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Cue Integration Using Affine Arithmetic and Gaussians Cue Integration Using Affine Arithmetic and Gaussians 

Abstract Abstract 
In this paper we describe how the connections between affine forms, zonotopes, and Gaussian 
distributions help us devise an automated cue integration technique for tracking deformable models. This 
integration technique is based on the confidence estimates of each cue. We use affine forms to bound 
these confidences. Affine forms represent bounded intervals, with a well-defined set of arithmetic 
operations. They are constructed from the sum of several independent components. An n-dimensional 
affine form describes a complex convex polytope, called a zonotope. Because these components lie in 
bounded intervals, Lindeberg's theorem, a modified version of the central limit theorem,can be used to 
justify a Gaussian approximation of the affine form. 

We present a new expectation-based algorithm to find the best Gaussian approximation of an affine form. 

Both the new and the previous algorithm run in O(n2m) time, where n is the dimension of the affine form, 
and m is the number of independent components. The constants in the running time of new algorithm, 
however, are much smaller, and as a result it runs 40 times faster than the previous one for equal inputs. 
We show that using the Berry-Esseen theorem it is possible to calculate an upper bound for the error in 
the Gaussian approximation. Using affine forms and the conversion algorithm, we create a method for 
automatically integrating cues in the tracking process of a deformable model. The tracking process is 
described as a dynamical system, in which we model the force contribution of each cue as an affine form. 
We integrate their Gaussian approximations using a Kalman filter as a maximum likelihood estimator. 
This method not only provides an integrated result that is dependent on the quality of each on of the cues, 
but also provides a measure of confidence in the final result. We evaluate our new estimation algorithm in 
experiments, and we demonstrate our deformable model-based face tracking system as an application of 
this algorithm. 
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Cue Integration using AÆne Arithmeti andGaussiansSiome Goldenstein1, Christian Vogler1, and Dimitris Metaxas21 CIS Department - University Of Pennsylvania200 S 33rd Street, Philadelphia PA 19104, USA,fsiome,voglerg�graphis.is.upenn.edu2 CS Department - Rutgers University110 Frelinghuysen Road, Pisataway, NJ 08854-8019dnm�s.rutgers.eduAbstrat. In this paper we desribe how the onnetions between aÆneforms, zonotopes, and Gaussian distributions help us devise an auto-mated ue integration tehnique for traking deformable models. Thisintegration tehnique is based on the on�dene estimates of eah ue.We use aÆne forms to bound these on�denes. AÆne forms representbounded intervals, with a well-de�ned set of arithmeti operations. Theyare onstruted from the sum of several independent omponents. Ann-dimensional aÆne form desribes a omplex onvex polytope, alled azonotope. Beause these omponents lie in bounded intervals, Lindeberg'stheorem, a modi�ed version of the entral limit theorem, an be used tojustify a Gaussian approximation of the aÆne form.We present a new expetation-based algorithm to �nd the best Gaus-sian approximation of an aÆne form. Both the new and the previousalgorithm run in O(n2m) time, where n is the dimension of the aÆneform, and m is the number of independent omponents. The onstantsin the running time of new algorithm, however, are muh smaller, andas a result it runs 40 times faster than the previous one for equal inputs.We show that using the Berry-Esseen theorem it is possible to alulatean upper bound for the error in the Gaussian approximation. Using aÆneforms and the onversion algorithm, we reate a method for automati-ally integrating ues in the traking proess of a deformable model. Thetraking proess is desribed as a dynamial system, in whih we modelthe fore ontribution of eah ue as an aÆne form. We integrate theirGaussian approximations using a Kalman �lter as a maximum likelihoodestimator. This method not only provides an integrated result that is de-pendent on the quality of eah on of the ues, but also provides a measureof on�dene in the �nal result. We evaluate our new estimation algo-rithm in experiments, and we demonstrate our deformable model-basedfae traking system as an appliation of this algorithm.keywords: \statistial ue integration", \deformable model traking", \aÆnearithmeti", \visual motion"



1 IntrodutionOne of the most diÆult problems in traking parameterized deformable modelsis the integration of multiple ues, suh as point traking, edge traking, andoptial ow. As long as only one ue is used at a time, estimation of the modelparameters is a straightforward proess. The piture hanges dramatially, how-ever, when multiple ues at on a model at the same time. Due to the noiseinherent in most low-level omputer vision ues, di�erent ues will exhibit dif-ferent degrees of reliability at di�erent points on the model surfae. Even worse,often the distribution of the noise is unknown, thus making it diÆult to aptureit with a probability distribution. As a result, the optimal automated integrationof ues to yield the best possible parameter estimate of the model is a diÆultand open researh problem.In this paper we disuss a novel statistial approah to ue integration thatis based on the interrelationships between aÆne forms, their manipulation viaaÆne arithmeti, Gaussian probability distributions, and zonotopes. We demon-strate how known results and tehniques from di�erent areas of literature anbe integrated and we develop a new method for onversion between aÆne formsand Gaussians. We demonstrate how to use these results and this method for au-tomated ue integration that avoids making assumptions about the probabilitydistribution of the noise in eah of the ues.In a deformable model framework, eah ue (e.g., edges, optial ow) ismapped into parameter spae as generalized fores that at on the model andhange its parameters through a dynamial system. Eah ue, in turn, is typiallythe sum of a large number of loal image ontributions, suh as the positions ofvarious edges from an edge traker. We use aÆne forms to represent the supportof the loal image ontributions, while avoiding making assumptions about theatual shape of their probability distribution funtions. We use aÆne arithmetito sum them up.AÆne forms and aÆne arithmeti were developed in the nineties as an alter-native to lassial interval arithmeti. AÆne arithmeti provides tighter boundsthan interval arithmeti in asaded operations. Unlike interval arithmeti [1, 2℄,it also preserves information about mutual dependenies between results. Sinethen it has been used in numerial appliations [3, 4℄, eletrial engineering [5℄,omputer graphis [6, 7℄, and omputer vision [8℄.Gaussian probability distributions are a widely-used tool in engineering [9,10℄, as they have several desirable properties: preservation of linearity, ompat-ness of representation via the mean and ovariane matrix, and several onver-gene theorems, notably the entral limit theorem. Given ertain onditions thatwe disuss in this paper, we an use Lindeberg's theorem [9, pp 262℄ to show thatthe sum of the loal image ontributions making up a ue an be approximatedby a Gaussian-distributed random variable, whose support is represented by anaÆne form. Moreover, we disuss how to bound the error in the approximation.In [8℄ a geometry-inspired heuristi was developed to obtain a Gaussian ap-proximation of an aÆne form. In this paper we develop an improved method toestimate the Gaussian distribution from an aÆne form, whih is approximately



40 times faster. The new method ensures that the estimated Gaussian distribu-tion has the same �rst-and seond-order moments as the respetive aÆne form.Consequently, this estimate is aurate, as long as the onditions for Lindeberg'stheorem hold true. In addition, we relax the assumption made in [8℄ that thedistributions of the ontributions making up a ue had to be part of the sameparametri family.Zonotopes are onvex volumes formed through the Minkowsky sum of linesegments. They have been known in the geometry literature for more than adeade [11℄. They appear, among other things, in polytope and point intera-tion [12℄, support vetor mahines [13℄, and in dynamial systems [14℄. We showthat the region de�ned by an aÆne form is a zonotope, and we demonstrate howzonotope theorems a�et the algorithmi omplexity of onverting aÆne formsto Gaussian probability distributions.The rest of the paper is organized as follows: We start with a short disussionof previous work, then provide an overview on aÆne forms and aÆne arithmeti.We then disuss the requirements of approximating aÆne forms with Gaussians,the bounds of the error of this approximation, and a new algorithm to �nd thisapproximation. We then onnet aÆne forms to zonotopes to provide insightsinto the omputational omplexity of the onversion from aÆne forms to Gaus-sians. Finally, we desribe how to apply this algorithm to integrate ues in adeformable model framework. In partiular we present results of this integrationtehnique in deformable model-based fae traking.1.1 Previous WorkCue integration is not a new issue. In [15℄ a two-ue integration algorithm is pre-sented based on the use of onstraints, in whih optial ow is de�ned to be theonstraining (i.e., most important) ue, and edges to be the seondary ue. Thisframework requires an a priori user-based de�nition of whih ue is the mostimportant one. A voting approah for disambiguation of ue information, alongwith a very thorough review and omparison of several methods, is proposedin [16℄. In this paper, we desribe a method for automated ue integration thatis general enough to merge ontributions of ues that are struturally very dis-similar. Unlike previous work, our approah avoids making a priori assumptionsabout the distribution of noise in ues, and it weights eah ue's ontributiondynamially depending on how muh noise it ontains.There are several general statistial approahes designed for traking, estima-tion, and predition. The Kalman �lter [17℄, for example, treats the parameters,as well as the observations, as multivariate Gaussians and also uses a linearpreditive model. Another example, Partile �lter [18, 19℄ tehniques, whih arealso known in omputer vision as ondensation [20, 21℄, propagate the evolutionof non-Gaussian sampled distributions through nonlinear operations. Unfortu-nately, the neessary number of samples of the distribution grows exponentiallywith the dimension of the parameter vetor. Partile �lters also require knowl-edge of the observations' distributions.



Our ue integration method annot be diretly ompared with the previousexamples, sine we do not represent our parameters as random variables. Instead,we use the statistis of the ues only to ombine them in an optimal way. Ouralgorithm does not assume any partiular distribution in the observations. It justestimates their bounded support. Unlike ondensation whose omplexity growsexponentially with the dimension of the parameter spae, the omplexity of ourapproah is polynomial in the dimension of the parameter spae.2 AÆne ArithmetiAÆne arithmeti is a numeri tehnique similar to interval arithmeti, in thesense that it propagates regions, instead of numbers, aross arithmeti opera-tions. The atom of aÆne arithmeti is alled an aÆne form. An aÆne form â isrepresented as: â = a0 + mXi=1 ai"i (1)In R1 the oeÆients ai are real numbers, whereas in Rn they are n-dimensionalvetors. The "i are symboli real variables whose values are unknown, but guar-anteed to lie in the interval [�1 : : : 1℄. The quantity a0 is alled the entral value(mean), and the "i are alled the noise variables. Eah noise variable "i repre-sents an independent omponent of the total unertainty. In R1, â represents aninterval and in Rn a onvex polytope, whose number of faes depends on n andm. For eah operation on real numbers we have to de�ne a ounterpart for aÆneforms. AÆne operations like ẑ = �x̂ + �ŷ + �; (2)are alulated exatly, where x̂, ŷ, and ẑ are aÆne forms represented byx̂ = x0 + mXi=1 xi"i ŷ = y0 + mXi=1 yi"i ẑ = z0 + mXi=1 zi"i:�, �, and � are real onstants. The de�nition of this operation isz0 = �x0 + �y0 + � and zi = �xi + �yi: (3)Note that any operation de�ned on two aÆne forms also de�nes this operationon an aÆne form and a salar, beause a salar s is trivially represented by theaÆne form a0 = s.Although in this paper we only need the aÆne operation spei�ed in Equa-tion 2, other operations, inluding non-aÆne ones, are also possible. A thoroughdesription of how to do operations like reiproation, multipliation, exponen-tiations, trigonometry, or how to reate a new operation, an be found in [22℄.An aÆne form that is the result of an operation on other aÆne forms sharesits noise variables with the aÆne forms of the operands. As a result, and in



ontrast to interval arithmeti, aÆne forms preserve interdependenies betweenvalues from intermediate omputations. After a series of asading operations,aÆne arithmeti usually provides tighter bounds than interval arithmeti.As an example, onsider a two-dimensional aÆne form fj as follows:^fj = �f̂x̂fy� =�1020�+� 2�3� "1++�10� "2 +�01� "3 +��14 � "4 (4)This representation, shown in Figure 1, desribes a vetor whose mean is at(10; 20)>. If f̂x and f̂y were independent, their spanned intervals would be[6 : : : 14℄ and [12 : : :28℄, respetively (plotted as the light gray on Figure 1).However, beause f̂x and f̂y share the noise variables "1 and "4, their variationsare not independent. In fat, fj has to lie in the dark region of Figure 1.
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Fig. 1. Region de�ned by the two-dimensional aÆne form of Equation 4. In dark graywe see the region of the aÆne form, while in light gray is the region of the intervalounterpart. Soure: \Self-Validated Numerial Methods and Appliations", Stol� andFigueiredo, 1997 (used with permission).



3 Gaussians that Approximate AÆne FormsIn this setion we see how to onnet Gaussian distributions to aÆne forms. Weshow how we an use a modi�ed version of the entral limit theorem to justifythe approximation of an aÆne form with a Gaussian distribution, and how wean bound the error of the approximation.We use aÆne forms to represent regions of unertainty in a variable. From [22℄:\At any stable instant in an AA omputation, there is a single assignment ofvalues from U = [�1; 1℄ to eah of the noise variables in use at that time thatmakes the value of every aÆne form equal to the value of the orrespondingquantity in the ideal omputation." In other words, the aÆne form representsthe domain, or support, of the underlying random variable.All noise variables are independent; thus the aÆne form is the sum of manyindependent random variables, whose support is a bounded one-dimensional seg-ment embedded in Rn. Eah of the noise variables has an unknown probabilitydistribution, so we annot assume that they are identially distributed. Hene,we annot apply the entral limit theorem immediately. We an, however, usethe multivariate version of Lindeberg's theorem [9, pp 262+℄. It is an exten-sion to the lassial entral limit theorem. In its one-dimensional form it tellsus that for mutually independent one-dimensional random variables X1; X2; : : :with distributions F1; F2; : : : suh thatE(Xk) = 0; Var(Xk) = �2k;if the Lindeberg ondition [9, pp 518+℄ is satis�ed, the normalized sumS�n = (X1 + � � �+Xn)=sn;where s2n = �21 + � � � + �2n, tends to the normal distribution R with zero ex-petation and unit variane. Intuitively, the Lindeberg ondition itself ensuresthat individual varianes �2k are small if ompared to their sum s2n | no sin-gle random variable dominates the sum. This theorem an be generalized tomultivariate distributions, as per [9, pp 262+℄.We ensure that E["k℄ = 0 by onstruting the aÆne forms suh that they aresymmetri around the estimates of the loal ontributions in eah ue; see Se-tion 5 for further disussion. We ensure that the Lindeberg ondition is satis�edby having enough loal ontributions with bounded unertainties. Unfortunately,this theorem does not tell us how many noise variables are neessary in orderfor the Gaussian to be a good approximation. For estimating the error in theapproximation, we need another theorem, the Berry-Esseen theorem [9, pp 544℄:Let the Xk be independent variables suh thatE[Xk℄ = 0; E[X2k ℄ = �2k ; E[jX3k j℄ = �k;and s2n = �21 + � � �+ �2m; rn = �1 + � � �+ �m:



Then jFm �Rj � 6rns3n ; (5)where Fm is the distribution of the normalized sum (X1 + � � � + Xm)=sn, andRis the normal distribution with zero mean and unit variane.Sine the support of eah noise variable "k is [�1; 1℄ and E["k℄ = 0, thethird moment �"k < 0:25 exists. Hene, we an use the result of Equation 5 toprovide an upper bound for the error along the prinipal axes of a Gaussianapproximation of an aÆne form â.3.1 Estimation of the Gaussian DistributionWe have shown that the approximation of an aÆne form with a Gaussian distri-bution is justi�ed, and that we an ompute how losely the aÆne form representsa Gaussian distribution. We now show how to ompute this approximation.The Gaussian distribution that approximates â with~̂a = 1p(2�)nj�je� 12 (a��)>��1 (a��) (6)is ompletely parameterized by a mean vetor � and a ovariane matrix �.The mean vetor is � = E [â℄ = E[a0℄ + mXi=1 E[ai"i℄= a0 + mXi=1 aiE["i℄: (7)Sine we ensure that E["i℄ = 0, � = a0: (8)The estimation of the ovariane matrix � is not immediately obvious. BeauseaÆne forms represent onvex polytopes, a geometri approah springs to mind.We presented suh an algorithm in previous work [8℄, and now desribe its mainproperties briey.3.2 Geometri Algorithm for the Gaussian EstimationThis algorithm �rst alulates the eigenvetors of �, and then it alulates theeigenvalues. It assumes that the prinipal axes of the Gaussian distribution arethe same as the axes of the minimum-volume hyperparallelopiped that boundsthe polytope. In order to �nd this hyperparallelopiped, it starts with an or-thonormal basis of Rn. Eah step rotates two of the basis vetors in their planeand �nds the minimum-area bounding retangle of the aÆne form projeted ontothat plane. The rotation preserves the orthonormality of the basis and redues



the total volume of the bounding hyperparallelopiped. This proedure eventuallyreahes a minimum, sine eah step never inreases the volume. In pratie, weapply the rotation one for every pair of verties.To �nd the eigenvalue assoiated with a given eigenvetor v we projet âonto v, and obtain a one-dimensional aÆne form. The eigenvalue is�2v = mXj=1(aj � v)2E["j ℄ = mXj=1(aj � v)2�2"j : (9)This equation an be further simpli�ed to�2v = �2" mXj=1(aj � v)2 (10)if we assume that all noise variables have the same variane �2" . Note that us-ing the same variane does not imply that the noise variables are identiallydistributed. Another option is to hoose the eigenvalues suh that a �xed per-entage of the Gaussian is ontained within the bounding hyperparallelopiped,by using Q, the tabulated tails of Gaussian distributions.This geometri algorithm runs in O(n2m) time and uses O(nm) spae, wheren is the dimension of the aÆne form, andm is the number of noise variables. Thisalgorithm has three serious shortomings: First, there is no guarantee that it willonverge to the global minimum of the hyperparallelopiped's volume. Seond,the assumption that the minimum-volume hyperparallelopiped is always alignedwith the optimum prinipal axes of the Gaussian distribution is not valid. Weshow a ounterexample for two dimensions in Figure 6. Third, the algorithm isompliated to implement.We now present a novel, muh simpler algorithm that also provides muhbetter estimates of the prinipal axes of the Gaussian.3.3 Expetation Algorithm for the Gaussian EstimationInstead of interpreting the aÆne form geometrially, the new algorithm takesadvantage of the expetation properties of the random variables. Using the def-inition of the ovariane matrix � and Equation 8:�â = E �(â� a0)(â� a0)>� : (11)Eah element �ij of � is�ij = E [(â� a0)i(â� a0)j ℄ = E "( mXk=1 aki"k)( mXl=1 alj"l)# ;where aki is the ith omponent of the vetor ak in â, and (â � a0)i is the one-dimensional aÆne form orresponding to the ith omponent of (â� a0).



Expanding the sum we observe that, beause the " are mutually independentand have zero mean, the ross terms are zero:�ij = mXk=1 akiakjE �"2k� = mXk=1 akiakj�2"k ; (12)or, if assuming a ommon �2" as in Equation 10,�ij = �2" mXk=1 akiakj : (13)We build � using Equation 12 or 10. Note that both equations are just amultipliation of an n-by-m matrix with its transpose, where the �"kak form theolumns of the matrix.With a standard implementation of a matrix multipliation, the expetationalgorithm has the same omplexity as the geometri algorithm, O(n2m), wheren is the dimension of the aÆne form and m is the number of noise variables.Computing a single �ij , however, is muh heaper than the rotation of a pairof basis vetors in the geometri algorithm, so in pratie, the expetation algo-rithm runs approximately 40 times faster. In addition, unlike in the geometrialgorithm, there are no data dependenies in the omputation of �, so it is fullyparallelizable.Beside the speed di�erene and simpliity of implementation, the expetationalgorithm's most ompelling advantage is that it provides an optimal estimateof the prinipal axes of the Gaussian distribution if the onditions of Linde-berg's theorem are satis�ed. The reason is that if these onditions are satis�ed,Lindeberg's theorem tells us that the aÆne form indeed represents a Gaussianprobability distribution. Furthermore, the Gaussian estimated from Equations 12or 10 has both the same �rst-order and seond-order moments as the aÆne form.We show an example of this estimator's auray in Figure 6(b).So far we have shown that the upper bound for onverting an aÆne form to aGaussian approximation is O(n2m). The question remains whether it is possibleto use the geometri properties of aÆne forms to devise a better algorithm thatimproves this bound. We now disuss this question by onneting aÆne formsto zonotopes.4 Zonotopes and AÆne FormsZonotopes are a speial type of onvex polytopes obtained through theMinkowskysum of line segments entered on the origin [11, 23℄. Construting the zonotopevia the Minkowsky sum is equivalent to onstruting the boundary of an aÆneform entered around the origin: Eah omponent aj from an aÆne form â(Equation 1) represents half the segment in the zonotope formulation, beause"j 2 [�1; 1℄, so the full line segment goes from �aj to +aj . The number of seg-ments in the zonotope de�nes its degree, and is the same as the number of usednoise variables in the aÆne form.



Zonotopes in three-dimensions are alled zonohedra; some examples are shownin Figure 2.

(a) (b) ()Fig. 2. Three examples of Zonohedra (three dimensional zonotopes). 2(a) RhombiTriaontahedron, 2(b) Trunated Small Rhombiubotahedron, and 2() TrunatedIosidodeahedron. Soure: \Zonohedra and Zonotopes", Eppstein, 1995 (used withpermission).We an provide bounds on the number of faes and points in a zonotopeby noting that the points of the zonotope are the onvex hull of all the pointsgenerated by the onseutive Minkowsky sum of the line segments. Eah linesegment adds two more points for eah existing point, so m line segments yield2m points. Based on [11, p. 23℄, the number of points in the onvex hull of the2m points is O(mn�1), immediately leading to O(mn�1) faes in a zonotope.These bounds make it abundantly lear that all geometri algorithms thatattempt to estimate the Gaussian distribution from the faes or boundary pointsof the aÆne form's region are doomed to fail. Although suh algorithms wouldwork well for two and three dimensions, the omplexity explodes beyond these di-mensions. In fat, suh algorithms would have a omplexity of at least O(mn�1),rendering them impratial for the dimensions we enounter in typial parame-ter vetors of deformable models. We onlude that any eÆient algorithm forgeometri proessing of an aÆne form an only use the information in the ve-tors multiplying the noise variables, but not the information in the surfae ofthe onvex polytope represented by the aÆne form.Zonotopes are used in several appliations. In [14, 24℄ they are used for om-puting bounds of the orbits of dynamial systems. These papers introdue aninteresting proedure (asade algorithm) to redue the degree of a zonotope.In [13℄ the zonotopes are explored in training support vetor mahines, and in [12℄they are onneted to the problem of �nding the entroid of points with weightslying in a bounded interval.



5 Appliation: Cue Integration in Deformable ModelTrakingWe now desribe how to use aÆne forms and their approximations by Gaussianto integrate multiple ues in a deformable model traking framework. The ad-vantage of using aÆne arithmeti is that we avoid making assumptions aboutthe exat probability distributions of the noise in eah ue. Furthermore thisapproah enables us to weight the ues dynamially, depending on how reliableeah one is, as opposed to hoosing the most important ue a priori as in [15℄.Eah ue models loal 2D image ontributions as two-dimensional aÆneforms. The ue's generalized fore is the sum of these loal ontributions, af-ter we projet them in the n-dimensional parameter spae, using the Jaobianof the deformable model at eah point. We approximate the generalized fore, ann-dimensional aÆne form, with a Gaussian (setion 3), and integrate all Gaus-sians using amaximum likelihood estimator. There is a more detailed explanationof some of these steps in [8℄.We apply our ue integration tehnique in traking, where, based on imageobservations, we reover the model's parameters as it evolves over time. Thisis not a normal inverse problem sine the hanges in the model between obser-vations are small. We de�ne the problem indutively. Using the orret modelparameters of the previous observation, we reover the parameters that followthe model's evolution and math them to the new observation.In the deformable model framework, traking the displaement of q betweentwo frames is ahieved through a dynamial system:_q = Kq+ fg; (14)where K is a sti�ness matrix, and fg is a generalized fore. We use numerialintegration to solve this system, starting at the value of q at the end of theprevious frame. The system onverges to the losest point where the internaland external fores reah an equilibrium [25℄.Di�erent ues an be struturally di�erent. Sometimes they ome from dis-tint images or ameras, sometimes they a�et disjoint sets of points. In thelatter senario, these di�erent ues omplement eah other. For example, a pointtraker ue works best in regions with omplex texture, while a shape from shad-ing ue works best in regions without texture. Cues an even ome from three-dimensional data (like a range sanner). For these reasons, it is muh better tointegrate ues via the generalized fores, rather than via the image fores [8℄.In our method, eah ue  reates a generalized fore fg;, through applyingmultiple image fores simultaneously at points on the model:fg; =Xj B>j fj ; (15)where B>j is the projeted model Jaobian at point j, and fj is the image forethat ue  applies at point j.



When multiple ues interat, some ollaborate, and some onit. We needto ombine them into an uni�ed generalized fore, and apply it to the dynamialsystem in Equation 14. We use two-dimensional aÆne forms to model the imagefores, whih desribe in the image, how eah fore an vary. For example, animage fore from an edge detetor have more on�dene along the gradient thanalong the tangential diretion. Figure 3 illustrates an individual image fore in anedge detetor. Sine B is a 2-by-n matrix, B>fj is just a set of aÆne operationsover an aÆne form, so Equation 15 results in a n-dimensional aÆne form thatrepresents the ue's generalized fore.

Fig. 3. AÆne form for the image fore in an edge detetor. The region along thenormal (gradient of the edge potential �eld) is smaller than the region along the edge,representing di�erent on�denes along these axes.We assume independene between the image fores the di�erent points inEquation 15. Thus we ensure that all noise variables in the aÆne form desrib-ing fg; are independent. Using the tehniques from setion 3, we approximatefg; with Gaussian. Thus, eah ue provides a Gaussian probability density dis-tribution of its generalized fore.We now have redued the ue integration problem to Gaussian integration.This problem an be solved with a Gaussian maximum likelihood estimator. Weuse a stati version of the Kalman �lter [26℄ to solve it optimally. The Kalman�lter estimates a new Gaussian distribution that optimally takes into aount allthe available information. We use the mean of this Gaussian as the generalizedfore fg, and the ovariane matrix as a measure of the estimate's robustness.6 Validation and ExperimentsWe implemented the new expetation-based Gaussian estimation method in ourdeformable fae traking system, as desribed in [8℄. We observed no degradation



of traking. Some snapshots an be seen in Figures 4 and 5. There was an overallspeedup of approximately 100 perent. The model we used in these sequeneshas 192 points, and there are 31 parameters to ontrol its shape and motion.
Fig. 4. Real images: Traking of fae rotation and translation with statistial methods
Fig. 5. Real images: Traking of raising eyebrows with simultaneous head tilting withstatistial methodsWhile inspeting the results, we ompared the bounding boxes' volumes ofthe aÆne forms along the ovariane matries' axes. The geometri algorithmestimation onsistently generated smaller volumes. Nevertheless, the minimalbounding box is not the best riterion to hoose, beause the volume is not ne-essarily minimal along the aÆne form's prinipal axes. The expetation methodonsistently estimates a math loser to the the desired orientation. In two-dimensions it is easy to visualize that he minimum volume bounding box maynot orrespond to the desired orientation axis: in Figures 6(a) and 6(b) we on-strut an aÆne form with 27 randomly generated noise variables entered aroundthe origin. We an see that the minimum volume bounding box is not alignedalong the prinipal omponents of the aÆne form.7 ConlusionsIn this paper, we studied the mathematis of aÆne arithmeti and its appliationto the problem of ue integration. We saw that aÆne forms, zonotopes, andGaussian distributions are losely related, and explored this fat to develop anew algorithm to estimate a Gaussian from an aÆne form. Unlike ondensation,this algorithm sales well with the dimension of the parameter spae.Within this framework, a ue must be able to reognize regions of on�denein the image spae, and map them into aÆne forms. These image regions are



(a) (b)Fig. 6. Bounding box of aÆne form along the axis of the estimated ovariane matries.In 6(a) we see the bounding box (with volume 253.697) along the axis of the Gaussianestimated by the geometri-based algorithm, in dark gray, against the aÆne form, inlight gray. In 6(b) we see the bounding box (with volume 261.161) along the axis of theGaussian estimated using our new expetation-based algorithm, in dark gray, againstthe same aÆne form, in light gray. Clearly, the �t in 6(b) is better, even though it doesnot minimize the volume.onverted into parameter regions, using aÆne arithmeti, and then summed up.The �nal ue ontribution has a large number of noise variables, sine eahloal image ontribution has at least two noise variables. Hene, in onjuntionwith Lindeberg's Theorem, we an justify the assumption that the ue is wellrepresented as a Gaussian distribution in parameter spae. In addition, usingBerry-Esseen's theorem, we have a way to estimate how good a given aÆneform's Gaussian approximation is.Using the properties of zonotopes, we saw that any attempt to onvert anaÆne form to a Gaussian using the geometri information on the boundary wouldnot be omputationally eÆient.We introdued a new expetation-based method for the Gaussian approxima-tion that does not rely on any geometri information. Our new method diretlyonstruts the ovariane matrix of the aÆne form using expetation properties.Our previous geometri method obtained the set of axes that minimized thevolume of the bounding box parallel to it. We showed that this riterion is notwhat we look for. Our new expetation algorithm has also superior omputa-tional eÆieny. It is at least 40 times faster than the older method, and it iseasier to implement and maintain. In addition, our expetation inspired method
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