (i.e., addressing mode and immediate).
8 If the execution privilege, stored in SR, goes from 0 (user mode) to 1 (supervisor mode), then it must be the result of taking an exception or a processor reset.

9 The execution privilege goes from 1 to 0 when a value with a 0 in the mode bit position is loaded into SR or when a return from exception is executed and
the mode bit in the ESR is 0.

10 Branch and jump instructions generate the correct effective address and that effective address is loaded correctly into the program counter (PC).
11 Jump and link instructions store the address of the instruction immediately following the delay slot instruction to the link register (LR).
12 The reserved bits of a given instruction are set to 0 for each instruction encoding class

13 The address of the current instruction is the address of the previous instruction plus four. This invariant is a building block used to trigger other invariants
that verify control flow discontinuities.

14 The return from exception instruction causes the PC to be loaded from EPCR and the SR to be loaded from ESR.
15 When a register changes, it must be specified as the target of the instruction.
16 When a target unprivileged register changes, the value written to that register is not equal to the SR.

17 When a software created interrupt occurs the processor passes control to the appropriate exception handler. In the OR1200, the exception handlers are at fixed
address in the start of the system’s address space.

18

Once the instruction fetch stage latches a new instruction, that instruction stays the same as it transitions between pipeline changes. In the OR1200, the
instruction is not needed by the memory or write-back stages, so the invariant only checks up to the execute stage. Additionally, the OR1200 squashes
mid-pipeline instructions by changing the instruction to a special no-op instruction, so we have to gate invariant 18 on a check to see if the instruction changed
to this special no-op.

Table IV: Detailed descriptions of invariants; IDs correspond to the invariant IDs in Table III.

18

	MAGICCARPET: Verified Detection and Recovery for Hardware-based Exploits
	Recommended Citation

	MAGICCARPET: Verified Detection and Recovery for Hardware-based Exploits
	Abstract
	Disciplines
	Comments

	Introduction
	Threat model
	Lifecycle assumptions
	Architectural assumptions
	Firmware assumptions
	Attacker model

	MagicCarpet overview
	Running example
	MagicCarpet components and interactions

	Design
	Invariant monitor

	Verification
	Configurable Assertion Fabric

	Recovery firmware
	Hardware/firmware interface
	Firmware/software interface
	Handling recursive violations
	Software managed reliability
	Proving correctness
	Assumptions
	Approach weaknesses

	MagicCarpet evaluation
	Implementation
	Effectiveness
	Recovering from the attacks
	Evaluating the cost of MagicCarpet
	Generalizing the results

	Limitations
	Additional related work
	Hardware verification
	Processor bugs
	Design-time malicious circuits
	Software-level assertions
	Recovery

	Conclusion
	References
	Appendix A: Invariants

