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Cue Integration Using Affine Arithmetic and Gaussians Cue Integration Using Affine Arithmetic and Gaussians 

Abstract Abstract 
In this paper we describe how the connections between affine forms, zonotopes, and Gaussian 
distributions help us devise an automated cue integration technique for tracking deformable models. This 
integration technique is based on the confidence estimates of each cue. We use affine forms to bound 
these confidences. Affine forms represent bounded intervals, with a well-defined set of arithmetic 
operations. They are constructed from the sum of several independent components. An n-dimensional 
affine form describes a complex convex polytope, called a zonotope. Because these components lie in 
bounded intervals, Lindeberg's theorem, a modified version of the central limit theorem,can be used to 
justify a Gaussian approximation of the affine form. 

We present a new expectation-based algorithm to find the best Gaussian approximation of an affine form. 

Both the new and the previous algorithm run in O(n2m) time, where n is the dimension of the affine form, 
and m is the number of independent components. The constants in the running time of new algorithm, 
however, are much smaller, and as a result it runs 40 times faster than the previous one for equal inputs. 
We show that using the Berry-Esseen theorem it is possible to calculate an upper bound for the error in 
the Gaussian approximation. Using affine forms and the conversion algorithm, we create a method for 
automatically integrating cues in the tracking process of a deformable model. The tracking process is 
described as a dynamical system, in which we model the force contribution of each cue as an affine form. 
We integrate their Gaussian approximations using a Kalman filter as a maximum likelihood estimator. 
This method not only provides an integrated result that is dependent on the quality of each on of the cues, 
but also provides a measure of confidence in the final result. We evaluate our new estimation algorithm in 
experiments, and we demonstrate our deformable model-based face tracking system as an application of 
this algorithm. 
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Cue Integration using AÆne Arithmeti
 andGaussiansSiome Goldenstein1, Christian Vogler1, and Dimitris Metaxas21 CIS Department - University Of Pennsylvania200 S 33rd Street, Philadelphia PA 19104, USA,fsiome,
voglerg�graphi
s.
is.upenn.edu2 CS Department - Rutgers University110 Frelinghuysen Road, Pis
ataway, NJ 08854-8019dnm�
s.rutgers.eduAbstra
t. In this paper we des
ribe how the 
onne
tions between aÆneforms, zonotopes, and Gaussian distributions help us devise an auto-mated 
ue integration te
hnique for tra
king deformable models. Thisintegration te
hnique is based on the 
on�den
e estimates of ea
h 
ue.We use aÆne forms to bound these 
on�den
es. AÆne forms representbounded intervals, with a well-de�ned set of arithmeti
 operations. Theyare 
onstru
ted from the sum of several independent 
omponents. Ann-dimensional aÆne form des
ribes a 
omplex 
onvex polytope, 
alled azonotope. Be
ause these 
omponents lie in bounded intervals, Lindeberg'stheorem, a modi�ed version of the 
entral limit theorem, 
an be used tojustify a Gaussian approximation of the aÆne form.We present a new expe
tation-based algorithm to �nd the best Gaus-sian approximation of an aÆne form. Both the new and the previousalgorithm run in O(n2m) time, where n is the dimension of the aÆneform, and m is the number of independent 
omponents. The 
onstantsin the running time of new algorithm, however, are mu
h smaller, andas a result it runs 40 times faster than the previous one for equal inputs.We show that using the Berry-Esseen theorem it is possible to 
al
ulatean upper bound for the error in the Gaussian approximation. Using aÆneforms and the 
onversion algorithm, we 
reate a method for automati-
ally integrating 
ues in the tra
king pro
ess of a deformable model. Thetra
king pro
ess is des
ribed as a dynami
al system, in whi
h we modelthe for
e 
ontribution of ea
h 
ue as an aÆne form. We integrate theirGaussian approximations using a Kalman �lter as a maximum likelihoodestimator. This method not only provides an integrated result that is de-pendent on the quality of ea
h on of the 
ues, but also provides a measureof 
on�den
e in the �nal result. We evaluate our new estimation algo-rithm in experiments, and we demonstrate our deformable model-basedfa
e tra
king system as an appli
ation of this algorithm.keywords: \statisti
al 
ue integration", \deformable model tra
king", \aÆnearithmeti
", \visual motion"



1 Introdu
tionOne of the most diÆ
ult problems in tra
king parameterized deformable modelsis the integration of multiple 
ues, su
h as point tra
king, edge tra
king, andopti
al 
ow. As long as only one 
ue is used at a time, estimation of the modelparameters is a straightforward pro
ess. The pi
ture 
hanges dramati
ally, how-ever, when multiple 
ues a
t on a model at the same time. Due to the noiseinherent in most low-level 
omputer vision 
ues, di�erent 
ues will exhibit dif-ferent degrees of reliability at di�erent points on the model surfa
e. Even worse,often the distribution of the noise is unknown, thus making it diÆ
ult to 
aptureit with a probability distribution. As a result, the optimal automated integrationof 
ues to yield the best possible parameter estimate of the model is a diÆ
ultand open resear
h problem.In this paper we dis
uss a novel statisti
al approa
h to 
ue integration thatis based on the interrelationships between aÆne forms, their manipulation viaaÆne arithmeti
, Gaussian probability distributions, and zonotopes. We demon-strate how known results and te
hniques from di�erent areas of literature 
anbe integrated and we develop a new method for 
onversion between aÆne formsand Gaussians. We demonstrate how to use these results and this method for au-tomated 
ue integration that avoids making assumptions about the probabilitydistribution of the noise in ea
h of the 
ues.In a deformable model framework, ea
h 
ue (e.g., edges, opti
al 
ow) ismapped into parameter spa
e as generalized for
es that a
t on the model and
hange its parameters through a dynami
al system. Ea
h 
ue, in turn, is typi
allythe sum of a large number of lo
al image 
ontributions, su
h as the positions ofvarious edges from an edge tra
ker. We use aÆne forms to represent the supportof the lo
al image 
ontributions, while avoiding making assumptions about thea
tual shape of their probability distribution fun
tions. We use aÆne arithmeti
to sum them up.AÆne forms and aÆne arithmeti
 were developed in the nineties as an alter-native to 
lassi
al interval arithmeti
. AÆne arithmeti
 provides tighter boundsthan interval arithmeti
 in 
as
aded operations. Unlike interval arithmeti
 [1, 2℄,it also preserves information about mutual dependen
ies between results. Sin
ethen it has been used in numeri
al appli
ations [3, 4℄, ele
tri
al engineering [5℄,
omputer graphi
s [6, 7℄, and 
omputer vision [8℄.Gaussian probability distributions are a widely-used tool in engineering [9,10℄, as they have several desirable properties: preservation of linearity, 
ompa
t-ness of representation via the mean and 
ovarian
e matrix, and several 
onver-gen
e theorems, notably the 
entral limit theorem. Given 
ertain 
onditions thatwe dis
uss in this paper, we 
an use Lindeberg's theorem [9, pp 262℄ to show thatthe sum of the lo
al image 
ontributions making up a 
ue 
an be approximatedby a Gaussian-distributed random variable, whose support is represented by anaÆne form. Moreover, we dis
uss how to bound the error in the approximation.In [8℄ a geometry-inspired heuristi
 was developed to obtain a Gaussian ap-proximation of an aÆne form. In this paper we develop an improved method toestimate the Gaussian distribution from an aÆne form, whi
h is approximately



40 times faster. The new method ensures that the estimated Gaussian distribu-tion has the same �rst-and se
ond-order moments as the respe
tive aÆne form.Consequently, this estimate is a

urate, as long as the 
onditions for Lindeberg'stheorem hold true. In addition, we relax the assumption made in [8℄ that thedistributions of the 
ontributions making up a 
ue had to be part of the sameparametri
 family.Zonotopes are 
onvex volumes formed through the Minkowsky sum of linesegments. They have been known in the geometry literature for more than ade
ade [11℄. They appear, among other things, in polytope and point intera
-tion [12℄, support ve
tor ma
hines [13℄, and in dynami
al systems [14℄. We showthat the region de�ned by an aÆne form is a zonotope, and we demonstrate howzonotope theorems a�e
t the algorithmi
 
omplexity of 
onverting aÆne formsto Gaussian probability distributions.The rest of the paper is organized as follows: We start with a short dis
ussionof previous work, then provide an overview on aÆne forms and aÆne arithmeti
.We then dis
uss the requirements of approximating aÆne forms with Gaussians,the bounds of the error of this approximation, and a new algorithm to �nd thisapproximation. We then 
onne
t aÆne forms to zonotopes to provide insightsinto the 
omputational 
omplexity of the 
onversion from aÆne forms to Gaus-sians. Finally, we des
ribe how to apply this algorithm to integrate 
ues in adeformable model framework. In parti
ular we present results of this integrationte
hnique in deformable model-based fa
e tra
king.1.1 Previous WorkCue integration is not a new issue. In [15℄ a two-
ue integration algorithm is pre-sented based on the use of 
onstraints, in whi
h opti
al 
ow is de�ned to be the
onstraining (i.e., most important) 
ue, and edges to be the se
ondary 
ue. Thisframework requires an a priori user-based de�nition of whi
h 
ue is the mostimportant one. A voting approa
h for disambiguation of 
ue information, alongwith a very thorough review and 
omparison of several methods, is proposedin [16℄. In this paper, we des
ribe a method for automated 
ue integration thatis general enough to merge 
ontributions of 
ues that are stru
turally very dis-similar. Unlike previous work, our approa
h avoids making a priori assumptionsabout the distribution of noise in 
ues, and it weights ea
h 
ue's 
ontributiondynami
ally depending on how mu
h noise it 
ontains.There are several general statisti
al approa
hes designed for tra
king, estima-tion, and predi
tion. The Kalman �lter [17℄, for example, treats the parameters,as well as the observations, as multivariate Gaussians and also uses a linearpredi
tive model. Another example, Parti
le �lter [18, 19℄ te
hniques, whi
h arealso known in 
omputer vision as 
ondensation [20, 21℄, propagate the evolutionof non-Gaussian sampled distributions through nonlinear operations. Unfortu-nately, the ne
essary number of samples of the distribution grows exponentiallywith the dimension of the parameter ve
tor. Parti
le �lters also require knowl-edge of the observations' distributions.



Our 
ue integration method 
annot be dire
tly 
ompared with the previousexamples, sin
e we do not represent our parameters as random variables. Instead,we use the statisti
s of the 
ues only to 
ombine them in an optimal way. Ouralgorithm does not assume any parti
ular distribution in the observations. It justestimates their bounded support. Unlike 
ondensation whose 
omplexity growsexponentially with the dimension of the parameter spa
e, the 
omplexity of ourapproa
h is polynomial in the dimension of the parameter spa
e.2 AÆne Arithmeti
AÆne arithmeti
 is a numeri
 te
hnique similar to interval arithmeti
, in thesense that it propagates regions, instead of numbers, a
ross arithmeti
 opera-tions. The atom of aÆne arithmeti
 is 
alled an aÆne form. An aÆne form â isrepresented as: â = a0 + mXi=1 ai"i (1)In R1 the 
oeÆ
ients ai are real numbers, whereas in Rn they are n-dimensionalve
tors. The "i are symboli
 real variables whose values are unknown, but guar-anteed to lie in the interval [�1 : : : 1℄. The quantity a0 is 
alled the 
entral value(mean), and the "i are 
alled the noise variables. Ea
h noise variable "i repre-sents an independent 
omponent of the total un
ertainty. In R1, â represents aninterval and in Rn a 
onvex polytope, whose number of fa
es depends on n andm. For ea
h operation on real numbers we have to de�ne a 
ounterpart for aÆneforms. AÆne operations like ẑ = �x̂ + �ŷ + �; (2)are 
al
ulated exa
tly, where x̂, ŷ, and ẑ are aÆne forms represented byx̂ = x0 + mXi=1 xi"i ŷ = y0 + mXi=1 yi"i ẑ = z0 + mXi=1 zi"i:�, �, and � are real 
onstants. The de�nition of this operation isz0 = �x0 + �y0 + � and zi = �xi + �yi: (3)Note that any operation de�ned on two aÆne forms also de�nes this operationon an aÆne form and a s
alar, be
ause a s
alar s is trivially represented by theaÆne form a0 = s.Although in this paper we only need the aÆne operation spe
i�ed in Equa-tion 2, other operations, in
luding non-aÆne ones, are also possible. A thoroughdes
ription of how to do operations like re
ipro
ation, multipli
ation, exponen-tiations, trigonometry, or how to 
reate a new operation, 
an be found in [22℄.An aÆne form that is the result of an operation on other aÆne forms sharesits noise variables with the aÆne forms of the operands. As a result, and in




ontrast to interval arithmeti
, aÆne forms preserve interdependen
ies betweenvalues from intermediate 
omputations. After a series of 
as
ading operations,aÆne arithmeti
 usually provides tighter bounds than interval arithmeti
.As an example, 
onsider a two-dimensional aÆne form f
j as follows:^f
j = �f̂x̂fy� =�1020�+� 2�3� "1++�10� "2 +�01� "3 +��14 � "4 (4)This representation, shown in Figure 1, des
ribes a ve
tor whose mean is at(10; 20)>. If f̂x and f̂y were independent, their spanned intervals would be[6 : : : 14℄ and [12 : : :28℄, respe
tively (plotted as the light gray on Figure 1).However, be
ause f̂x and f̂y share the noise variables "1 and "4, their variationsare not independent. In fa
t, f
j has to lie in the dark region of Figure 1.

6 14

12

28

Fig. 1. Region de�ned by the two-dimensional aÆne form of Equation 4. In dark graywe see the region of the aÆne form, while in light gray is the region of the interval
ounterpart. Sour
e: \Self-Validated Numeri
al Methods and Appli
ations", Stol� andFigueiredo, 1997 (used with permission).



3 Gaussians that Approximate AÆne FormsIn this se
tion we see how to 
onne
t Gaussian distributions to aÆne forms. Weshow how we 
an use a modi�ed version of the 
entral limit theorem to justifythe approximation of an aÆne form with a Gaussian distribution, and how we
an bound the error of the approximation.We use aÆne forms to represent regions of un
ertainty in a variable. From [22℄:\At any stable instant in an AA 
omputation, there is a single assignment ofvalues from U = [�1; 1℄ to ea
h of the noise variables in use at that time thatmakes the value of every aÆne form equal to the value of the 
orrespondingquantity in the ideal 
omputation." In other words, the aÆne form representsthe domain, or support, of the underlying random variable.All noise variables are independent; thus the aÆne form is the sum of manyindependent random variables, whose support is a bounded one-dimensional seg-ment embedded in Rn. Ea
h of the noise variables has an unknown probabilitydistribution, so we 
annot assume that they are identi
ally distributed. Hen
e,we 
annot apply the 
entral limit theorem immediately. We 
an, however, usethe multivariate version of Lindeberg's theorem [9, pp 262+℄. It is an exten-sion to the 
lassi
al 
entral limit theorem. In its one-dimensional form it tellsus that for mutually independent one-dimensional random variables X1; X2; : : :with distributions F1; F2; : : : su
h thatE(Xk) = 0; Var(Xk) = �2k;if the Lindeberg 
ondition [9, pp 518+℄ is satis�ed, the normalized sumS�n = (X1 + � � �+Xn)=sn;where s2n = �21 + � � � + �2n, tends to the normal distribution R with zero ex-pe
tation and unit varian
e. Intuitively, the Lindeberg 
ondition itself ensuresthat individual varian
es �2k are small if 
ompared to their sum s2n | no sin-gle random variable dominates the sum. This theorem 
an be generalized tomultivariate distributions, as per [9, pp 262+℄.We ensure that E["k℄ = 0 by 
onstru
ting the aÆne forms su
h that they aresymmetri
 around the estimates of the lo
al 
ontributions in ea
h 
ue; see Se
-tion 5 for further dis
ussion. We ensure that the Lindeberg 
ondition is satis�edby having enough lo
al 
ontributions with bounded un
ertainties. Unfortunately,this theorem does not tell us how many noise variables are ne
essary in orderfor the Gaussian to be a good approximation. For estimating the error in theapproximation, we need another theorem, the Berry-Esseen theorem [9, pp 544℄:Let the Xk be independent variables su
h thatE[Xk℄ = 0; E[X2k ℄ = �2k ; E[jX3k j℄ = �k;and s2n = �21 + � � �+ �2m; rn = �1 + � � �+ �m:



Then jFm �Rj � 6rns3n ; (5)where Fm is the distribution of the normalized sum (X1 + � � � + Xm)=sn, andRis the normal distribution with zero mean and unit varian
e.Sin
e the support of ea
h noise variable "k is [�1; 1℄ and E["k℄ = 0, thethird moment �"k < 0:25 exists. Hen
e, we 
an use the result of Equation 5 toprovide an upper bound for the error along the prin
ipal axes of a Gaussianapproximation of an aÆne form â.3.1 Estimation of the Gaussian DistributionWe have shown that the approximation of an aÆne form with a Gaussian distri-bution is justi�ed, and that we 
an 
ompute how 
losely the aÆne form representsa Gaussian distribution. We now show how to 
ompute this approximation.The Gaussian distribution that approximates â with~̂a = 1p(2�)nj�
je� 12 (a��
)>��1
 (a��
) (6)is 
ompletely parameterized by a mean ve
tor � and a 
ovarian
e matrix �.The mean ve
tor is �
 = E [â℄ = E[a0℄ + mXi=1 E[ai"i℄= a0 + mXi=1 aiE["i℄: (7)Sin
e we ensure that E["i℄ = 0, �
 = a0: (8)The estimation of the 
ovarian
e matrix � is not immediately obvious. Be
auseaÆne forms represent 
onvex polytopes, a geometri
 approa
h springs to mind.We presented su
h an algorithm in previous work [8℄, and now des
ribe its mainproperties brie
y.3.2 Geometri
 Algorithm for the Gaussian EstimationThis algorithm �rst 
al
ulates the eigenve
tors of �, and then it 
al
ulates theeigenvalues. It assumes that the prin
ipal axes of the Gaussian distribution arethe same as the axes of the minimum-volume hyperparallelopiped that boundsthe polytope. In order to �nd this hyperparallelopiped, it starts with an or-thonormal basis of Rn. Ea
h step rotates two of the basis ve
tors in their planeand �nds the minimum-area bounding re
tangle of the aÆne form proje
ted ontothat plane. The rotation preserves the orthonormality of the basis and redu
es



the total volume of the bounding hyperparallelopiped. This pro
edure eventuallyrea
hes a minimum, sin
e ea
h step never in
reases the volume. In pra
ti
e, weapply the rotation on
e for every pair of verti
es.To �nd the eigenvalue asso
iated with a given eigenve
tor v we proje
t âonto v, and obtain a one-dimensional aÆne form. The eigenvalue is�2v = mXj=1(aj � v)2E["j ℄ = mXj=1(aj � v)2�2"j : (9)This equation 
an be further simpli�ed to�2v = �2" mXj=1(aj � v)2 (10)if we assume that all noise variables have the same varian
e �2" . Note that us-ing the same varian
e does not imply that the noise variables are identi
allydistributed. Another option is to 
hoose the eigenvalues su
h that a �xed per-
entage of the Gaussian is 
ontained within the bounding hyperparallelopiped,by using Q, the tabulated tails of Gaussian distributions.This geometri
 algorithm runs in O(n2m) time and uses O(nm) spa
e, wheren is the dimension of the aÆne form, andm is the number of noise variables. Thisalgorithm has three serious short
omings: First, there is no guarantee that it will
onverge to the global minimum of the hyperparallelopiped's volume. Se
ond,the assumption that the minimum-volume hyperparallelopiped is always alignedwith the optimum prin
ipal axes of the Gaussian distribution is not valid. Weshow a 
ounterexample for two dimensions in Figure 6. Third, the algorithm is
ompli
ated to implement.We now present a novel, mu
h simpler algorithm that also provides mu
hbetter estimates of the prin
ipal axes of the Gaussian.3.3 Expe
tation Algorithm for the Gaussian EstimationInstead of interpreting the aÆne form geometri
ally, the new algorithm takesadvantage of the expe
tation properties of the random variables. Using the def-inition of the 
ovarian
e matrix � and Equation 8:�â = E �(â� a0)(â� a0)>� : (11)Ea
h element �ij of � is�ij = E [(â� a0)i(â� a0)j ℄ = E "( mXk=1 aki"k)( mXl=1 alj"l)# ;where aki is the ith 
omponent of the ve
tor ak in â, and (â � a0)i is the one-dimensional aÆne form 
orresponding to the ith 
omponent of (â� a0).



Expanding the sum we observe that, be
ause the " are mutually independentand have zero mean, the 
ross terms are zero:�ij = mXk=1 akiakjE �"2k� = mXk=1 akiakj�2"k ; (12)or, if assuming a 
ommon �2" as in Equation 10,�ij = �2" mXk=1 akiakj : (13)We build � using Equation 12 or 10. Note that both equations are just amultipli
ation of an n-by-m matrix with its transpose, where the �"kak form the
olumns of the matrix.With a standard implementation of a matrix multipli
ation, the expe
tationalgorithm has the same 
omplexity as the geometri
 algorithm, O(n2m), wheren is the dimension of the aÆne form and m is the number of noise variables.Computing a single �ij , however, is mu
h 
heaper than the rotation of a pairof basis ve
tors in the geometri
 algorithm, so in pra
ti
e, the expe
tation algo-rithm runs approximately 40 times faster. In addition, unlike in the geometri
algorithm, there are no data dependen
ies in the 
omputation of �, so it is fullyparallelizable.Beside the speed di�eren
e and simpli
ity of implementation, the expe
tationalgorithm's most 
ompelling advantage is that it provides an optimal estimateof the prin
ipal axes of the Gaussian distribution if the 
onditions of Linde-berg's theorem are satis�ed. The reason is that if these 
onditions are satis�ed,Lindeberg's theorem tells us that the aÆne form indeed represents a Gaussianprobability distribution. Furthermore, the Gaussian estimated from Equations 12or 10 has both the same �rst-order and se
ond-order moments as the aÆne form.We show an example of this estimator's a

ura
y in Figure 6(b).So far we have shown that the upper bound for 
onverting an aÆne form to aGaussian approximation is O(n2m). The question remains whether it is possibleto use the geometri
 properties of aÆne forms to devise a better algorithm thatimproves this bound. We now dis
uss this question by 
onne
ting aÆne formsto zonotopes.4 Zonotopes and AÆne FormsZonotopes are a spe
ial type of 
onvex polytopes obtained through theMinkowskysum of line segments 
entered on the origin [11, 23℄. Constru
ting the zonotopevia the Minkowsky sum is equivalent to 
onstru
ting the boundary of an aÆneform 
entered around the origin: Ea
h 
omponent aj from an aÆne form â(Equation 1) represents half the segment in the zonotope formulation, be
ause"j 2 [�1; 1℄, so the full line segment goes from �aj to +aj . The number of seg-ments in the zonotope de�nes its degree, and is the same as the number of usednoise variables in the aÆne form.



Zonotopes in three-dimensions are 
alled zonohedra; some examples are shownin Figure 2.

(a) (b) (
)Fig. 2. Three examples of Zonohedra (three dimensional zonotopes). 2(a) Rhombi
Tria
ontahedron, 2(b) Trun
ated Small Rhombi
ubo
tahedron, and 2(
) Trun
atedI
osidode
ahedron. Sour
e: \Zonohedra and Zonotopes", Eppstein, 1995 (used withpermission).We 
an provide bounds on the number of fa
es and points in a zonotopeby noting that the points of the zonotope are the 
onvex hull of all the pointsgenerated by the 
onse
utive Minkowsky sum of the line segments. Ea
h linesegment adds two more points for ea
h existing point, so m line segments yield2m points. Based on [11, p. 23℄, the number of points in the 
onvex hull of the2m points is O(mn�1), immediately leading to O(mn�1) fa
es in a zonotope.These bounds make it abundantly 
lear that all geometri
 algorithms thatattempt to estimate the Gaussian distribution from the fa
es or boundary pointsof the aÆne form's region are doomed to fail. Although su
h algorithms wouldwork well for two and three dimensions, the 
omplexity explodes beyond these di-mensions. In fa
t, su
h algorithms would have a 
omplexity of at least O(mn�1),rendering them impra
ti
al for the dimensions we en
ounter in typi
al parame-ter ve
tors of deformable models. We 
on
lude that any eÆ
ient algorithm forgeometri
 pro
essing of an aÆne form 
an only use the information in the ve
-tors multiplying the noise variables, but not the information in the surfa
e ofthe 
onvex polytope represented by the aÆne form.Zonotopes are used in several appli
ations. In [14, 24℄ they are used for 
om-puting bounds of the orbits of dynami
al systems. These papers introdu
e aninteresting pro
edure (
as
ade algorithm) to redu
e the degree of a zonotope.In [13℄ the zonotopes are explored in training support ve
tor ma
hines, and in [12℄they are 
onne
ted to the problem of �nding the 
entroid of points with weightslying in a bounded interval.



5 Appli
ation: Cue Integration in Deformable ModelTra
kingWe now des
ribe how to use aÆne forms and their approximations by Gaussianto integrate multiple 
ues in a deformable model tra
king framework. The ad-vantage of using aÆne arithmeti
 is that we avoid making assumptions aboutthe exa
t probability distributions of the noise in ea
h 
ue. Furthermore thisapproa
h enables us to weight the 
ues dynami
ally, depending on how reliableea
h one is, as opposed to 
hoosing the most important 
ue a priori as in [15℄.Ea
h 
ue models lo
al 2D image 
ontributions as two-dimensional aÆneforms. The 
ue's generalized for
e is the sum of these lo
al 
ontributions, af-ter we proje
t them in the n-dimensional parameter spa
e, using the Ja
obianof the deformable model at ea
h point. We approximate the generalized for
e, ann-dimensional aÆne form, with a Gaussian (se
tion 3), and integrate all Gaus-sians using amaximum likelihood estimator. There is a more detailed explanationof some of these steps in [8℄.We apply our 
ue integration te
hnique in tra
king, where, based on imageobservations, we re
over the model's parameters as it evolves over time. Thisis not a normal inverse problem sin
e the 
hanges in the model between obser-vations are small. We de�ne the problem indu
tively. Using the 
orre
t modelparameters of the previous observation, we re
over the parameters that followthe model's evolution and mat
h them to the new observation.In the deformable model framework, tra
king the displa
ement of q betweentwo frames is a
hieved through a dynami
al system:_q = Kq+ fg; (14)where K is a sti�ness matrix, and fg is a generalized for
e. We use numeri
alintegration to solve this system, starting at the value of q at the end of theprevious frame. The system 
onverges to the 
losest point where the internaland external for
es rea
h an equilibrium [25℄.Di�erent 
ues 
an be stru
turally di�erent. Sometimes they 
ome from dis-tin
t images or 
ameras, sometimes they a�e
t disjoint sets of points. In thelatter s
enario, these di�erent 
ues 
omplement ea
h other. For example, a pointtra
ker 
ue works best in regions with 
omplex texture, while a shape from shad-ing 
ue works best in regions without texture. Cues 
an even 
ome from three-dimensional data (like a range s
anner). For these reasons, it is mu
h better tointegrate 
ues via the generalized for
es, rather than via the image for
es [8℄.In our method, ea
h 
ue 
 
reates a generalized for
e fg;
, through applyingmultiple image for
es simultaneously at points on the model:fg;
 =Xj B>j f
j ; (15)where B>j is the proje
ted model Ja
obian at point j, and f
j is the image for
ethat 
ue 
 applies at point j.



When multiple 
ues intera
t, some 
ollaborate, and some 
on
i
t. We needto 
ombine them into an uni�ed generalized for
e, and apply it to the dynami
alsystem in Equation 14. We use two-dimensional aÆne forms to model the imagefor
es, whi
h des
ribe in the image, how ea
h for
e 
an vary. For example, animage for
e from an edge dete
tor have more 
on�den
e along the gradient thanalong the tangential dire
tion. Figure 3 illustrates an individual image for
e in anedge dete
tor. Sin
e B is a 2-by-n matrix, B>f
j is just a set of aÆne operationsover an aÆne form, so Equation 15 results in a n-dimensional aÆne form thatrepresents the 
ue's generalized for
e.

Fig. 3. AÆne form for the image for
e in an edge dete
tor. The region along thenormal (gradient of the edge potential �eld) is smaller than the region along the edge,representing di�erent 
on�den
es along these axes.We assume independen
e between the image for
es the di�erent points inEquation 15. Thus we ensure that all noise variables in the aÆne form des
rib-ing fg;
 are independent. Using the te
hniques from se
tion 3, we approximatefg;
 with Gaussian. Thus, ea
h 
ue provides a Gaussian probability density dis-tribution of its generalized for
e.We now have redu
ed the 
ue integration problem to Gaussian integration.This problem 
an be solved with a Gaussian maximum likelihood estimator. Weuse a stati
 version of the Kalman �lter [26℄ to solve it optimally. The Kalman�lter estimates a new Gaussian distribution that optimally takes into a

ount allthe available information. We use the mean of this Gaussian as the generalizedfor
e fg, and the 
ovarian
e matrix as a measure of the estimate's robustness.6 Validation and ExperimentsWe implemented the new expe
tation-based Gaussian estimation method in ourdeformable fa
e tra
king system, as des
ribed in [8℄. We observed no degradation



of tra
king. Some snapshots 
an be seen in Figures 4 and 5. There was an overallspeedup of approximately 100 per
ent. The model we used in these sequen
eshas 192 points, and there are 31 parameters to 
ontrol its shape and motion.
Fig. 4. Real images: Tra
king of fa
e rotation and translation with statisti
al methods
Fig. 5. Real images: Tra
king of raising eyebrows with simultaneous head tilting withstatisti
al methodsWhile inspe
ting the results, we 
ompared the bounding boxes' volumes ofthe aÆne forms along the 
ovarian
e matri
es' axes. The geometri
 algorithmestimation 
onsistently generated smaller volumes. Nevertheless, the minimalbounding box is not the best 
riterion to 
hoose, be
ause the volume is not ne
-essarily minimal along the aÆne form's prin
ipal axes. The expe
tation method
onsistently estimates a mat
h 
loser to the the desired orientation. In two-dimensions it is easy to visualize that he minimum volume bounding box maynot 
orrespond to the desired orientation axis: in Figures 6(a) and 6(b) we 
on-stru
t an aÆne form with 27 randomly generated noise variables 
entered aroundthe origin. We 
an see that the minimum volume bounding box is not alignedalong the prin
ipal 
omponents of the aÆne form.7 Con
lusionsIn this paper, we studied the mathemati
s of aÆne arithmeti
 and its appli
ationto the problem of 
ue integration. We saw that aÆne forms, zonotopes, andGaussian distributions are 
losely related, and explored this fa
t to develop anew algorithm to estimate a Gaussian from an aÆne form. Unlike 
ondensation,this algorithm s
ales well with the dimension of the parameter spa
e.Within this framework, a 
ue must be able to re
ognize regions of 
on�den
ein the image spa
e, and map them into aÆne forms. These image regions are



(a) (b)Fig. 6. Bounding box of aÆne form along the axis of the estimated 
ovarian
e matri
es.In 6(a) we see the bounding box (with volume 253.697) along the axis of the Gaussianestimated by the geometri
-based algorithm, in dark gray, against the aÆne form, inlight gray. In 6(b) we see the bounding box (with volume 261.161) along the axis of theGaussian estimated using our new expe
tation-based algorithm, in dark gray, againstthe same aÆne form, in light gray. Clearly, the �t in 6(b) is better, even though it doesnot minimize the volume.
onverted into parameter regions, using aÆne arithmeti
, and then summed up.The �nal 
ue 
ontribution has a large number of noise variables, sin
e ea
hlo
al image 
ontribution has at least two noise variables. Hen
e, in 
onjun
tionwith Lindeberg's Theorem, we 
an justify the assumption that the 
ue is wellrepresented as a Gaussian distribution in parameter spa
e. In addition, usingBerry-Esseen's theorem, we have a way to estimate how good a given aÆneform's Gaussian approximation is.Using the properties of zonotopes, we saw that any attempt to 
onvert anaÆne form to a Gaussian using the geometri
 information on the boundary wouldnot be 
omputationally eÆ
ient.We introdu
ed a new expe
tation-based method for the Gaussian approxima-tion that does not rely on any geometri
 information. Our new method dire
tly
onstru
ts the 
ovarian
e matrix of the aÆne form using expe
tation properties.Our previous geometri
 method obtained the set of axes that minimized thevolume of the bounding box parallel to it. We showed that this 
riterion is notwhat we look for. Our new expe
tation algorithm has also superior 
omputa-tional eÆ
ien
y. It is at least 40 times faster than the older method, and it iseasier to implement and maintain. In addition, our expe
tation inspired method



is fully parallelizable, sin
e there are no data dependen
ies in the 
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ulation ofevery element of the 
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