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Cue Integration Using Affine Arithmetic and Gaussians

Abstract

In this paper we describe how the connections between affine forms, zonotopes, and Gaussian
distributions help us devise an automated cue integration technique for tracking deformable models. This
integration technique is based on the confidence estimates of each cue. We use affine forms to bound
these confidences. Affine forms represent bounded intervals, with a well-defined set of arithmetic
operations. They are constructed from the sum of several independent components. An n-dimensional
affine form describes a complex convex polytope, called a zonotope. Because these components lie in
bounded intervals, Lindeberg's theorem, a modified version of the central limit theorem,can be used to
justify a Gaussian approximation of the affine form.

We present a new expectation-based algorithm to find the best Gaussian approximation of an affine form.

Both the new and the previous algorithm run in O(n2m) time, where nis the dimension of the affine form,
and mis the number of independent components. The constants in the running time of new algorithm,
however, are much smaller, and as a result it runs 40 times faster than the previous one for equal inputs.
We show that using the Berry-Esseen theorem it is possible to calculate an upper bound for the error in
the Gaussian approximation. Using affine forms and the conversion algorithm, we create a method for
automatically integrating cues in the tracking process of a deformable model. The tracking process is
described as a dynamical system, in which we model the force contribution of each cue as an affine form.
We integrate their Gaussian approximations using a Kalman filter as a maximum likelihood estimator.
This method not only provides an integrated result that is dependent on the quality of each on of the cues,
but also provides a measure of confidence in the final result. We evaluate our new estimation algorithm in
experiments, and we demonstrate our deformable model-based face tracking system as an application of
this algorithm.
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Abstract. In this paper we describe how the connections between affine
forms, zonotopes, and Gaussian distributions help us devise an auto-
mated cue integration technique for tracking deformable models. This
integration technique is based on the confidence estimates of each cue.
We use affine forms to bound these confidences. Affine forms represent
bounded intervals, with a well-defined set of arithmetic operations. They
are constructed from the sum of several independent components. An
n-dimensional affine form describes a complex convex polytope, called a
zonotope. Because these components lie in bounded intervals, Lindeberg’s
theorem, a modified version of the central limit theorem, can be used to
justify a Gaussian approximation of the affine form.

We present a new expectation-based algorithm to find the best Gaus-
sian approximation of an affine form. Both the new and the previous
algorithm run in O(n?m) time, where n is the dimension of the affine
form, and m is the number of independent components. The constants
in the running time of new algorithm, however, are much smaller, and
as a result it runs 40 times faster than the previous one for equal inputs.
We show that using the Berry-Esseen theorem it is possible to calculate
an upper bound for the error in the Gaussian approximation. Using affine
forms and the conversion algorithm, we create a method for automati-
cally integrating cues in the tracking process of a deformable model. The
tracking process is described as a dynamical system, in which we model
the force contribution of each cue as an affine form. We integrate their
Gaussian approximations using a Kalman filter as a mazimum likelihood
estimator. This method not only provides an integrated result that is de-
pendent on the quality of each on of the cues, but also provides a measure
of confidence in the final result. We evaluate our new estimation algo-
rithm in experiments, and we demonstrate our deformable model-based
face tracking system as an application of this algorithm.

keywords: “statistical cue integration”, “deformable model tracking”, “affine
arithmetic”, “visual motion”



1 Introduction

One of the most difficult problems in tracking parameterized deformable models
is the integration of multiple cues, such as point tracking, edge tracking, and
optical flow. As long as only one cue is used at a time, estimation of the model
parameters is a straightforward process. The picture changes dramatically, how-
ever, when multiple cues act on a model at the same time. Due to the noise
inherent in most low-level computer vision cues, different cues will exhibit dif-
ferent degrees of reliability at different points on the model surface. Even worse,
often the distribution of the noise is unknown, thus making it difficult to capture
it with a probability distribution. As a result, the optimal automated integration
of cues to yield the best possible parameter estimate of the model is a difficult
and open research problem.

In this paper we discuss a novel statistical approach to cue integration that
is based on the interrelationships between affine forms, their manipulation via
affine arithmetic, Gaussian probability distributions, and zonotopes. We demon-
strate how known results and techniques from different areas of literature can
be integrated and we develop a new method for conversion between affine forms
and Gaussians. We demonstrate how to use these results and this method for au-
tomated cue integration that avoids making assumptions about the probability
distribution of the noise in each of the cues.

In a deformable model framework, each cue (e.g., edges, optical flow) is
mapped into parameter space as generalized forces that act on the model and
change its parameters through a dynamical system. Each cue, in turn, is typically
the sum of a large number of local image contributions, such as the positions of
various edges from an edge tracker. We use affine forms to represent the support
of the local image contributions, while avoiding making assumptions about the
actual shape of their probability distribution functions. We use affine arithmetic
to sum them up.

Affine forms and affine arithmetic were developed in the nineties as an alter-
native to classical interval arithmetic. Affine arithmetic provides tighter bounds
than interval arithmetic in cascaded operations. Unlike interval arithmetic [1, 2],
it also preserves information about mutual dependencies between results. Since
then it has been used in numerical applications [3,4], electrical engineering [5]
computer graphics [6, 7], and computer vision [8].

Gaussian probability distributions are a widely-used tool in engineering [9,
10], as they have several desirable properties: preservation of linearity, compact-
ness of representation via the mean and covariance matrix, and several conver-
gence theorems, notably the central limit theorem. Given certain conditions that
we discuss in this paper, we can use Lindeberg’s theorem [9, pp 262] to show that
the sum of the local image contributions making up a cue can be approximated
by a Gaussian-distributed random variable, whose support is represented by an
affine form. Moreover, we discuss how to bound the error in the approximation.

In [8] a geometry-inspired heuristic was developed to obtain a Gaussian ap-
proximation of an affine form. In this paper we develop an improved method to
estimate the Gaussian distribution from an affine form, which is approximately
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40 times faster. The new method ensures that the estimated Gaussian distribu-
tion has the same first-and second-order moments as the respective affine form.
Consequently, this estimate is accurate, as long as the conditions for Lindeberg’s
theorem hold true. In addition, we relax the assumption made in [8] that the
distributions of the contributions making up a cue had to be part of the same
parametric family.

Zonotopes are convex volumes formed through the Minkowsky sum of line
segments. They have been known in the geometry literature for more than a
decade [11]. They appear, among other things, in polytope and point interac-
tion [12], support vector machines [13], and in dynamical systems [14]. We show
that the region defined by an affine form is a zonotope, and we demonstrate how
zonotope theorems affect the algorithmic complexity of converting affine forms
to Gaussian probability distributions.

The rest of the paper is organized as follows: We start with a short discussion
of previous work, then provide an overview on affine forms and affine arithmetic.
We then discuss the requirements of approximating affine forms with Gaussians,
the bounds of the error of this approximation, and a new algorithm to find this
approximation. We then connect affine forms to zonotopes to provide insights
into the computational complexity of the conversion from affine forms to Gaus-
sians. Finally, we describe how to apply this algorithm to integrate cues in a
deformable model framework. In particular we present results of this integration
technique in deformable model-based face tracking.

1.1 Previous Work

Cue integration is not a new issue. In [15] a two-cue integration algorithm is pre-
sented based on the use of constraints, in which optical flow is defined to be the
constraining (i.e., most important) cue, and edges to be the secondary cue. This
framework requires an a priori user-based definition of which cue is the most
important one. A voting approach for disambiguation of cue information, along
with a very thorough review and comparison of several methods, is proposed
in [16]. In this paper, we describe a method for automated cue integration that
is general enough to merge contributions of cues that are structurally very dis-
similar. Unlike previous work, our approach avoids making a priori assumptions
about the distribution of noise in cues, and it weights each cue’s contribution
dynamically depending on how much noise it contains.

There are several general statistical approaches designed for tracking, estima-
tion, and prediction. The Kalman filter [17], for example, treats the parameters,
as well as the observations, as multivariate Gaussians and also uses a linear
predictive model. Another example, Particle filter [18,19] techniques, which are
also known in computer vision as condensation [20,21], propagate the evolution
of non-Gaussian sampled distributions through nonlinear operations. Unfortu-
nately, the necessary number of samples of the distribution grows exponentially
with the dimension of the parameter vector. Particle filters also require knowl-
edge of the observations’ distributions.



Our cue integration method cannot be directly compared with the previous
examples, since we do not represent our parameters as random variables. Instead,
we use the statistics of the cues only to combine them in an optimal way. Our
algorithm does not assume any particular distribution in the observations. It just
estimates their bounded support. Unlike condensation whose complexity grows
exponentially with the dimension of the parameter space, the complexity of our
approach is polynomial in the dimension of the parameter space.

2 Affine Arithmetic

Affine arithmetic is a numeric technique similar to interval arithmetic, in the
sense that it propagates regions, instead of numbers, across arithmetic opera-
tions. The atom of affine arithmetic is called an affine form. An affine form a is
represented as:

a=ag+ Z a;g; (1)
i=1

In R! the coefficients a; are real numbers, whereas in R™ they are n-dimensional
vectors. The ¢; are symbolic real variables whose values are unknown, but guar-
anteed to lie in the interval [—1...1]. The quantity ag is called the central value
(mean), and the g; are called the noise variables. Each noise variable €; repre-
sents an independent component of the total uncertainty. In R', @ represents an
interval and in R™ a convex polytope, whose number of faces depends on n and
m.

For each operation on real numbers we have to define a counterpart for affine
forms. Affine operations like

Z=oat+ py+C( (2)

are calculated exactly, where Z, 9, and Z are affine forms represented by

m m m
E=xzo+ Y miei §=yo+ Y yiei E=z0+ Y zici
i=1 i=1 i=1
a, B, and ( are real constants. The definition of this operation is

zo = axg+ fyo+ ¢ and z = az; + Py;. (3)

Note that any operation defined on two affine forms also defines this operation
on an affine form and a scalar, because a scalar s is trivially represented by the
affine form ag = s.

Although in this paper we only need the affine operation specified in Equa-
tion 2, other operations, including non-affine ones, are also possible. A thorough
description of how to do operations like reciprocation, multiplication, exponen-
tiations, trigonometry, or how to create a new operation, can be found in [22].

An affine form that is the result of an operation on other affine forms shares
its noise variables with the affine forms of the operands. As a result, and in



contrast to interval arithmetic, affine forms preserve interdependencies between
values from intermediate computations. After a series of cascading operations,
affine arithmetic usually provides tighter bounds than interval arithmetic.

As an example, consider a two-dimensional affine form f.; as follows:

- (1) () (2)0-
# (o)t (1)t ()

This representation, shown in Figure 1, describes a vector whose mean is at
(10,20)7. If fm and fy were independent, their spanned intervals would be
[6...14] and [12...28], respectively (plotted as the light gray on Figure 1).
However, because fm and fy share the noise variables €, and &4, their variations
are not independent. In fact, f.; has to lie in the dark region of Figure 1.

(4)

28l -

20

ob---
=L R
N

Fig. 1. Region defined by the two-dimensional affine form of Equation 4. In dark gray
we see the region of the affine form, while in light gray is the region of the interval
counterpart. Source: “Self-Validated Numerical Methods and Applications”, Stolfi and
Figueiredo, 1997 (used with permission).



3 Gaussians that Approximate Affine Forms

In this section we see how to connect Gaussian distributions to affine forms. We
show how we can use a modified version of the central limit theorem to justify
the approximation of an affine form with a Gaussian distribution, and how we
can bound the error of the approximation.

We use affine forms to represent regions of uncertainty in a variable. From [22]:
“At any stable instant in an AA computation, there is a single assignment of
values from U = [—1,1] to each of the noise variables in use at that time that
makes the value of every affine form equal to the value of the corresponding
quantity in the ideal computation.” In other words, the affine form represents
the domain, or support, of the underlying random variable.

All noise variables are independent; thus the affine form is the sum of many
independent random variables, whose support is a bounded one-dimensional seg-
ment embedded in R™. Each of the noise variables has an unknown probability
distribution, so we cannot assume that they are identically distributed. Hence,
we cannot apply the central limit theorem immediately. We can, however, use
the multivariate version of Lindeberg’s theorem [9, pp 262+]. It is an exten-
sion to the classical central limit theorem. In its one-dimensional form it tells
us that for mutually independent one-dimensional random variables X, Xo, ...
with distributions F}, F5, ... such that

E(Xy) =0,  Var(Xy) = o},
if the Lindeberg condition [9, pp 518+] is satisfied, the normalized sum

Sp=X1+-+Xn)/sn,
where s2 = o} + .-+ 4+ 02, tends to the normal distribution R with zero ex-
pectation and unit variance. Intuitively, the Lindeberg condition itself ensures
that individual variances o; are small if compared to their sum s2 — no sin-
gle random variable dominates the sum. This theorem can be generalized to
multivariate distributions, as per [9, pp 262+].

We ensure that E[e;] = 0 by constructing the affine forms such that they are
symmetric around the estimates of the local contributions in each cue; see Sec-
tion 5 for further discussion. We ensure that the Lindeberg condition is satisfied
by having enough local contributions with bounded uncertainties. Unfortunately,
this theorem does not tell us how many noise variables are necessary in order
for the Gaussian to be a good approximation. For estimating the error in the
approximation, we need another theorem, the Berry-Esseen theorem [9, pp 544]:

Let the X}, be independent variables such that

E[Xy]=0, E[X;]l=0;,  E[IX|]=p,

Y

and
sy =01+ + 00, Tn=piAcF pm



Then
|[Fn — R| < 62, (5)
Sn
where F, is the distribution of the normalized sum (X7 + -+ + X,,)/sn, and
Ris the normal distribution with zero mean and unit variance.

Since the support of each noise variable e is [—1,1] and E[ex] = 0, the
third moment p., < 0.25 exists. Hence, we can use the result of Equation 5 to
provide an upper bound for the error along the principal axes of a Gaussian
approximation of an affine form a.

3.1 Estimation of the Gaussian Distribution

We have shown that the approximation of an affine form with a Gaussian distri-

bution is justified, and that we can compute how closely the affine form represents

a Gaussian distribution. We now show how to compute this approximation.
The Gaussian distribution that approximates a with

1
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is completely parameterized by a mean vector y and a covariance matrix A.
The mean vector is

He = E[&]

Il
=
g
_|_
™
I
®
o

Since we ensure that E[e;] = 0,
[t = ag. (8)

The estimation of the covariance matrix A is not immediately obvious. Because
affine forms represent convex polytopes, a geometric approach springs to mind.
We presented such an algorithm in previous work [8], and now describe its main
properties briefly.

3.2 Geometric Algorithm for the Gaussian Estimation

This algorithm first calculates the eigenvectors of A, and then it calculates the
eigenvalues. It assumes that the principal axes of the Gaussian distribution are
the same as the axes of the minimum-volume hyperparallelopiped that bounds
the polytope. In order to find this hyperparallelopiped, it starts with an or-
thonormal basis of R™. Each step rotates two of the basis vectors in their plane
and finds the minimum-area bounding rectangle of the affine form projected onto
that plane. The rotation preserves the orthonormality of the basis and reduces



the total volume of the bounding hyperparallelopiped. This procedure eventually
reaches a minimum, since each step never increases the volume. In practice, we
apply the rotation once for every pair of vertices.
To find the eigenvalue associated with a given eigenvector v we project @
onto v, and obtain a one-dimensional affine form. The eigenvalue is
m m
2 2 2 2
or = (a;-v)’Elg;] =Y (aj - v)’0Z,. (9)

Jj=1 Jj=1

This equation can be further simplified to

m

oy =02y (a;-v)? (10)

Jj=1

if we assume that all noise variables have the same variance 2. Note that us-
ing the same variance does not imply that the noise variables are identically
distributed. Another option is to choose the eigenvalues such that a fixed per-
centage of the Gaussian is contained within the bounding hyperparallelopiped,
by using Q, the tabulated tails of Gaussian distributions.

This geometric algorithm runs in O(n?m) time and uses O(nm) space, where
n is the dimension of the affine form, and m is the number of noise variables. This
algorithm has three serious shortcomings: First, there is no guarantee that it will
converge to the global minimum of the hyperparallelopiped’s volume. Second,
the assumption that the minimum-volume hyperparallelopiped is always aligned
with the optimum principal axes of the Gaussian distribution is not valid. We
show a counterexample for two dimensions in Figure 6. Third, the algorithm is
complicated to implement.

We now present a novel, much simpler algorithm that also provides much
better estimates of the principal axes of the Gaussian.

3.3 Expectation Algorithm for the Gaussian Estimation

Instead of interpreting the affine form geometrically, the new algorithm takes
advantage of the expectation properties of the random variables. Using the def-
inition of the covariance matrix A and Equation 8:

Ay =E|[(a—ag)(a—ap)']. (11)

Each element \;; of A is

Aij = El(a —ao)i(a —ao);] = E (Z akiﬁk)(z ajer) |
k=1 =1

where ay; is the ith component of the vector a, in @, and (@ — ag); is the one-
dimensional affine form corresponding to the ith component of (& — ag).



Expanding the sum we observe that, because the ¢ are mutually independent
and have zero mean, the cross terms are zero:

m m
Aij = ZakiakjE [ez] = Zakiakjagk, (12)
k=1 k=1

or, if assuming a common o2 as in Equation 10,

m
Aij = Uf Z g ;- (13)
k=1

We build A using Equation 12 or 10. Note that both equations are just a
multiplication of an n-by-m matrix with its transpose, where the 0., ax form the
columns of the matrix.

With a standard implementation of a matrix multiplication, the expectation
algorithm has the same complexity as the geometric algorithm, O(n?m), where
n is the dimension of the affine form and m is the number of noise variables.
Computing a single A;;, however, is much cheaper than the rotation of a pair
of basis vectors in the geometric algorithm, so in practice, the expectation algo-
rithm runs approximately 40 times faster. In addition, unlike in the geometric
algorithm, there are no data dependencies in the computation of A, so it is fully
parallelizable.

Beside the speed difference and simplicity of implementation, the expectation
algorithm’s most compelling advantage is that it provides an optimal estimate
of the principal axes of the Gaussian distribution if the conditions of Linde-
berg’s theorem are satisfied. The reason is that if these conditions are satisfied,
Lindeberg’s theorem tells us that the affine form indeed represents a Gaussian
probability distribution. Furthermore, the Gaussian estimated from Equations 12
or 10 has both the same first-order and second-order moments as the affine form.
We show an example of this estimator’s accuracy in Figure 6(b).

So far we have shown that the upper bound for converting an affine form to a
Gaussian approximation is O(n?m). The question remains whether it is possible
to use the geometric properties of affine forms to devise a better algorithm that
improves this bound. We now discuss this question by connecting affine forms
to zonotopes.

4 Zonotopes and Affine Forms

Zonotopes are a special type of convex polytopes obtained through the Minkowsky
sum of line segments centered on the origin [11,23]. Constructing the zonotope
via the Minkowsky sum is equivalent to constructing the boundary of an affine
form centered around the origin: Each component a; from an affine form a
(Equation 1) represents half the segment in the zonotope formulation, because
gj € [-1,1], so the full line segment goes from —a; to +a;. The number of seg-
ments in the zonotope defines its degree, and is the same as the number of used
noise variables in the affine form.



Zonotopes in three-dimensions are called zonohedra; some examples are shown
in Figure 2.

(a) (b) (c)

Fig. 2. Three examples of Zonohedra (three dimensional zonotopes). 2(a) Rhombic
Triacontahedron, 2(b) Truncated Small Rhombicuboctahedron, and 2(c) Truncated
Icosidodecahedron. Source: “Zonohedra and Zonotopes”, Eppstein, 1995 (used with
permission).

We can provide bounds on the number of faces and points in a zonotope
by noting that the points of the zonotope are the convex hull of all the points
generated by the consecutive Minkowsky sum of the line segments. Each line
segment adds two more points for each existing point, so m line segments yield
2™ points. Based on [11, p. 23], the number of points in the convex hull of the
2™ points is O(m"~1), immediately leading to O(m™~!) faces in a zonotope.

These bounds make it abundantly clear that all geometric algorithms that
attempt to estimate the Gaussian distribution from the faces or boundary points
of the affine form’s region are doomed to fail. Although such algorithms would
work well for two and three dimensions, the complexity explodes beyond these di-
mensions. In fact, such algorithms would have a complexity of at least O(m"~1),
rendering them impractical for the dimensions we encounter in typical parame-
ter vectors of deformable models. We conclude that any efficient algorithm for
geometric processing of an affine form can only use the information in the vec-
tors multiplying the noise variables, but not the information in the surface of
the convex polytope represented by the affine form.

Zonotopes are used in several applications. In [14, 24] they are used for com-
puting bounds of the orbits of dynamical systems. These papers introduce an
interesting procedure (cascade algorithm) to reduce the degree of a zonotope.
In [13] the zonotopes are explored in training support vector machines, and in [12]
they are connected to the problem of finding the centroid of points with weights
lying in a bounded interval.



5 Application: Cue Integration in Deformable Model
Tracking

We now describe how to use affine forms and their approximations by Gaussian
to integrate multiple cues in a deformable model tracking framework. The ad-
vantage of using affine arithmetic is that we avoid making assumptions about
the exact probability distributions of the noise in each cue. Furthermore this
approach enables us to weight the cues dynamically, depending on how reliable
each one is, as opposed to choosing the most important cue a priori as in [15].

Each cue models local 2D image contributions as two-dimensional affine
forms. The cue’s generalized force is the sum of these local contributions, af-
ter we project them in the n-dimensional parameter space, using the Jacobian
of the deformable model at each point. We approximate the generalized force, an
n-dimensional affine form, with a Gaussian (section 3), and integrate all Gaus-
sians using a mazimum likelihood estimator. There is a more detailed explanation
of some of these steps in [8].

We apply our cue integration technique in tracking, where, based on image
observations, we recover the model’s parameters as it evolves over time. This
is not a normal inverse problem since the changes in the model between obser-
vations are small. We define the problem inductively. Using the correct model
parameters of the previous observation, we recover the parameters that follow
the model’s evolution and match them to the new observation.

In the deformable model framework, tracking the displacement of q between
two frames is achieved through a dynamical system:

q:KQ+fga (14)

where K is a stiffness matriz, and f, is a generalized force. We use numerical
integration to solve this system, starting at the value of q at the end of the
previous frame. The system converges to the closest point where the internal
and external forces reach an equilibrium [25].

Different cues can be structurally different. Sometimes they come from dis-
tinct images or cameras, sometimes they affect disjoint sets of points. In the
latter scenario, these different cues complement each other. For example, a point
tracker cue works best in regions with complex texture, while a shape from shad-
ing cue works best in regions without texture. Cues can even come from three-
dimensional data (like a range scanner). For these reasons, it is much better to
integrate cues via the generalized forces, rather than via the image forces [8].

In our method, each cue c creates a generalized force f, ., through applying
multiple image forces simultaneously at points on the model:

foc = ZB;rfcja (15)
J

where B;r is the projected model Jacobian at point j, and f.; is the image force
that cue ¢ applies at point j.



When multiple cues interact, some collaborate, and some conflict. We need
to combine them into an unified generalized force, and apply it to the dynamical
system in Equation 14. We use two-dimensional affine forms to model the image
forces, which describe in the image, how each force can vary. For example, an
image force from an edge detector have more confidence along the gradient than
along the tangential direction. Figure 3 illustrates an individual image force in an
edge detector. Since B is a 2-by-n matrix, BT f,; is just a set of affine operations
over an affine form, so Equation 15 results in a n-dimensional affine form that
represents the cue’s generalized force.

Fig. 3. Affine form for the image force in an edge detector. The region along the
normal (gradient of the edge potential field) is smaller than the region along the edge,
representing different confidences along these axes.

We assume independence between the image forces the different points in
Equation 15. Thus we ensure that all noise variables in the affine form describ-
ing f,.. are independent. Using the techniques from section 3, we approximate
fg,c with Gaussian. Thus, each cue provides a Gaussian probability density dis-
tribution of its generalized force.

We now have reduced the cue integration problem to Gaussian integration.
This problem can be solved with a Gaussian mazimum likelihood estimator. We
use a static version of the Kalman filter [26] to solve it optimally. The Kalman
filter estimates a new Gaussian distribution that optimally takes into account all
the available information. We use the mean of this Gaussian as the generalized
force f,, and the covariance matrix as a measure of the estimate’s robustness.

6 Validation and Experiments

We implemented the new expectation-based Gaussian estimation method in our
deformable face tracking system, as described in [8]. We observed no degradation



of tracking. Some snapshots can be seen in Figures 4 and 5. There was an overall
speedup of approximately 100 percent. The model we used in these sequences
has 192 points, and there are 31 parameters to control its shape and motion.

Fig. 5. Real images: Tracking of raising eyebrows with simultaneous head tilting with
statistical methods

While inspecting the results, we compared the bounding boxes’ volumes of
the affine forms along the covariance matrices’ axes. The geometric algorithm
estimation consistently generated smaller volumes. Nevertheless, the minimal
bounding box is not the best criterion to choose, because the volume is not nec-
essarily minimal along the affine form’s principal axes. The expectation method
consistently estimates a match closer to the the desired orientation. In two-
dimensions it is easy to visualize that he minimum volume bounding box may
not correspond to the desired orientation axis: in Figures 6(a) and 6(b) we con-
struct an affine form with 27 randomly generated noise variables centered around
the origin. We can see that the minimum volume bounding box is not aligned
along the principal components of the affine form.

7 Conclusions

In this paper, we studied the mathematics of affine arithmetic and its application
to the problem of cue integration. We saw that affine forms, zonotopes, and
Gaussian distributions are closely related, and explored this fact to develop a
new algorithm to estimate a Gaussian from an affine form. Unlike condensation,
this algorithm scales well with the dimension of the parameter space.

Within this framework, a cue must be able to recognize regions of confidence
in the image space, and map them into affine forms. These image regions are



(a) (b)

Fig. 6. Bounding box of affine form along the axis of the estimated covariance matrices.
In 6(a) we see the bounding box (with volume 253.697) along the axis of the Gaussian
estimated by the geometric-based algorithm, in dark gray, against the affine form, in
light gray. In 6(b) we see the bounding box (with volume 261.161) along the axis of the
Gaussian estimated using our new expectation-based algorithm, in dark gray, against
the same affine form, in light gray. Clearly, the fit in 6(b) is better, even though it does
not minimize the volume.

converted into parameter regions, using affine arithmetic, and then summed up.
The final cue contribution has a large number of noise variables, since each
local image contribution has at least two noise variables. Hence, in conjunction
with Lindeberg’s Theorem, we can justify the assumption that the cue is well
represented as a Gaussian distribution in parameter space. In addition, using
Berry-Esseen’s theorem, we have a way to estimate how good a given affine
form’s Gaussian approximation is.

Using the properties of zonotopes, we saw that any attempt to convert an
affine form to a Gaussian using the geometric information on the boundary would
not be computationally efficient.

We introduced a new expectation-based method for the Gaussian approxima-
tion that does not rely on any geometric information. Our new method directly
constructs the covariance matrix of the affine form using expectation properties.
Our previous geometric method obtained the set of axes that minimized the
volume of the bounding box parallel to it. We showed that this criterion is not
what we look for. Our new expectation algorithm has also superior computa-
tional efficiency. It is at least 40 times faster than the older method, and it is
easier to implement and maintain. In addition, our expectation inspired method



is fully parallelizable, since there are no data dependencies in the calculation of
every element of the covariance matrix.
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