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High-Level Model Extraction via Symbolic
Execution?

Shaohui Wang, Srinivasan Dwarakanathan, Oleg Sokolsky and Insup Lee

Department of Computer and Information Science
University of Pennsylvania

{shaohui,srid}@seas.upenn.edu, {sokolsky,lee}@cis.upenn.edu

Abstract. We study the problem of extracting high-level state machine
models from software source code. Our target domain is GUI-driven ap-
plications for small hand-held devices such as cell phones and PDAs. In
such systems, a natural high-level model is captured by a state machine,
where states are GUI screens and button/menu item tappings are actions
that trigger transitions between states. The paper presents a symbolic
execution technique that allows us to identify states and transitions from
the application source code. We discuss an implementation of this tech-
nique that operates on a large subset of the C# language and apply
as a case study to the subsystem of a decision support tool for medical
diagnosis.

Keywords: Model based verification, model extraction, symbolic exe-
cution, static program analysis, GUI-driven applications

1 Introduction

We consider the problem of verification of user interface implementations in user-
centric reactive systems. Many of such systems are life-critical applications, for
examples personal decision support assistants for combat personnel or medical
devices. Such systems offer a user interface, through which the user can send
signals to the system and observe its responses. The user typically learns to
interact with the system by reading the user manual or through targeted training
sessions. In either case, the user forms a mental model of the system in his/her
mind. A deviation of the observed behavior from the mental model confuses the
user and can lead to hazardous situations.

We concentrate on GUI-driven handheld devices as a particular case of user-
centric reactive systems. This paper presents the second phase of a case study, in
which we analyze a point-of-injury data entry device application called AHLTA-
Mobile [1]. It is a point-of-care handheld medical assistant developed by the
Telemedicine and Advanced Technology Research Center (TATRC), approved
for use by the FDA and deployed in the U.S. Army. AHLTA-Mobile is a C#
application on the Microsoft Windows Mobile platform. It consists of a set

? This research has been supported in part by the FDA/TATRC grant MIPR-
6MRXMM6093 and NSF grants CNS-0720703 and CNS-0930647.
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Fig. 1. Expected behavior the MACE exam

of question-and-answer examinations that evaluate common battlefield injuries
such as concussions. Medical personnel is rigorously trained in the use of the
device and operate in the environment that does not give them time to think
about unexpected interactions.

We concentrated on a subset of AHLTA-Mobile’s behavior, the Military
Acute Concussion Evaluation (MACE) module. MACE is a series of eight GUI
screens, displaying forms to be completed by the user. Seven consecutive screens
are used to enter results of the user examination, while the last screen, MACE
Result, is used to enter diagnosis and offers the possibility to save the results in
a database. Entering from the MainScreen to the first, the screens are navigated
by invoking the Next Screen button on each screen or the Previous menu item in
the Tools menu. In response to users invoking an action, the system moves to
a different screen or updates information on the current screen. Note that the
user can enter data into the appropriate fields on the screen, but cannot modify
user interface actions.

We use finite state machines, extended with local variables, to specify the de-
vice behavior. Our modeling approach, suitable for handheld devices with small
screens, identifies screens with states and clickable user interface elements (such
as buttons and menu items) with actions that effect the change of state. Such
an approach may be insufficient for a desktop applications that often display
multiple screens simultaneously and dynamically modify screen in response to
user actions. In handheld devices, however, screens are typically created stati-
cally and only one screen is shown at any time. An extended finite state machine
model of the MACE behavior is shown in Figure 1.

In the first phase of the case study, reported in [4], we applied model-based
testing using the formalization of user-observable behavior of the device that



had been manually extracted from the detailed but informal specification in the
documentation. The objective of the work presented in this paper was to extract
a model from the source code of the device software in order to perform a more
exhaustive comparison with the specification.

With this modeling approach, we obtain a model that captures the expected
behavior at a high level of abstraction, expressed by an extended finite state
machine. To facilitate verification, we aim to extract a model from the source
code at the same level of abstraction. This is in stark contrast with most of
existing model extraction and software model checking tools (e.g. [3, 7, 5, 9, 20]),
which extract very low-level models that reflect minute details of the program
execution. By skipping over unnecessary details, we can have a simpler and more
scalable model extraction algorithm.

The two models, one obtained from the software specification describing how
the software should respond to the user interactions, and the other from the
extraction following our approach presented in the paper, can be compared and
checked for inconsistencies to reveal possible implementation defects[17, 18]. In
these approaches, the author assumed the models for user comprehension of the
system (mental models) are described in finite state machines, as are the models
for the actual system behavior. A mental model and a system model as well as
a consistent invariant are fed to a model checker to see if violations occur. If
so, a so-called surprise is found, and a trace is reported by the model checker
for cause analysis. Our intent is to use a similar idea for inconsistency checking
between software specification and implementation, while the model extraction
approach presented in this paper is a first step to obtain such an implementation
model.

In order to extract the high-level model, we identify GUI library calls that
are used in the creation of screens and UI widgets associated with them. We then
apply symbolic execution, starting from the constructor of the main class, and
discover how these library calls are made, thus collecting states for the model.
For each screen identified in this way, we use symbolic execution of the widget
callbacks looking for the library calls that display a screen, each of which is a
transition in the model.

The main contribution of this work is the application of symbolic execution
to the extraction of a high-level abstraction of the system behavior. A more
technical contribution is the notion of enriched symbolic object, which makes the
application of symbolic evaluation to object-oriented programs easier. Finally,
we describe an implementation of the tool that performs model extraction from
GUI-driven C# programs.

The paper is organized as follows. Section 2 describes identification of states
and transitions within the source code and gives a high-level overview of our
model extraction approach. Section 3 describes the application of symbolic exe-
cution to model extraction using enriched symbolic objects and introduces the
prototype implementation of the analyzer. Section 4 presents results of the case
study. We summarize related work in Section 5 and conclude with discussions of
future extensions in Section 6 and a summary.



2 The Approach

In our approach, we identify a user screen shown on handheld devices to be a state
in a finite state machine. On the screen, there are UI widgets which are usually
associated with callback functions which make changes to program variables
and lead the user from screen to screen. Typically the UI widgets are buttons
or menu items which respond to user tapping in a specific area of the screen.
These tapping events trigger transitions in the finite state machine. In situations
where only certain values of program variables can enable a button/menu item,
these values are reflected as the guard for this transition. The relevant program
variables are captured in the finite state machine as local variables.

Screen/Transition
Information

Type
Repository

Source
Code

FSM

Two-level List of
Screens/UI Widgets

Syntactic
Parsing

Model
Reconstruction

Screen/Transition
Exploration

Initial State
Identification

Fig. 2. Overall approach for user-level model extraction

Our approach is depicted in Figure 2. We first parse the source code to
generate a collection of abstract syntax trees for the source code, called the type
repository. It allows us to retrieve method signatures, method bodies, field types,
etc., for analysis.

We then apply the symbolic execution technique to the program, described
in Subsection 3.1, to gather information for the purpose of screen/transition
exploration. Specifically, we collect a list of screen objects that are potentially
shown to the user. For each collected screen, we identify all the UI elements that
have been assigned a callback function.

In the screen/transition exploration phase, we start from the last collected
screen as the initial state for the state machine. For each of its buttons or menu
items, we perform symbolic execution of the corresponding callback function,
looking for the next screen that will appear. If the symbolic execution branches,
we use the conjunction of the conditions along the path as a guard for the
transition. The name of the widget becomes the label of this transition. In this
way, we established one possible transition from the initial screen to a possible
next screen, triggered by the widget tapping event.

To identify all such transitions for the reachable screens, we maintain a two-
level list, containing the collected screens and entry points to callback functions
for their UI widgets to analyze. We then iterate over the two-level list and
perform the aforementioned screen exploration technique. When a new screen
is shown, we add it (and its callback functions) to the two-level list if it is not
processed already, and continue with the exploration. When all screens reachable



from the initial screen and their UI widgets are processed, the exploration phase
finishes.

After that, the model reconstruction phase converts the information gath-
ered in the screen/transition exploration phase into the state-machine form by
a straightforward traversal.
Assumptions. The approach described above is tailored to the common properties
of hand-held applications. The main assumption is that the user is presented
with only one screen at a time. Message boxes, which are overlaid on top of the
current screen, fit this assumption since the current screen becomes inaccessible
until the message box is closed. The second critical assumption is that screen
objects, once created, are immutable. UI widgets can be disabled and re-enabled,
but they are never added or removed once the screen object is created. Finally,
while screen classes can be instantiated any time during the execution of the
program, we assume that they do not depend on user input. Thus, conceptually,
the set of states is fixed from the beginning.

3 Symbolic Execution for Model Extraction

3.1 Symbolic Execution

Symbolic execution[8, 15] is a static program analysis technique which mimics
running the program symbolically. It takes program inputs as symbols and views
the execution of the program as computing a function of symbols. When the
variables are dereferenced in later computations, their symbolic values are used.

In symbolic execution, the analyzer keeps a tree data structure with symbolic
states as nodes. A symbolic state consists of a (symbolic) variable binding b, a
path condition p, and a program counter c as a triple 〈b, p, c〉, where
– a symbolic variable binding b is a set of pairs of the form (v, s), where v

refers to a variable in the program, and s is the (symbolic) value for v;
– a path condition p is a set of constraints on program variables under which

the execution can reach the current symbolic state; and
– a program counter c indicates the next statement to execute in the analysis.

Let l = {l1, . . . , lr} be a set of program statements where no conditional
or loop statements occur. The symbolic execution on this program l can be
formally viewed as a series of transformations starting from an initial symbolic
state 〈b0, p0, c0〉. After symbolically executing the program, a sequence

〈b0, p0, c0〉 l1 〈b1, p1, c1〉 l2 · · · lr 〈br, pr, cr〉
is produced, from where certain interesting information can be extracted.

Conditional or loop statements potentially branch the analysis into sub-cases
if conditional guards or loop bounds cannot be symbolically evaluated. Thus,
the process of symbolic execution essentially produces a symbolic execution tree,
where the tree nodes are symbolic states and labels on edges are the constraints
the symbolic analyzer has imposed on program variables, in order to reach from
one node to another.

Suppose there is an evaluate function which, for each symbolic state and a
given expression, is either able to evaluate and return the symbolic value for the



expression at this symbolic state, or, if it cannot, create a brand new symbolic
value and return it. The way common program constructs transform symbolic
states is informally described below, while a formal characterization can be found
in [8].

– For an assignment, the analyzer evaluates the right hand side expression and
assigns it to the left hand side variable. In other words, assignments update
the variable binding component of a symbolic state.

– Statement blocks are viewed as a list of statements to be analyzed in turn.
– When a method call is encountered, either as a statement or as part of an

expression, the analyzer performs context switch, which starts a temporary
symbolic state with references to variables in the calling context via parame-
ter passing, and symbolically executes the body of the called method. Upon
finishing analyzing the method body or encountering a return statement,
the analyzer backpropagates changes in the resulting symbolic state to the
symbolic state from where the method is called.

– For return statements, only context switching is performed and the changes
are backpropagated. An additional symbolic value is available to the calling
context if an expression is returned.

– Conditional statements. For simplicity, we consider only if. . . then. . . else. . .
statements. When the evaluate function can symbolically evaluate the guard
of the if statement, the analyzer knows which branch to analyze so it pro-
ceeds with the corresponding block without branching, while adding the
guard (or its negation) to the path condition if the then part (or the else

part) is executed. If it is not possible to do so, the analyzer will branch the
symbolic execution tree from the current node. Each child node is initially a
duplicate of the current symbolic state. To one branch, the analyzer adds a
constraint of the guard being true to its path condition and continues with
the then block; to the other, the negation of the guard is added to the path
condition and the else block is executed.

– Loops. Symbolic execution on loops depends on loop boundaries, which may
be changed inside the loop. Static analysis cannot always precisely analyze
loops due to their dynamic behaviors. One strategy of handling loops is to
unroll the loop once and continue the analysis. Specifically, the loop index
variable is assigned to the first value in range, and the loop body is processed
as a block. After processing this block, the loop is repeated with the boundary
changed to exclude the first value.

To use symbolic execution to analyze object-oriented programs in the source
code level, we parse the sorce code and build its abstract syntax tree. Thus we col-
lect a repository of class representations containing (a) method representations
consisting of method ids and their body statements, and (b) type information
for class fields.

The symbolic execution begins with a designated starting class and its Main
method. The body of the Main method is a list of statement nodes which are an-
alyzed sequentially following the aforementioned treatment for different program
constructs, according to their respective statement types.



using System;
using System.Collections;
class Program {

static void Main(string[] args) {
String n1 = "Form1";
int a = 1; int b = 2;
ArrayList l = new ArrayList();
l.Add(a); l.Add(b);
Screen s = new Screen(n1);
s.setIds(l);

}
}

class Screen {
String name;
ArrayList ids;

public Screen(String n) {
this.name = n;

}

public void setIds(ArrayList al) {
this.ids = al;

}
}

Fig. 3. Sample program demonstrating enriched symbolic objects/fields.

3.2 Enriched Symbolic Objects

In object-oriented program analysis, it is not enough to simply represent the
value of an object using one symbol. If so, data stored inside class/object fields
or collection types would become unavailable to the analyzer. A few approaches
exist to address this problem[13, 14].

In this paper, we propose the enriched symbolic objects data structure, in
which the contents of a symbolic object are directly captured. An enriched sym-
bolic object contains a variable’s name, type, creation point, as well as a symbolic
field which can be one of several possible kinds, according to what kind of pro-
gram variable the symbolic object represents. Specifically, the supported kinds
for symbolic fields are summarized and explained briefly below.
(a) simple: the same as usual symbolic values, used to represent simple types,

such as integers, booleans, etc.
(b) compound: an unordered collection of symbolic objects, such as sets.
(c) array: an ordered collection of symbolic objects, such as lists and vectors.
(d) object: a collection of symbolic objects, used to represent member fields of

an instance of a class.
(e) class: a collection of symbolic objects, used to represent static member

fields of a class. This is unique per class.
(f) symbol: a wrapping of another symbolic object, representing variable alias.

Each enriched symbolic object represents a program variable, and its sym-
bolic field contains its value. For a simple example, the program presented in
Figure 3 will create a hierarchy of enriched symbolic objects/fields shown in
Figure 4. Note that not all fields in SymObjs and SymFields are shown in the
figure.

Constructors and getters/setters are implemented for creating, reading and
updating these symbolic objects. With the enriched symbolic objects, whenever
the analyzer needs the symbolic values of a certain program variable, it will
check the kind of the symbolic field and use appropriate manipulation functions.

The analyzer is then able to easily inspect the inside of a symbolic object and
retrieve its relevant fields. Enriched symbolic objects also simplify the manipu-
lation of static fields and methods of classes. We assign a unique global symbolic
object holding the static fields and methods of a class, and direct all accesses to
them from instance variables (if any) to this unique object.
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3.3 Exploring Reachable Screens and Transitions

We describe the algorithm to extract high-level models using the technique of
symbolic execution based on enriched symbolic objects in this subsection. The
idea behind our algorithm is to augment the standard symbolic execution ana-
lyzer so that it becomes aware of screen creation and showing, records possible
triggers for screen transitions and performs analysis on the collected triggers.

In GUI programming, screens are created via instantiating a system/framework
predefined screen class, or its subclasses, e.g., System.Windows.Form in C#. We
equip the analyzer with necessary knowledge on which class types and their de-
rived classes define screens. To identify the set of all potential screens that might
appear on user device during the process of symbolic execution, we record when-
ever a variable of screen types is created. Recall that the type information can
be retrieved from the type repository during the parsing phase. These variables
hold references to potential screens.

There are two more tasks to finish: (a) to identify which screen is initial; and
(b) to identify what screens are actually reachable via which transitions from the
initial screen. They are achieved in two phases, namely Initial State Identification
and Screen/Transition Exploration in Figure 2, respectively.

In the Initial State Identification phase, the analyzer starts with the Main

method of a designated class, performs the analysis, and builds the symbolic
execution tree as described in Subsection 3.1.

When the symbolic analyzer reaches a point where initialization for the pro-
gram has finished and a screen is shown to the user waiting for interactions,1 the
last screen shown is the initial screen, as well as the initial state of the finite state
machine model we extract. We start the exploration phase from the symbolic

1 In our case study, the particular statement is Application.Run(). In essence, the
code for keeping a program running in idle state waiting for user inputs would vary,
but the idea here is the same.



state at the detection of the initial screen, which we call the exploration starting
state.

At this point, the range of user inputs may be overwhelming. To extract
a finite state machine model from the program, we use a special exploration
technique.

We maintain a conceptual two-level list L for use in the exploration. The
first level contains all the symbolic objects of screen types the analyzer has
encountered. Corresponding to each screen variable s in the first level, there is
a list, denoted U(s), containing all the UI widgets which have been assigned
a callback function. We use f(u) to denote the callback function for widget u.
Initially, the two-level list contains only the initial screen s0 and U(s0).

The exploration starts with a widget u from U(s) for a selected screen s by
performing symbolic execution of the callback function f(u) in the exploration
starting state. Whenever another screen s′ is shown to the user during the sym-
bolic execution, we add s′ and U(s′) to the two-level list L, if s′ 6∈ L. This

discovers one transition s
u−−→ s′ from screen s to screen s′ via the selected UI

widget u. The exploration collects information for model reconstruction, marks
this transition as processed, and continues with the next UI widget in U(s), with
a fresh copy of exploration starting state. When all elements in U(s) is processed,
we mark s as processed and continue with the next screen in L.

If during the exploration the analyzer branches due to a conditional state-
ment, the condition is added to the path condition of the symbolic states. We
obtain the guard for the transition by computing the set difference of the path
condition for the symbolic state where s′ is discovered and that of the exploration
starting state. Algorithm 1 details the process.

Scenarios where the execution of a callback function does not show a new
screen are treated as it creates a self-loop in the state machine. An important
special case occurs if the callback hides the current screen but does not show
another one. This situation is treated as an error in the application that causes
the target state to become unspecified.

With the collected state/transition tuples, the finite state machine model is
easily reconstructed. We identify any instance of the same screen class to be the
same state in the finite state machine, and then we add transitions according to
their source/target states, and attach guards if any.

3.4 Analyzer Implementation

We implemented the algorithms described above in a Java-based prototype tool.
We use a version of C# parser generated by JavaCC [12]. The parser implements
a sufficiently large subset of C# language features. The parser constructs the
type repository, storing class representations and method bodies in the form of
abstract syntax trees.

The analyzer takes the name of the main application class as input. The
first phase of the analysis runs symbolic execution of the constructor of the
main class and identifies the initial screen. This phase completes when each



Algorithm 1: Screen/Transition Exploration

input : two-level list L with initial screen, exploration starting state state

output: list trans of gathered states transitions for FSM reconstruction
initialization: trans ← ∅;
while L contains unprocessed screen do

screen ← next screen in L; widgets ← U(screen);
while widgets contains unprocessed widget do

widget ← next one in widgets;
state 0 ← state;
start symbolic execution from state 0 with the callback function

f(widget) until (a) target screen is shown, or (b) the callback
function is finished, or (c) a statement for exiting the program;

if Case (b) then target ← screen;
if Case (c) then target ← Exit;
guard ← PathConditionCurrSymbolicState\ PathConditionstate;
add the tuple 〈screen, widget, guard, target〉 as a piece of model

reconstruction information to trans;
mark widget as processed;
if Case (a) ∧ target 6∈ L then add target and U(target) to L

end
mark screen as processed

end
return trans

branch of symbolic execution reaches the Application.Run() statement, which
transfers control to the C# message loop and displays the initial screen. The
second phase of screen/transition exploration collects the tuples used in the
model reconstruction phase as defined above.

The current implementation produces the extracted state machine in textual
format. Graphical representations as well as inputs to other finite state machine
analysis tools can be straightforwardly generated.

Currently the analyzer supports essential features in object-oriented pro-
gram analysis. Class definitions and inheritance, method representations, field
information, built-in primitive types and basic operations on them are sup-
ported. The analyzer processes most statement types including assignments,
method calls/returns, statement blocks, conditional statements, and loops (for
and foreach). Issues in dealing with a few remaining program constructs are
found in Section 6. A complete list of supported and unsupported C# language
features is attached in Appendix A.

4 Experimental Results

For purposes of testing our model exploration algorithm and implementation of
the symbolic execution analyzer based on the data structure of enriched symbolic
objects, we applied the analyzer to the MACE subsystem of the AHLTA-Mobile
project.



----Identified Screens----
MainScreen(MainScreen.MainScreen at ms =

MainScreen.MainScreen(this);)
Form1(Form1.Form1 at s[0] = Form1.Form1(this);)
Form2(Form2.Form2 at s[1] = Form2.Form2(this);)
Form3(Form3.Form3 at s[2] = Form3.Form3(this);)
Form4(Form4.Form4 at s[3] = Form4.Form4(this);)
Form5(Form5.Form5 at s[4] = Form5.Form5(this);)
Form6(Form6.Form6 at s[5] = Form6.Form6(this);)
Form7(Form7.Form7 at s[6] = Form7.Form7(this);)
MaceResult(MaceResult.MaceResult at s[7]

= MaceResult.MaceResult(this);)
Initial state: [MainScreen(ms.Show at ms.Show();)]
----Identified Transitions----
MainScreen:quitButton::Exit
MainScreen:examButton::Form1
Form1:prevMenuItem::MainScreen
Form1:nextMenuItem:NOT(textBox1.Text=="");:Form2
Form1:nextMenuItem:textBox1.Text=="";:Form1
Form1:exitMenuItem::MainScreen
Form2:prevMenuItem::Form1
Form2:nextMenuItem:NOT(textBox2.Text=="");:Form3
Form2:nextMenuItem:textBox2.Text=="";:Form2
Form2:exitMenuItem::MainScreen

Form3:prevMenuItem::Form2
Form3:nextMenuItem:NOT(textBox3.Text=="");:Form4
Form3:nextMenuItem:textBox3.Text=="";:Form3
Form3:exitMenuItem::MainScreen
Form4:prevMenuItem::Form3
Form4:nextMenuItem:NOT(textBox4.Text=="");:Form5
Form4:nextMenuItem:textBox4.Text=="";:Form4
Form4:exitMenuItem::MainScreen
Form5:prevMenuItem::Form4
Form5:nextMenuItem:NOT(textBox5.Text=="");:Form6
Form5:nextMenuItem:textBox5.Text=="";:Form5
Form5:exitMenuItem::MainScreen
Form6:prevMenuItem::Form5
Form6:nextMenuItem:NOT(textBox6.Text=="");:Form7
Form6:nextMenuItem:textBox6.Text=="";:Form6
Form6:exitMenuItem::MainScreen
Form7:prevMenuItem::Form6
Form7:nextMenuItem:NOT(textBox7.Text=="");

:MaceResult
Form7:nextMenuItem:textBox7.Text=="";:Form7
Form7:exitMenuItem::MainScreen
MaceResult:prevMenuItem::Form7
MaceResult:signMenuItem::MainScreen
MaceResult:exitMenuItem::MainScreen

Fig. 5. Analyzer output for MACE subsystem of AHLTA-Mobile

For the case study, we modified the source code of the application in the fol-
lowing ways. Several major features, such as storing information in the database,
transmission over the network, and creating installer cabinet files, should be
transparent to the user, according to the system documentation. These features
were removed by manual “slicing”, since we are not aware of program slicing
tools that work at the C# source code level. We reduced the large number of
input fields on the screens and simplified data validation to just check for the
presence of inputs. Links on the main screen to other exam modules that were
not included in the case study were also removed.

We made several other modifications to replace C# constructs that are not
supported by the analyzer with equivalent code. For example, constants defined
in enumerations were replaced with their values directly. Partial class definitions,
commonly seen in C# GUI programming, were manually combined.

The output of the analyzer invoked on the source code of the resulting ap-
plication is shown in Figure 5. It is easy to see that the resulting finite states
machine model is isomorphic to the one shown in Figure 1. The only difference
is in names of states and transition guards.

5 Related Work

State-machine modeling of GUI-based programs. This modeling approach has
been primarily applied in the context of testing. In [2, 23], the authors explored
observable effects of GUI on the program (e.g., changes on program data re-
flected by some UI components) by identifying complete interaction sequences
(UI widgets involved and sequence of actions invoked by the user). These se-
quences and changes of program status were represented using FSM models. In



our previous work [4], we used the NModel tool [11] to test compliance of a
GUI-based system with a behavioral specification, constructed with the same
modeling approach used in this paper. However, none of these papers addressed
the question of how these models are obtained.

Model Extraction. There is much work on the extraction of formal models from
software, primarily in the context of software model checking [3, 5, 7, 9, 20]. The
main difference is that models extracted in these approaches are very low-level:
the state is an assignment of values to program variables at each step of the
execution. Our approach serves a different purpose and obtains a much higher-
level model.

The work on model extraction for GUI programs closest to ours is [9]. The
authors also used symbolic execution techniques, but for the purpose of test
case generation with regards to on-screen widgets for data collection. Their ap-
proach relies on concrete execution of the code using instrumentation. Symbolic
execution of event handlers is mentioned but not discussed in detail.

The work presented in [20] bears a broader goal than ours in that they try
to reverse-engineer Java Swing programs to obtain a program model. The state
is defined as a collection of program variables that record user inputs from text
fields and radio buttons for choices. Each user event may lead from one state to
another. Their techniques may be useful in our context for more data-intensive
applications. However their work is ongoing and details of model extraction
techniques are not revealed.

Symbolic Execution. Symbolic execution [8, 15] has been studied extensively and
has its applications in a large variety of program analysis [6, 13, 14, 16]. For exam-
ple, in [6], symbolic execution has been employed to analyze partial correctness
and general safety properties of concurrent Ada programs. In [13], the authors
investigated invariants for particular data structures using universal symbolic
execution, i.e., not only for inputs but also for every reading of an lvalue that is
not bound, the analyzer will assign a new symbolic value to it. [16] also surveys
several other research trends and applications of symbolic execution.

In [14], the ideas of lazy initialization and generalized symbolic execution are
proposed. The fields of an object are only lazily initialized when dereferenced.
The generalized symbolic execution differs from universal symbolic execution
in [13] slightly in that a null element can be assigned to a variable during its
symbolic evaluation so that potential program errors caused by reference to null

pointers can be systematically analyzed.

Subclassing are also addressed in [14] by remembering certain type informa-
tion from the program under analysis, while type casting is not mentioned in
their approach either. In our approach, we used enriched symbolic objects for the
purpose of handling collection objects. This is a simple yet effective approach
in our setting. Usually the number of screen objects in GUI applications on
handheld devices is limited. Our approach explicitly and directly handles these
objects, while the approach in [14] essentially asks an external constraint solver
for the symbolic value to assign to the object.



Several existing tools such as Java PathFinder[22], jCUTE[19], or Pex[21]
are based on, or utilize, symbolic techniques. Aside from the language differences
(Java vs. C#, bytecode vs. source code), a common missing feature from these
tools is the ability of state/transition exploration, proposed in this paper. Weav-
ing our state/transition exploration algorithm into these tools may be a choice,
but our focus at the current step is to verify the effectiveness of our algorithm,
rather than a general purpose extension to these tools.

6 Discussions

Our tool is a useful first step toward extraction of user-level models from source
code. To make the tool more useful in practice, we can extend it in several ways.
Completion of C# language features. Several features of C# are not supported by
our parser/analyzer. Unsupported features include namespaces, partial classes,
accessibility controls, interfaces, data types other than int/uint/bool/string,
some expression/statement types (switch/case conditionals, do/while loops,
break/continue/goto statements, etc.). Implementing these features would be
important to make the tool applicable to real code; yet they do not bring any
new aspects to model extraction.
Exception handling. Exceptions that are raised during the interaction with the
user are, conceptually, easy to handle. Most such exceptions – such as invalid
inputs or a broken network connection – are caught by the application and pre-
sented to the user in warning messages. However, exceptions that occur during
initialization present a challenge. Such exceptions are typically catastrophic; that
is, execution is aborted before interaction with the user begins and the state ma-
chine is, effectively, never constructed. In our current implementation, uncaught
exceptions result in aborting the model extraction. This can be improved in the
future by introducing special error states into the model. Exceptions that are
caught are processed as alternative branches by the analyzer. If different screens
are shown as a result of an exception, the state machine will contain transitions
labeled by exceptions.
Slicing. Many details of the application code are transparent to the user and are
not reflected in the state machine model. For example, the device in the case
study stores entered data and, once the exam is complete, transfers results in a
database. Performing a slicing step prior to symbolic execution will reduce the
amount of code to be processed and the size of the context, making the tool
more efficient.
Abstracting from UI libraries. Currently, our tool targets programs built using
the .NET Forms UI framework. However, our model extraction approach is not
specific to Forms. It is tempting to encapsulate the model extraction in such a way
that it can work with different UI frameworks, such as the Windows Presentation
Framework. Our model extraction needs to be able to identify several operations
that any UI framework provides: creating screens, adding UI widgets to a screen,
adding callbacks to a widget, etc. Each of these operations corresponds to library
calls, which vary in different UI frameworks. It should be possible to provide a



description of the relevant calls and their parameters for each UI framework,
instead of hard-coding this information into the analyzer. Starting the analyzer,
the user will specify the UI framework to use. The analyzer then interprets the
corresponding description.

By the same token, our approach is not specific to C#. We may be able to
abstract the source language, as long as the parser can produce the appropriate
type repository. However, making the type repository format independent of
the source language is a research problem in its own right, since the symbolic
execution engine needs to have precise understanding of its semantics.
Overcoming tool limitations. Because we rely on static analysis techniques for
model extraction, we by necessity over-approximate the set of behaviors cap-
tured by the state machine model. Techniques that improve accuracy of static
analysis (for example, predicting loop bounds) would improve precision of model
extraction. One can also consider combining symbolic execution with concrete
execution of code portions in the spirit of [19].

7 Conclusion

We presented an approach for the extraction of high-level models of GUI-driven
software. Our modeling approach is targeting applications on small hand-held
devices, which present the user with one screen at a time. In applications that
run on such devices, screens tend to be defined statically in the code and are not
modified during the user interaction. We are modeling screens as states in the
model, and invocations of UI widgets as transitions between states.

The model extraction technique is based on the symbolic execution of the
application source code, which allows us to statically track references to the
screens as symbolic objects and use them to reconstruct the state machine. To
be able to do this, we present the enriched symbolic objects data structure that
keeps track of the symbolic values of class instances.

We have implemented our model extraction technique in a tool and used it
to obtain the model of a decision support device for medical personnel.

Besides extending the capabiblities of our symbolic analyzer tool for model
extraction with more language features, we are also studying the problem of de-
tecting significant inconsistencies between software specification and implemen-
tation in the medical diagnosis software domain, with model-based techniques
and our extracted models as a basis.

A Feature List

In this appendix, we list the assumptions and language features of the C# lan-
guage that our analyzer currently does and does not support. The categorization
for the feature list is taken from the C# language definition [10]. The “Parser”
and “Analyzer” columns indicate whether, and if yes, to what extent, they are
supported in the parser level or the analyzer level, separately.
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Bandera: extracting finite-state models from java source code. In: Proceedings of
the 22nd international conference on Software engineering. pp. 439–448 (2000)

6. Dillon, L., Kemmerer, R., Harrison, L.: An experience with two symbolic execution-
based approaches to formal verification of Ada tasking programs. In: The 2nd
Workshop on Software Testing, Verification, and Analysis (1988)

7. Dwyer, M.B., Hatcliff, J., Hoosier, M.: Building your own software model checker
using the bogor extensible model checking framework. In: Proceedings of 17th
Conference on Computer-Aided Verification (CAV) (2005)

8. Fahringer, T., Scholz, B.: Advanced symbolic analysis for compilers: new techniques
and algorithms for symbolic program analysis and optimization. Springer-Verlag,
Berlin, Heidelberg (2003)

9. Ganov, S.R., Killmar, C., Khurshid, S., Perry, D.E.: Test generation for graphical
user interfaces based on symbolic execution. In: The 3rd International Workshop
on Automation of Software Test (AST) (2008)

10. Hejlsberg, A., Wiltamuth, S., Golde, P.: The C# Programming Language (Mi-
crosoft .Net Development Series). Addison-Wesley Professional, 2nd edn. (Oct
2003)

11. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing
and Analysis with C#. Cambridge University Press (2008)

12. JavaCC: The Java Compiler Compiler, https://javacc.dev.java.net/

13. Kannan, Y., Sen, K.: Universal symbolic execution and its application to likely data
structure invariant generation. In: Proceedings of the 2008 International Sympo-
sium on Software Testing and Analysis. ACM (2008)
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