
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-1-2013

Core Ironclad Core Ironclad

Peter-Michael Osera
University of Pennsylvania, posera@cis.upenn.edu

Richard A. Eisenberg
University of Pennsylvania, eir@cis.upenn.edu

Christian DeLozier
University of Pennsylvania, delozier@cis.upenn.edu

Santosh Nagarakatte
University of Pennsylvania, santoshn@seas.upenn.edu

Milo Martin
University of Pennsylvania, milom@cis.upenn.edu

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Peter-Michael Osera, Richard A. Eisenberg, Christian DeLozier, Santosh Nagarakatte, Milo Martin, and
Stephan A. Zdancewic, "Core Ironclad", . January 2013.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/984
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F984&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/984
mailto:repository@pobox.upenn.edu

Core Ironclad Core Ironclad

Abstract Abstract
Core Ironclad is a core calculus that models the salient features of Ironclad C++, a library-augmented
type-safe subset of C++. We give an overview of the language including its definition and key design
points. We then prove type safety for the language and use that result to show that the pointer lifetime
invariant, a key property of Ironclad C++, holds within the system.

Author(s) Author(s)
Peter-Michael Osera, Richard A. Eisenberg, Christian DeLozier, Santosh Nagarakatte, Milo Martin, and
Stephan A. Zdancewic

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/984

https://repository.upenn.edu/cis_reports/984

Core Ironclad
CIS Technical Report #MS-CIS-13-06

Peter-Michael Osera

posera@cis.upenn.edu

Richard Eisenberg

eir@cis.upenn.edu

Christian DeLozier

delozier@cis.upenn.edu

Santosh Nagarakatte

santoshn@cis.upenn.edu

Milo M. K. Martin

milom@cis.upenn.edu

Steve Zdancewic

stevez@cis.upenn.edu

July 30, 2013

Core Ironclad is a core calculus that models the salient features of Ironclad
C++, a library-augmented type-safe subset of C++. We give an overview of
the language including its definition and key design points. We then prove
type safety for the language and use that result to show that the pointer
lifetime invariant, a key property of Ironclad C++, holds within the system.

1. Introduction

Ironclad C++ is a library-augmented type-safe subset of C++ that provides efficient
memory safety [2]. Ironclad C++ accomplishes this through a collection of smart pointer
classes as well as a hybrid static-dynamic checking scheme for pointers to values on the
stack. Because of the complexity of C++, we would like to be able to prove that Ironclad
C++, indeed, provides the safety guarantees we claim.

However, trying to capture the complete Ironclad C++ system requires that we model
much of the C++ language itself. This goal is impractical for our present purposes. Fur-
thermore, type safety in the context of object-oriented programming [1, 4] and memory
safety in the presence of pointers [5, 7, 8, 9] have both been thoroughly explored. Thus,
our formalism, Core Ironclad, focuses instead on the C++ language features that are
necessary to show the correctness of Ironclad’s pointer lifetime invariant, which infor-
mally states that a pointer cannot outlive the value that it references.

In summary, we present the following:

• The definition of Core Ironclad, a core calculus designed to capture the essence of
the Ironclad C++ system and

1

Types τ : : = ptr〈τ〉 | lptr〈τ〉 | C
Surface exprs e : : = x | null | e.x | e1.f (e2) | newC () | &e | ∗e
Internal exprs e : : = ` | {s; return e} | error
Statements s : : = e1 = e2 | s1; s2 | skip | error
Class decls cls : : = structC { τi xi ;

imeths};
Methods meth : : = τ1 f (τ2 x){τi xi

i ; s; return e}
Programs prog : : = ∆; void main() {s}
Locations ` : : = xn@y1 .. ym
Pointer values pv : : = ` | bad ptr
Values v : : = ptr (pv) | lptr (pv) | C
Store Σ : : = · | Σ [` 7→ v]
Store typing Ψ : : = · | Ψ [` : τ]
Class context ∆ : : = {cls1 .. clsm}

Figure 1: Core Ironclad Syntax

• A proof that the pointer lifetime invariant holds within Core Ironclad by way of
standard type safety results for the system.

Section 2 provides a brief overview of the Core Ironclad language. Section 3 gives
insight into the design decisions behind Core Ironclad. Section 4 describes the more
complex aspects of Core Ironclad in more detail. Finally, section 5 gives the full proofs
of type safety for Core Ironclad and uses those results to show that the pointer lifetime
invariant holds within the system. Appendix A contains the complete definition of Core
Ironclad as a reference.

2. Language Overview

In the name of simplicity, Core Ironclad omits most language features of C++ that
do not directly interact with our pointer lifetime system. For example, inheritance,
templates, and overloading do not interact with pointer lifetimes, so they are left out.
What is left is a small, C++-like core calculus with just enough features to cover the
interesting parts of the pointer lifetime checking system.

2.1. Syntax

Figure 1 gives the syntax of the calculus. Core Ironclad is a statement-and-expression
language where values are ptrs and lptrs, along with simple classes and methods. Methods
are syntactically required to have a single argument and to return a result. While there
is no inheritance, classes are important because the this pointer is a potential source of
trouble — as a built-in special form, Ironclad C++ cannot automatically wrap this in
a smart pointer. Each class has a default, no-argument constructor that initializes its
members to be invalid pointers and is invoked when calling newC () or when creating

2

an object on the stack. There are interesting technical issues that arise with the this
pointer within constructors and destructors but they are addressed in prior work [10]
and are ultimately orthogonal concerns.

Core Ironclad enforces the pointer lifetime invariant with respect to pointers in the
heap and in the stack (collectively, the store). Locations ` in the store are the com-
bination of a base location xn coupled with a path x1 .. xm in the style of Rossie and
Friedman [6], Wasserrab [11], and Ramananandro [10]. The use of paths allows locations
to refer to the inner members of a class. For example, consider the following definitions:

structC { ptr〈C 〉 a; };
structB {C c; };

A declaration B x; in the main function creates a B object that lives at base location
x 1. The location x1@c.a refers to the a field of the C sub-object within B.

Base locations in Core Ironclad are interesting because they not only represent a
unique location in the store x but also its position n in the stack. The stack in Core
Ironclad grows with increasing indices. For example, location x3 sits one stack frame
lower than x4. Data in the heap exists at index 0. This is consistent with the intuition
that earlier stack frames outlive later frames; the heap simply outlives all stack frames.

The store Σ in Core Ironclad is a mapping from locations to store values v . The store
typing Ψ is an analogous mapping from locations to types. Store values are class tags
C or pointer values lptr (pv) and ptr (pv) that may reference live locations or the null
location bad ptr. A class tag is assigned to locations that represent the base of some
object. In the above example, the location x1@ (with the empty path) maps to the class
tag B and x1@c maps to the class tag C. In this scheme, an object is defined by all
locations that share the prefix of a location with a class tag value. The tags themselves
are necessary to facilitate class method lookup.

2.1.1. References

Of note, we elide reference types in Core Ironclad. At a basic level, references are simply
sugar for implicitly-used pointers that cannot be re-seated once initialized, i.e., a const

pointer. However, in C++, reference types are important to the language semantics.
Also, in Ironclad C++, we have special rules for validating and dealing with references
as they are left unwrapped.

To the first point, the cases in which distinguishing reference types from pointers is
necessary do not directly impact memory safety. These cases include special member
functions such as copy constructors or overload resolution. To the second point, the
rules that we have introduced for references in Ironclad C++ involve straightforward
static checks for a number of common cases with a catch-all dynamic check (on returned
references) to catch the rest. Such an approach is obviously safe and the value in formally
verifying these checks does not outweigh the amount of extra machinery necessary to
faithfully model references.

In light of these reasons, we choose to elide reference types from Core Ironclad and
instead focus our efforts on the novel ptr/lptr dynamic, instead.

3

2.2. Semantics

Typing and evaluation of statements and expressions, written

Ψ `∆;n
stmt s ok Statement well-formedness

Ψ `∆;n
exp e : τ Expression typing

(Σ, s) −→
stmt

n
∆(Σ′, s ′) Statement evaluation

(Σ, e) −→
exp

n
∆(Σ′, e ′) Expression evaluation

are straightforward in Core Ironclad. However, several aspects of these semantics deserve
special mention.

2.2.1. Locations

Core Ironclad is a location-based language. That is, rather than expressions evaluating
to typical values, expressions evaluate to locations that can either be assigned into or
used in a store lookup. The primary motivation for this design decision is to be able to
model C++ objects that have temporary, yet stable storage such as those returned from
methods. Such objects, while being temporary, can still be the subject of an assignment
or mutated via method calls.

This set up also simplifies the evaluation rules in several places. For example, field
access simply appends onto the current location’s path.

(Σ, (xn ′@π).x ′) −→
exp

n
∆(Σ, xn ′@π++ x ′)

eval exp fld

Also, Core Ironclad does not need to syntactically distinguish between left-values and
right-values since the assignment rule can appropriately use the locations it receives.

2.2.2. The Stack

Because Core Ironclad deals with the stack explicitly, the typing and evaluation judg-
ments all note the current stack frame n. This is important for type-checking and
evaluating variables.

Ψ(xn@) = τ

Ψ `∆;n
exp x : τ

type exp var

(Σ, x) −→
exp

n
∆(Σ, xn@)

eval exp var

A variable evaluates to a location in stack frame n where the names of the variable and
the location coincide.

Core Ironclad embeds the active call frame within the term language using frame
expressions of the form {s; return e} rather than using continuations or a separate stack

4

syntax. This is similar in style to Core Cyclone [3]. For example, the (abbreviated) rule
for method calls

...
Σ′ = . . . [thisn+1@ 7→ lptr (`1)]

(Σ, `1.f (x2
n2@π2)) −→

exp
n
∆(Σ′, {s; return e})

eval exp meth

replaces a method invocation with an appropriate frame expression. While the this
pointer cannot be wrapped in a smart pointer in the implementation, the Ironclad val-
idator ensures that the this pointer behaves like an lptr. Consequently, Core Ironclad
treats the this pointer as an lptr rather than a third pointer type distinct from ptr and
lptr. The remaining premises (not shown) look up the appropriate method body to in-
voke and set up the arguments and local variable declarations in the store. Because the
method body is evaluated at any index n, we typecheck the method at index 0 (i.e., has
no dependence on prior stack frames) and prove a lemma that shows we can lift that
result to the required index n.

When the statement of a frame expression steps, the stack count must be one higher
than that of the frame expression to reflect the new stack frame:

(Σ, s) −→
stmt

n+1
∆ (Σ′, s ′)

(Σ, {s; return e}) −→
exp

n
∆(Σ′, {s ′; return e})

eval exp body cong1

Finally, when a frame expression returns, the frame expression is replaced with the
location of the return value.

xn fresh for Σ
Σ2 = copy store(Σ, `, xn)
Σ′ = Σ Σ2\(n + 1)

(Σ, {skip; return `}) −→
exp

n
∆(Σ′, xn@)

eval exp body ret

The premises copy the return value ` into a fresh base location xn in the caller’s frame
(taking care to copy additional locations if the returned value is an object) and pop the
stack. The result of the method call then becomes that fresh location. Note that no
dynamic check is needed here because the type system enforces that the return value
cannot be a lptr.

∀τ ′.τ 6= lptr〈τ ′〉
Ψ `∆;n+1

stmt s ok Ψ `∆;n+1
exp e : τ

Ψ `∆;n
exp {s; return e} : τ

type exp body

2.2.3. Dynamic Checks

In addition to null checks on dereference, dynamic checks are necessary during pointer
assignment to ensure that the pointer lifetime invariant holds. When assigning between

5

two ptrs, no dynamic check is necessary.

Σ(`1) = ptr (pv1) Σ(`2) = ptr (pv2)
Σ′ = Σ [`1 7→ ptr (pv2)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign ptr ptr

The dynamic check when assigning a (non-null) lptr to a ptr verifies that the lptr does
indeed point to the heap by checking that the store index of the location referred to by
the lptr is 0.

Σ(`1) = ptr (pv1) Σ(`2) = lptr (x 0@π)
Σ′ = Σ [`1 7→ ptr (x 0@π)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign ptr lptr

When assigning (non-null) lptrs, the dynamic check ensures that the lptr being assigned
to out-lives the location it receives by comparing the appropriate store indices.

Σ(x1
n1@π1) = lptr (pv1)

Σ(`2) = lptr (x2
n2@π2)

Σ′ = Σ [x1
n1@π1 7→ lptr (x2

n2@π2)] n2 ≤ n1

(Σ, x1
n1@π1 = `2) −→

stmt

n
∆(Σ′, skip)

eval stmt assign lptr lptr

If these dynamic checks fail, we raise an error by evaluating to the error term, e.g.,
between lptrs:

Σ(x1
n1@π1) = lptr (pv1) n2 6≤ n1

Σ(`2) = lptr (x2
n2@π2)

(Σ, x1
n1@π1 = `2) −→

stmt

n
∆(Σ, error)

eval stmt assign lptr lptr err

2.2.4. Store Consistency

In addition to typing for statements and expressions, Core Ironclad contains a series of
judgments that ensure the well-formedness and consistency of the class context, store
typing, and store itself. The relation wf (∆,Ψ,Σ,n) summarizes these judgments and
says that the class context, store typing, and store are all consistent with each other up
to stack height n and that no bindings exist above that stack height.

The store consistency judgment is of particular interest because it expresses precisely
the key invariants of the Ironclad system. Store consistency boils down to the consistency
of the individual bindings of the store. In particular, two of these binding consistency
rules for pointers capture these invariants.

The first rule concerns ptrs and requires that the location pointed to by the ptr is on
the heap (at index 0).

Σ(xn@π) = ptr (x ′n ′
@π′) n ′ = 0

Ψ(x ′n ′
@π′) = τ

Ψ; Σ s̀t1 xn@π : ptr〈τ〉 ok
cons binding ptr

6

The second rule concerns lptrs and requires that lptrs only exist at base locations
without paths (not embedded within a class) and that the location pointed to by a
particular lptr is in the same stack frame or a lower one.

Σ(xn@) = lptr (x ′n ′
@π′) n ′ ≤ n

Ψ(x ′n ′
@π′) = τ

Ψ; Σ s̀t1 xn@ : lptr〈τ〉 ok
cons binding lptr

This final property is precisely the pointer lifetime invariant which now has a precise
definition in the context of Core Ironclad.

Invariant (Pointer lifetime). For all bindings of the form [x1
n1@π1 7→ ptr (`)] and

[x1
n1@π1 7→ lptr (`)] in Σ, if ` = x2

n2@π2 (i.e., is non-null) then n2 ≤ n1.

3. Design Decisions

Core Ironclad features a number of design decisions to help it model C-like, imperative
code. We discuss these points briefly here.

3.1. Mapping locations with paths

An alternative design of the language would map bare locations to structured values.
In such a design, a class object would be stored as is, mapped to a single location.
Sub-objects would be accessed by extraction, and an expression of the form e.x would
evaluate to some extraction internal form.

Here are some of the factors that influenced this design decision:

• In the current design, copying values is challenging, requiring the two judgments
copy store and copy types, which appear as the following:

Σ′ = copy store(Σ, `, xn) Ψ′ = copy types(Ψ, `, xn)

These judgments are required whenever a parameter is passed into a method or
whenever a value is returned. Each recursively searches through either Σ or Ψ
looking for bindings with a location prefixed by `, builds a new location for that
binding prefixed by xn , and then adds the binding to the result. Note that the
location being copied to is always a location without a path, so the meta-syntax
above contains just xn not xn@π.

The full definitions of the judgments indicate that, as expected, copying simple
ptrs and lptrs is easy and is done in one step; it is copying objects that is difficult.
It would be possible to eliminate the possibility of passing or returning objects in
this system, but the designers felt that would be too restrictive.

Note that the copy types judgment is not needed anywhere in the judgment rules.
This is because, in those rules, Ψ is used only for static type-checking, and it is

7

unnecessary to reason about passing parameters or returning values. However,
the ability to copy a part of Ψ in an analogous manner to copying part of Σ is
necessary to complete the proof of preservation.

• In the alternate design, updating a field in an object would be challenging. Because
the value in the store would be the entire object, a new object would have to be
created with just one change. Because objects can contain objects, the judgment
implementing this idea would have to be recursive. Furthermore, because the
nesting can be arbitrarily deep, defining a small-step operational semantics for
this field update operation would be delicate.

• As touched on above, extraction of a field from an object would be challenging in
the alternate design. Because all values of evaluation are locations, we would need
either an enhanced location that could refer to an internal part of an object, or we
would need to create a fresh spot on the store for a sub-object.

In the end, one solution here may not be strictly better than the other.

3.2. Stack Direction

In Core Ironclad, the stack grows up with increasing indices. An alternate design of the
language would have the top of the stack be at n = 0, with older frames having positive
indices. This would have simplified the statement of the evaluation relation and typing
judgment, as the parameter n would no longer be necessary. However, it would have
made the method call, congruence, and return rules rather more cumbersome. In the
current design, a change of stack frame is effected simply by incrementing the index of
execution. In the alternate design, it would be necessary to increment every index in Ψ
and Σ, making parts of the proofs more cumbersome. It is also interesting to note that
the alternate design would feature active stack frames with negative indices — these are
the frames inside of method body expressions within the current expression.

This alternative design bears some resemblance to the use of de Bruijn indices, but
the exact correspondence and ramifications are not clear.

3.3. Location-based Language

An alternate design of the language would have expressions evaluate directly to more
traditional values, instead of locations. In this design, a variable x storing ptr (y0@)
would actually evaluate to ptr (y0@) instead of a location xn@ that stores the value
ptr (y0@). (Here, we are assuming evaluation is taking place in stack frame n.) This
alternate design would require separate evaluation relations for the left-hand-side and
the right-hand-side of assignments; left-hand-size expressions would still have to evaluate
to a location that can be assigned to.

The chief reason that locations are the values in Core Ironclad is that there needs to be
a sensible value for the this pointer in a method called using a temporary object. If there
were object values, what could this be? One possible solution is to have the object values

8

contain a self-reference, but this would complicate the notion of copying, because the self-
reference would change during a copy. Temporaries have not been directly addressed in
previous work on formalizing C and C++ which makes our approach particularly novel.

A side-effect of making all expressions evaluate to locations is that there is no longer a
need to differentiate left-hand-side from right-hand-side in both evaluation and typing.

3.4. Heap and Stack Unification

This design decision was made mainly for convenience. It is easy to imagine having
separate heap, stack, and temporary stores. However, doing so would require many more
judgment rules to handle the different choices for where to look up a value. Because
the salient difference between the stack and the heap in Core Ironclad is the lifetimes
of pointers, choosing the heap simply to be the bottom of the stack works well, for the
bottom frame outlives all other frames.

3.5. Local Variable Declarations

Core Ironclad requires all local variables declared in a method to be declared at the top
of that method. This is a simplification used to avoid the possibility that a statement
modifies the typing environment. It does not affect the expressivity of the language.

4. Language Details

While Core Ironclad is relatively simple on the surface, the system requires a number
of technical devices and sub-systems in order to accurately model the capabilities of
Ironclad C++. Here we give an overview of these systems before diving into the details
of the proofs.

4.1. default and build types

Σ = default∆〈τ〉(`)

Ψ = build types∆〈τ〉(`)

The default and build types judgments represent deterministic algorithms for building
the default store and typing context, respectively, upon declaration of variables. For a
pointer, the algorithms create a null pointer value and the correct type. For a class, the
algorithms recursively add bindings for all fields within that class. The one interesting
detail about these algorithms is in rule aux default class: a class tag is inserted in
the store at the location of the whole object.

structC { fldsmeths}; ∈ ∆
τi xi ;

i = flds

Σi = default∆〈τi〉(xn@π++ xi)
i

Σ = [xn@π 7→ C] Σi
i

Σ = default∆〈C 〉(xn@π)
aux default class

9

For example, say we have the following:

structC { ptr〈C 〉 a; ptr〈C 〉 b; };
ptr〈C 〉 f (C x){ ; skip; return null}

If we are evaluating function f in stack frame 1, then the store Σ will look like this:

[x 1@ 7→ C] [x 1@a 7→ ptr (bad ptr)] [x 1@b 7→ ptr (bad ptr)]

The reason that the first binding (i.e. the tag) is necessary is to perform correct method
lookup if we were to call a method on location x 1@ .

4.2. copy store and copy types

Σ′ = copy store(Σ, `, base)

Ψ′ = copy types(Ψ, `, base)

These are described in detail in section 3.1.

4.3. Statement and expression sizes

k = |s|

k = |e|

In the proof of preservation, it is necessary to explicitly keep track of the current
height of the stack. The necessity arises for two reasons:

• In the small-step operational semantics, a statement or expression steps in a
method call when the method body expression steps in the outer method. (This is
a straightforward congruence rule for method body expressions.) Showing that the
consistency of the expression, store, and typing context are preserved requires that
no deletions happen in the store or typing context below the level of the height of
the stack. It is not sufficient just to check up to the stack level of the method body
expression, because the internal statements and expressions in the body need to
retain their locations as well.

• When a method body returns, it is necessary to “pop” the top level off the stack.
If the bindings were simply to remain, then it is possible that a future method call
would happen at the same index and with the same local variable names as the
leftover bindings. The conflict would violate the conditions of some of the lemmas
that the proof relies on to show consistency preservation.

For these reasons, there are statement and expression size judgments that count how
many stack levels the statement or expression contains. For all statements and expres-
sions other than the method body expression, the size is defined to be the maximum
size of the substatements or subexpressions, or 0 if there are no substatements and

10

subexpressions. In the case of a method body expression, the size is one more than the
maximum of the sizes of the method body’s statement and expression. In this way, the
total number of nested method bodies is counted.

It is worth noting that the well-formedness condition, described fully in section 5.1,
ensures that no statement or expression has more than one substatement or subexpres-
sion containing a method body expression. Because of this, all but one substatement or
subexpression will always have size 0.

4.4. Quotienting

Σ′ = Σ\n

Ψ′ = Ψ\n

The quotient operation implements “popping” the stack. When a method is done
executing, it is necessary to remove all bindings at the height of that method in both the
store and typing context. The quotient judgments represent deterministic algorithms
that do just that.

The type context quotienting judgment Ψ′ = Ψ\n is used only in the proof of preser-
vation; no other judgment refers directly to it.

4.5. Well-formed summary judgment

wf (∆,Ψ,Σ,n)

This judgment is used to group together the following consistency judgments for con-
venience:

ènv ∆ ok `∆;n
ty Ψ ok Ψ s̀t Σ ok

wf (∆,Ψ,Σ,n)
cons wfsummary wf

4.6. Type context consistency

`∆;k
ty Ψ ok

This judgment ensures the following conditions on Ψ:

• Ψ contains no bindings with an index greater than k.

• All bindings to a class tag C in Ψ are accompanied by bindings for all the fields
of C .

• All bindings in Ψ with a non-empty path are accompanied by the binding for the
class tag of the enclosing object.

• There are no lptrs with non-empty paths in Ψ.

11

Because checking an individual binding (Ψ `∆;k
ty1 ` : τ ok) may have to look both forward

and backward in Ψ to ensure these conditions, the judgment is written in a two-pass style,
where Ψ is identified with a list of bindings and this entire list is used to check each
element in the list. A side effect of this style of definition is that some of the technical
lemmas have unusual proofs. In particular, lemma 12 requires deriving a non-trivial
induction hypothesis.

4.7. Store consistency

Ψ s̀t Σ ok

This judgment ensures the following conditions on Ψ and Σ:

• dom (Σ) ⊆ dom (Ψ)

• All locations mapping to lptr (`) values have type lptr〈τ〉, where Ψ(`) = τ .

• All locations mapping to ptr (`) values have type ptr〈τ〉, where Ψ(`) = τ .

• All locations mapping to a class tag in one environment is tagged correctly in the
other.

• There are no lptrs with non-empty paths.

• All lptrs point to locations that will outlive the lptr.

• All ptrs point to the heap.

Essentially, this judgment enforces the pointer lifetime invariant and that the values
in the store are well-typed.

This judgment is also written in the same two-pass style as the typing consistency
judgment. The judgment over individual bindings is written Ψ; Σ s̀t1 ` : τ ok.

4.8. The source and wf judgments

source (s) source (e) ∆wf clswf meth wf s wf e wf

These are described fully in section 5.1.

4.9. Type well-formedness

`∆twf τ

This judgment simply says that any class name used in a type has been declared in
∆.

12

4.10. The Assignable relation

τ1 ⇐ τ2

The operational semantics do not define a behavior for assigning one object to an-
other. This is because that effect could be achieved by element-wise assignment of fields.
However, the two pointer types are interchangeable, provided they point to the same
target type. The Assignable relation τ1 ⇐ τ2 enforces these rules.

4.11. Expression typing

Ψ `∆;n
exp e : τ

Most of these rules are straightforward. The two rules below are the most interesting:

Ψ(xn ′
@π) = τ n ′ ≤ n

Ψ `∆;n
exp xn ′@π : τ

type exp loc

This rule contains the condition that n ′ ≤ n; in other words, that the referent in the
location has a lifetime longer than or equal to that of the current stack frame. The
existence of this condition ensures that no pointers to popped stack frames exist. Because
there is no typing rule for bad ptr, this rule also implies that any dereference of null is
mal-formed. (The rule type exp null types the use, but not dereference, of null.)

∀τ ′.τ 6= lptr〈τ ′〉
Ψ `∆;n+1

stmt s ok Ψ `∆;n+1
exp e : τ

Ψ `∆;n
exp {s; return e} : τ

type exp body

This is the typing rule for method body expressions. The first premise ensures that
the return type is not an lptr. This premise is necessary in showing that popping the
stack frame on a method return does not remove any binding that is referred to in the
return value. The other two premises show that the inner statement and expression are
type-checked at a stack frame one higher than the current stack frame. This is exactly
how the tiered stack is implemented in the typing context.

4.12. Statement consistency

Ψ `∆;n
stmt s ok

The statement typing rules are very straightforward. The only rule of note is assign-
ment where we use the Assignable relation τ1 ⇐ τ2 to determine if the assignment is
valid:

Ψ `∆;n
exp e1 : τ1

Ψ `∆;n
exp e2 : τ2

τ1 ⇐ τ2

Ψ `∆;n
stmt e1 = e2 ok

type stmt assign

13

4.13. Method consistency

C `∆meth meth ok

The one rule in this judgment checks that a method declaration is well-typed. The
premises build up an appropriate typing context to use in checking the internal statement
and expression using build types. There is also a condition that the return type is not
an lptr. The internal statement and expression are typed at stack level 0, though this
choice of 0 is rather arbitrary. Lemma 17 says that it is possible to change the stack level
to any level n in a method. That lemma is necessary to show that types are preserved
when a method call evaluates to a method body expression.

4.14. Class consistency

`∆class cls ok

The one rule in this judgment checks all the methods in the class and enforces the
constraint that there are no lptr fields in a class.

4.15. Class environment consistency

ènv ∆ ok

The one rule in this judgment checks all of the classes in the environment in the
two-pass style described above, in section 4.6. This is because classes may have mutual
dependencies. The last premise prohibits the following declarations:

structA {B b; };
structB {A a; };

In real C++, this would lead to an infinitely-sized data structure. In Core Ironclad, the
effect of these declarations is to make default and build types diverge.

4.16. Program consistency

p̀rog ∆; void main() {s} ok

This judgment checks to make sure that ∆ is consistent and that s is consistent in the
context of ∆:

ènv ∆ ok

· `∆;0
stmt s ok

p̀rog ∆; void main() {s} ok
type prog main

14

4.17. Statement evaluation

(Σ, s) −→
stmt

n
∆(Σ′, s ′)

The rules in this judgment are straightforward. The most interesting details are in
the assignment rules, which enforce the usual constraints on lptrs and ptrs — that lptrs
point to referents at or below the lptr on the stack and that ptrs point to the heap. In
the cases where these requirements are not met, the assignment evaluates to error, the
model of an thrown exception in Core Ironclad.

4.18. Expression evaluation

(Σ, e) −→
exp

n
∆(Σ′, e ′)

Here we describe the interesting expression evaluation rules:

(Σ, x) −→
exp

n
∆(Σ, xn@)

eval exp var

This rule contains the notion of lookup in the active stack frame when evaluating a
variable. Note that the index in the resultant location is the index used in the evaluation
step.

xn fresh for Σ
Σ′ = Σ [xn@ 7→ ptr (bad ptr)]

(Σ, null) −→
exp

n
∆(Σ′, xn@)

eval exp null

This rule, along with eval exp body ret, eval exp new, and eval exp addr demon-
strate the use of allocating temporary storage locations in the store for temporary values.
They all must allocation a fresh location and then evaluate to that location.

(Σ, (xn ′@π).x ′) −→
exp

n
∆(Σ, xn ′@π++ x ′)

eval exp fld

This rule demonstrates the relationship between field extraction and the location-based
store. Field extraction is exceedingly simple: just append the field name to the path.

Σ(`1) = C
structC { fldsmeths}; ∈ ∆
τ1 f (τ2 x){τi xi

i ; s; return e} ∈ meths
Σ2 = copy store(Σ, x2

n2@π2, x
n+1)

Σ3 = [thisn+1@ 7→ lptr (`1)]

Σ4 i = default∆〈τi〉(xi n+1@)
i

Σ′ = Σ Σ2 Σ3 Σ4 i
i

(Σ, `1.f (x2
n2@π2)) −→

exp
n
∆(Σ′, {s; return e})

eval exp meth

15

This rule builds up the correct store with which to evaluate the body of a method.
It allocates space for the one parameter of the method, the this pointer, and all local
variables of the method being called. The value of the actual parameter is copied into
the location of the formal parameter, this is initialized appropriately, and default values
are created for the local variables. Note that all of these locations are at index n + 1,
because the locations should be local to the method being called.

xn fresh for Σ
Σ2 = copy store(Σ, `, xn)
Σ′ = Σ Σ2\(n + 1)

(Σ, {skip; return `}) −→
exp

n
∆(Σ′, xn@)

eval exp body ret

This rule is triggered when the statement and expression in a method body expression
are both done evaluating. It copies the return value into a freshly allocated location, local
to the calling method. The premises also indicate that the store is effectively popped
— all locations at index n + 1 are removed from the store because the method at level
n + 1 is done evaluating. Proving that this rule does not violate preservation requires
that the returned value does not reference any locations in the n+ 1 stack frame.

(Σ, s) −→
stmt

n+1
∆ (Σ′, s ′)

(Σ, {s; return e}) −→
exp

n
∆(Σ′, {s ′; return e})

eval exp body cong1

(Σ, e) −→
exp

n+1
∆ (Σ′, e ′)

(Σ, {skip; return e}) −→
exp

n
∆(Σ′, {skip; return e ′})

eval exp body cong2

These rules are the congruence rules for evaluating within a method body expression.
They are notable because the inner statement or expression is evaluated in stack frame
n+ 1. The other congruence rules naturally evaluate their inner expression(s) in frame
n.

5. Proofs

Type-safety for Core Ironclad follows from standard progress and preservation lemmas.
We first build up the necessary infrastructure and then prove these lemmas in detail. We
then use these results to show that the pointer lifetime invariant as discussed in section
2 holds.

5.1. Well-formedness

Because we encode the call stack into our term language with the {s; return e} block
expression, we must restrict our metatheory to well-formed terms. Intuitively, well-
formedness for terms implies that we never have multiple, active stack frames in distinct
sub-terms. For example, consider the syntactically valid method call:

16

{skip; return x}.f ({skip; return x})

Here, both the receiver and argument expressions have an active call frame that men-
tions the variable x . If we are currently at stack depth n then both call frames are at
stack depth n + 1 and thus when we typecheck x in each context, we’ll use the same
location in the store typing xn+1@ . This is clearly not correct as the body expressions
may have been generated by invocations to different methods and thus the x s may have
different types.

This situation should never occur because body expressions are not part of the source
language and our left-to-right call-by-value semantics guarantees we fully evaluate the
receiver before evaluating the argument.

To enforce this property, we define a source-level and well-formedness judgment over
classes, statements, and expressions. Appendix A.4 gives the complete rules of these
judgments.

For example, with swf assign1 and swf assign2, the assignment e1 = e2 is well-
formed if (1) e1 is not a location (i.e., not yet fully evaluated) and e2 contains no block
expressions or (2) e1 is fully evaluated in which case there is no restriction on e2. All of
syntactic forms that contain sub-expressions or statements are similarly defined.

The important property of well-formedness is that it is closed under evaluation. To
prove this, we need a lemma stating the fact that source-level programs are well-formed.

Lemma 1 (Source-level Terms are Well-formed).

1. If source (s) then s wf.

2. If source (e) then e wf.

Proof Sketch: Straightforward induction on the source predicate in each part. source
makes a strictly stronger claim that wf: there can be no non-source level subterms
within the given term. �

Theorem 1 (Well-formedness Preservation).

1. If ∆wf, s wf, and (Σ, s) −→
stmt

n
∆(Σ′, s ′) then s ′ wf.

2. If ∆wf, e wf, and (Σ, e) −→
exp

n
∆(Σ′, e ′) then e ′ wf.

Proof Sketch: By a straightforward mutual induction on the two evaluation derivations.
The two interesting sets of cases are unsurprisingly when we consider how the term steps
via congruence and when we invoke a method. In the case of congruence, we must use
Lemma 1 to be able to conclude that the sub-term is well-formed when the premises of
well-formedness judgment say that it is source. The case of method invocation is similar,
but relies on the fact that since ∆wf that the method body is source. �

In the interest of brevity, we assume that we are only working with well-formed classes,
statements, and expressions for the rest of these proofs.

17

5.2. Progress

Progress in Core Ironbound is standard. The one caveat is that values in our language
exist only in the store, so our lemmas reflect what we can expect when we perform store
lookup.

Lemma 2 (Existence of Store Values).

If Ψ; Σ s̀t1 ` : τ ok then Σ(`) = v for some v.

Proof. Immediate by inversion on the judgment Ψ; Σ s̀t1 ` : τ ok. In all cases, we demand
that Σ(`) = v for some v .

Lemma 3 (Canonical Forms of Store Values).

1. If Ψ `∆;n
exp ` : C and Ψ s̀t Σ ok then Σ(`) = C .

2. If Ψ `∆;n
exp ` : ptr〈τ〉 and Ψ s̀t Σ ok then Σ(`) = ptr (`′) for some `′.

3. if Ψ `∆;n
exp ` : lptr〈τ〉 and Ψ s̀t Σ ok then Σ(`) = lptr (`′) for some `′.

Proof. By inversion on the typing judgment to obtain that Ψ(`) = τ . Because Ψ s̀t Σ ok
we know that Ψ; Σ s̀t1 ` : τ ok. By inversion on the binding consistency judgment, we
can conclude in each of the three cases that the store produces the appropriate value.

Theorem 2 (Progress).

1. If Ψ `∆;n
stmt s ok and Ψ s̀t Σ ok then s is skip, error, or (Σ, s) −→

stmt

n
∆(Σ′, s ′).

2. If Ψ `∆;n
exp e : τ and Ψ s̀t Σ ok then e is `, error, or (Σ, e) −→

exp
n
∆(Σ′, e ′).

Proof. By mutual induction on the typing derivations of s and e.
First consider the cases for typing s.

Case stmt assign The derivation ends in

Ψ `∆;n
exp e1 : τ1

Ψ `∆;n
exp e2 : τ2

τ1 ⇐ τ2

Ψ `∆;n
stmt e1 = e2 ok

type stmt assign

By inversion on the typing judgment we know that e1 and e2 are well-typed. By
the induction hypothesis, e1 is error, steps, or is some `1. If e1 is error then s steps
by eval stmt assign err1. If e1, then s steps by eval stmt assign cong1.

If e1 is some `1 then by the induction hypothesis, e2 is error, steps, or is some `2.
If e2 is error then s steps by eval stmt assign err2. If e2 steps, then s steps by
eval stmt assign cong2.

If s = `1 = `2 then by the typing for `1 and `2 and Lemma 2 we know that
Σ(`1) = v1 and Σ(`2) = v2 for some v1 and v2. By inversion of the assignable
judgment τ1 ⇐ τ2 we can refine v1 and v2 to the following cases:

18

• v1 = ptr (pv1) and v2 = ptr (pv2). s steps by eval stmt assign ptr ptr.

• v1 = lptr (pv1) and v2 = ptr (pv2). s by eval stmt assign lptr ptr.

• v1 = ptr (pv1) and v2 = lptr (pv2). If pv2 = bad ptr then s steps by eval stmt -
assign ptr lptr null. If pv2 is some heap value then it steps by eval -
stmt assign ptr lptr. Else s steps by eval stmt assign ptr lptr -
err.

• v1 = lptr (pv1) and v2 = lptr (pv2). If pv2 = bad ptr then s steps by eval -
stmt assign lptr lptr null. If pv2 is some heap value then it steps by
eval stmt assign lptr lptr. Else s steps by eval stmt assign lptr -
lptr err.

Case stmt seq The derivation ends in

Ψ `∆;n
stmt s1 ok

Ψ `∆;n
stmt s2 ok

Ψ `∆;n
stmt s1; s2 ok

type stmt seq

By inversion on the typing judgment we know that s1 and s2 are well-formed. By
the induction hypothesis, s1 is error, steps, or is skip. If s1 is error then s steps by
eval stmt seq err. If s1 steps then s steps by eval stmt seq cong. Finally
if s1 is skip then s steps by eval stmt seq skip.

Case stmt skip Trivial as s is skip.

Case stmt error Trivial as s is error.

Next, consider the cases for typing e.

Case exp var x immediately steps by eval exp var.

Case exp fld The derivation ends in

Ψ `∆;n
exp e1 : C

structC { fldsmeths}; ∈ ∆
τ x ; ∈ flds

Ψ `∆;n
exp e1.x : τ

type exp fld

By inversion on the typing judgment, we know that e1 is well-typed. By the
induction hypothesis, e1 is error, steps, or is some `1. If e1 is error, e steps by
eval exp fld err. If e1 steps, then e steps by eval exp fld cong. Finally if
e1 is some `1 then e steps by eval exp fld.

Case exp deref ptr The derivation ends in

Ψ `∆;n
exp e1 : ptr〈τ〉

Ψ `∆;n
exp ∗e1 : τ

type exp deref ptr

19

By inversion on the typing judgment, we know that e1 is well-typed. By the
induction hypothesis, e1 is error, steps, or is some `1. In the first case, e steps by
eval exp deref cong. In the second case, e steps by eval exp deref error.
In the final case, e steps either by eval exp deref ptr or eval exp deref -
ptr null.

Case exp deref lptr Analogous to the exp deref ptr case utilizing the lptr rules
rather than the ptr rules.

Case exp loc Trivial as e is `.

Case exp null null immediately steps by eval exp null.

Case exp meth The derivation ends in

Ψ `∆;n
exp e1 : C

structC { fldsmeths}; ∈ ∆
τ1 f (τ2 x){vardecls; s; return e} ∈ meths

Ψ `∆;n
exp e2 : τ2

Ψ `∆;n
exp e1.f (e2) : τ1

type exp meth

By inversion on the typing judgment, we know that e1 and e2 are well-typed. By
the induction hypothesis, e1 is error, steps, or is some `1. If e1 is error then e steps
by eval exp meth err1. If e1 steps, then e steps by eval exp meth cong1.

Otherwise, if e1 is some `1 then by the induction hypothesis, e2 is error, steps, or
is some `2. In the first case, e steps by eval exp meth err2. In the second case,
e steps by eval exp meth cong2. In the final case, e steps by eval exp meth
provided that Σ(`1) = C which we know holds by Lemmas 2 and 3.

Case exp new new immediately steps by eval exp new.

Case exp addr Analogous to the exp deref ptr case utilizing the addr rules rather
than the ptr rules.

Case exp body The derivation ends in

τ 6= lptr〈τ ′〉
Ψ `∆;n+1

stmt s ok Ψ `∆;n+1
exp e1 : τ

Ψ `∆;n
exp {s; return e1} : τ

type exp body

By inversion on the typing judgment we know s and e are well-typed. By the
induction hypothesis, s is error, steps, or is skip. If s is error then e steps by
eval exp body err1. If s steps, then e steps by eval exp body cong1.

If s is skip then by the induction hypothesis, e1 is error, steps, or is some `1.
In the first case, e steps by eval exp body err2. In the second case, e steps
by eval exp body cong2. Finally, if e = {skip; return `1} then it steps by
eval exp body ret.

20

5.3. Preservation

The proof of preservation is relatively straightforward, but it requires a large number of
technical lemmas to deal with all of the structure of our judgments. The largest source
of novelty in this proof comes from a non-standard subsetting relation that examines
only those elements at or below the level of the top of the stack.

Definition (Subsetting). We define Ψ ⊆n Ψ′ to mean that for every binding of the form
Ψ(xn ′

@π) = τ such that n′ ≤ n, then Ψ′(xn ′
@π) = τ .

Lemma 4 (ptrs Point to the Heap). If Ψ s̀t Σ ok and Σ(`) = ptr (xn@π) then n = 0.

Proof. This comes directly from the fact that we require that n = 0 to conclude that
Ψ; Σ s̀t1 ` : ptr〈τ〉 ok.

Lemma 5 (No lptrs in Objects). If Ψ s̀t Σ ok and Ψ(`) = lptr〈τ〉, then l has the form
xn@. In other words, the path associated with ` is empty.

Proof. This comes directly from the fact that both cases for Ψ; Σ s̀t1 ` : lptr〈τ〉 ok require
the path to be empty.

Lemma 6 (lptrs Point Down the Stack). If Ψ s̀t Σ ok and Σ(x1
n1@π1) = lptr (x2

n2@π2),
then n2 ≤ n1.

Proof. The only evidence for Ψ; Σ s̀t1 ` : lptr〈τ〉 ok where Σ(`) 6= lptr (bad ptr) is
cons binding lptr. According to this rule n2 ≤ n1.

Lemma 7 (Binding Consistency Weakening). If Ψ; Σ s̀t1 ` : τ ok, (for all locations
`′ ∈ dom(Ψ), Ψ(`′) = Ψ′(`′)), and (for all locations `′ ∈ dom(Σ), Σ(`′) = Σ′(`′)), then
Ψ′; Σ′

s̀t1 ` : τ ok.

Proof. Straightforward case analysis on Ψ; Σ s̀t1 ` : τ ok. The rules refer to Ψ and
Σ only via lookup operations, and the results of lookup operations do not change by
assumption.

Lemma 8 (Lookup Concatenation). If for some environments ε and ε′ (an ε is either
a Ψ or a Σ), dom(ε)∩ dom(ε′) = ∅ and ` ∈ dom(ε), then ε(`) = (ε ε′)(`) = (ε′ ε)(`). (ε ε′

denotes the concatenation of ε and ε′).

Proof. By the definition of a lookup operation, adding new elements to an environment
at new locations does not change the value of any lookup operations of the original
locations.

Lemma 9 (Concatenation Consistency). If Ψ1 s̀t Σ1 ok, Ψ2 s̀t Σ2 ok, dom(Ψ1) ∩
dom(Ψ2) = ∅, and dom(Σ1) ∩ dom(Σ2) = ∅, then Ψ1 Ψ2 s̀t Σ1 Σ2 ok.

21

Proof. Let Ψ1 = [`1 i : τ1 i]
i

and Ψ2 = [`2 j : τ2 j]
j
. Let Ψ = Ψ1 Ψ2 and Σ = Σ1 Σ2. Then,

we must show that Ψ; Σ s̀t1 `1 i : τ1 i ok for every i and Ψ; Σ s̀t1 `2 j : τ2 j ok for every j.
We must also show that dom (Σ) ⊆ dom (Ψ).

For some i, consider Ψ; Σ s̀t1 `1 i : τ1 i ok. We know that Ψ1; Σ1 s̀t1 `1 i : τ1 i ok.
Because the domains of Ψ1 and Ψ2 are distinct and the domains of Σ1 and Σ2 are
distinct, lemma 8 tells us that Σ(`) = Σ1(`) for some ` ∈ dom(Σ1) and Ψ(`) = Ψ1(`) for
some ` ∈ dom(Ψ1). We then use lemma 7 to conclude Ψ; Σ s̀t1 `1 i : τ1 i ok for all i, as
desired.

A similar argument gives us Ψ; Σ s̀t1 `2 j : τ2 j ok for all j.
The subset relationship holds from the fact that (A ⊆ C,B ⊆ D) implies (A ∪ B) ⊆

(C ∪D).

Lemma 10 (Type Binding Consistency Weakening). If Ψ `∆;k
ty1 ` : τ ok and for all

locations `′ ∈ dom(Ψ), Ψ(`′) = Ψ′(`′), then Ψ′ `∆;k
ty1 ` : τ ok.

Proof. Straightforward case analysis on Ψ `∆;k
ty1 ` : τ ok. The rules refer to Ψ only via

lookup operations, and the results of lookup operations do not change by assumption.

Lemma 11 (Type Concatenation Consistency). If `∆;k
ty Ψ1 ok, `∆;k

ty Ψ2 ok, and dom(Ψ1)∩
dom(Ψ2) = ∅, then `∆;k

ty Ψ1 Ψ2 ok.

Proof. The proof follows much like that of lemma 9, but without the subset requirement.
We use lemmas 8 and 10.

Lemma 12 (Max Stack Height). If `∆;k
ty Ψ ok, then every element in dom(Ψ) has an

index n such that n ≤ k.

Proof. We invert `∆;k
ty Ψ ok to get Ψ `∆;k

ty1 xi
ni @πi : τi ok for every binding [xi

ni @πi : τi] in
Ψ. We consider a specific binding i and proceed by induction on πi .

In the base case, where πi is empty, we know we are in case cons type binding lptr,
cons type binding local ptr, or cons type binding local class. All of these
cases require ni ≤ k, so we are done.

In the inductive case, we let πi = π++ x . The inductive hypothesis states that if
xi

ni @π ∈ dom(Ψ) and Ψ `∆;k
exp xi

ni @π : τ (for some τ), then n ≤ k. We must be in case
cons type binding field ptr or cons type binding field class. By inversion of
Ψ `∆;k

ty1 xi
ni @πi : τi ok, we can see that xi

ni @π must be in dom(Ψ). Similarly, by inversion

of `∆;k
ty Ψ ok and the fact that [xi

ni @π : τ] is a binding in Ψ, we can derive Ψ `∆;k
ty1 xi

ni @π :
τ ok. We can now use the induction hypothesis to get n ≤ k as desired.

Lemma 13 (default Consistency). If ènv ∆ ok, Ψ = build types∆〈τ〉(`) and
Σ = default∆〈τ〉(`), then Ψ s̀t Σ ok for all τ and `.

Proof. By induction on the derivation of default.

Case cons default ptr We know that τ = ptr〈τ ′〉 and thus [` 7→ ptr (bad ptr)] =
default∆〈ptr〈τ ′〉〉(`) and [` : ptr〈τ ′〉] = build types∆〈lptr〈τ〉〉(`). We must show that
[` : ptr〈τ ′〉] s̀t [` 7→ ptr (bad ptr)] ok which is immediate by cons binding ptr null.

22

Case cons default lptr We know that τ = lptr〈τ ′〉 and thus [` 7→ lptr (bad ptr)] =
default∆〈lptr〈τ ′〉〉(`) and [` : lptr〈τ ′〉] = build types∆〈lptr〈τ ′〉〉(`). We must show
that [` : lptr〈τ ′〉] s̀t [` 7→ lptr (bad ptr)] ok which is immediate by cons binding -
lptr null.

Case cons default class We know that τ = C . Let the fields of C be τi xi ;
i . Since

Ψi = build types∆〈τi〉(xn@π++ xi)
i

and Σi = default∆〈τi〉(xn@π++ xi)
i

then by

induction Ψi s̀t Σi ok
i
. By cons binding cls [xn@π : C] s̀t [xn@π 7→ C] ok so

putting this together with Lemma 9, [xn@π : C] Ψi
i

s̀t [xn@π 7→ C] Σi
i
ok. Note

that we know the domains of the individual pieces are disjoint because we only
append onto paths and the field names must be unique, by ènv ∆ ok.

Lemma 14 (copy types Copies). If Ψ(xn@π1 ++π2) = τ and Ψ′ = copy types(Ψ, xn@π1, x
′n ′

),

then Ψ′(x ′n ′
@π2) = τ .

Proof. Straightforward induction on copy types.

Lemma 15 (copy store Copies). If Σ(xn@π1 ++π2) = v and Σ′ = copy store(Σ, xn@π1, x
′n ′

),

then Σ′(x ′n ′
@π2) = v.

Proof. Straightforward induction on copy store.

Lemma 16 (Copy Consistency). If Ψ s̀t Σ ok, Ψ′ = copy types(Ψ, `1, x2
n2), Σ′ =

copy store(Σ, `1, x2
n2), x2

n2@ is not the prefix of any location in dom(Ψ), and (if Σ(`1) =
lptr (x3

n3@π3) then n3 ≤ n2), then Ψ Ψ′
s̀t Σ Σ′ ok.

Proof. We must show the following:

• Ψ Ψ′; Σ Σ′
s̀t1 `i : τi ok for every binding [`i : τi] in Ψ Ψ′: A binding [`i : τi] is

either in Ψ or Ψ′. A binding may not be in both because of the condition that
x2

n2@ is not a prefix of any location in the domain of Ψ. This gives us two cases:

– [`i : τi] ∈ Ψ: We use lemma 7 on Ψ; Σ s̀t1 `i : τi ok, which we got from inver-
sion on Ψ s̀t Σ ok. The condition on lookup operations is satisfied because of
the domain condition described above.

– [`i : τi] ∈ Ψ′: By easy induction on the definitions of copy types and copy store,
we can see that every domain element `i has the form x2

n2@πi , for some
path (possibly empty) πi . We use lemma 15 to conclude that Σ′(x2

n2@πi) =
Σ(x1

n1@π1 ++πi).

The inversion of Ψ s̀t Σ ok gives us Ψ; Σ s̀t1 x1
n1@π1 ++πi : τi ok. We first

use lemma 7 to get Ψ Ψ′; Σ Σ′
s̀t1 x1

n1@π1 ++πi : τ1 ok. We then invert this
judgment and can change a lookup operation (Σ Σ′)(x1

n1@π1 ++πi) to be
(Σ Σ′)(x2

n2@πi). Noting that Ψ does not change and the lookup on Ψ in the
cons binding lptr and cons binding ptr cases remains the same, we now

23

have all the premises for the different cases fulfilled except for the n ′ ≤ n2

premise in cons binding lptr. In this specific case, we use lemma 5 to
find that πi is the empty path. We then know Σ(`1) = lptr (x3

n3@π3) and
therefore, by assumption, (identifying n3 in the statement of this lemma with
n ′ in the statement of the rule) n ′ ≤ n2 as desired.

• dom (Σ Σ′) ⊆ dom (Ψ Ψ′): We know that dom (Σ) ⊆ dom (Ψ) from inversion on
Ψ s̀t Σ ok. We must show that dom (Σ′) ⊆ dom (Ψ′). This fact can be seen from
induction on copy types and copy store — whenever a domain element is added to
Σ′, that same domain element is added to Ψ′, knowing that dom (Σ) ⊆ dom (Ψ).

Lemma 17 (Stack Change).

1. If Ψ `∆;n
stmt s ok, every element in dom(Ψ) has index n, and source (s), then Ψ′ `∆;n ′

stmt

s ok where Ψ′ is identical to Ψ except all the indices in the domain are changed
from n to n ′.

2. If Ψ `∆;n
exp e : τ , every element in dom(Ψ) has index n, and source (e), then Ψ′ `∆;n ′

exp

e : τ where Ψ′ is identical to Ψ except all the indices in the domain are changed
from n to n ′.

Proof Sketch: By mutual induction on typing derivations. The interesting cases are
type exp var and type exp loc. type exp var is straightforward. type exp loc
can’t happen by hypothesis. �

Lemma 18 (Subset Weakening).

1. If Ψ ⊆ Ψ′, then Ψ ⊆n Ψ′ for any n ≥ 0.

2. If Ψ ⊆′
n Ψ′ and n ≤ n′, then Ψ ⊆n Ψ′.

Proof. Immediate from the definition of ⊆n.

Lemma 19 (Subset Transitivity). If Ψ1 ⊆n Ψ2 and Ψ2 ⊆n Ψ3, then Ψ1 ⊆n Ψ3.

Proof. Immediate from the definition of ⊆n and the transitivity of ⊆.

Lemma 20 (Weakening).

1. If Ψ `∆;n
stmt s ok, source (s), and dom(Ψ) ∩ dom(Ψ′) = ∅, then Ψ Ψ′ `∆;n

stmt s ok.

2. If Ψ `∆;n
exp e : τ , source (e), and dom(Ψ) ∩ dom(Ψ′) = ∅, then Ψ Ψ′ `∆;n

exp e : τ .

Proof. By straightforward mutual induction on typing derivations.

Lemma 21 (Stack Height Weakening). If `∆;k
ty Ψ ok and k′ ≥ k, then `∆;k ′

ty Ψ ok.

24

Proof. By straightforward case analyses on the premises of `∆;k
ty Ψ ok, noting that k

appears only as an upper bound in the premises of Ψ `∆;k
ty1 ` : τ ok.

Lemma 22 (Stack Height Strengthening). If `∆;k
ty Ψ ok, and every domain element of Ψ

has an index less than or equal to some k′, then `∆;k ′

ty Ψ ok.

Proof. By straightforward case analyses on the premises of `∆;k
ty Ψ ok.

Lemma 23 (build types Unique). If Ψ = build types∆〈τ〉(`) and Ψ′ = build types∆〈τ〉(`),
then Ψ = Ψ′.

Proof. Straightforward induction on Ψ = build types∆〈τ〉(`).

Lemma 24 (build types Consistent (Inductive Case)). If Ψ = build types∆〈τ〉(xn@π++ x ′),
∆̀
twf τ , n ≤ k, structC { fldsmeths}; ∈ ∆, and τ x ′; ∈ flds then [xn@π : C] Ψ `∆;k

ty1

xn@π++ x ′ : τ ok.

Proof Sketch: By induction on the definition of build types. �

Lemma 25 (build types Consistent). If Ψ = build types∆〈τ〉(xn@), ∆̀
twf τ , and n ≤ k,

then `∆;k
ty Ψ ok.

Proof Sketch: Straightforward case analysis on the definition of build types, invoking
lemma 24 in case aux build types class. �

Lemma 26 (Size of source).

1. If source (s) then 0 = |s|.

2. If source (e) then 0 = |e|.

Proof. Straightforward mutual induction on the definition of size of statements and
expressions.

Lemma 27 (Copy/Build Consistency). If `∆;k
ty Ψ′′ ok, Ψ = build types∆〈τ〉(xn@), Ψ′ =

copy types(Ψ′′, x ′n ′
@π′, xn), Ψ′′(`) = τ , ∆̀

twf τ , and n′ ≤ k, then Ψ = Ψ′.

Proof Sketch: We show Ψ ⊆ Ψ′ and Ψ′ ⊆ Ψ.

• Ψ ⊆ Ψ′: By induction over the definition of build types.

• Ψ′ ⊆ Ψ: By induction over the definition of copy types.
�

Lemma 28 (Quotienting).

1. If Σ′ = Σ\n, then there are no domain elements in Σ′ with an index equal to n.

25

2. If Ψ′ = Ψ\n, then there are no domain elements in Ψ′ with an index equal to n.

Proof. Straightforward induction on the length of Σ and Ψ.

Lemma 29 (Quotient Consistency). If Ψ s̀t Σ ok, Ψ′ = Ψ\n, Σ′ = Σ\n, and there exist
no domain elements of Ψ with an index greater than n, then Ψ′

s̀t Σ′ ok.

Proof Sketch: Straightforward case analysis of the elements in Ψ′. We will need lemmas 4
and 6 for ptrs and lptrs, respectively. �

Lemma 30 (Quotient Distribution).

1. If Σ′ = Σ1 Σ2\n, then Σ′ = Σ1 \n Σ2\n.

2. If Ψ′ = Ψ1 Ψ2\n, then Ψ′ = Ψ1 \n Ψ2\n.

Proof. Straightforward induction on the length of Σ2 and Ψ2.

Lemma 31 (Quotient Preserves Others).

1. If Σ′ = Σ\n, Σ(xn ′
@π) = v, and n′ 6= n, then Σ′(xn ′

@π) = v.

2. If Ψ′ = Ψ\n, Ψ(xn ′
@π) = τ , and n′ 6= n, then Ψ′(xn ′

@π) = τ .

Proof. Straightforward induction on the length of Σ or Ψ.

Lemma 32 (Quotient Preserves Subset). If Ψ ⊆n Ψ′ and n′ > n, then Ψ ⊆n Ψ′\n ′.

Proof. By use of lemma 31 at all levels i such that i ≤ n.

Lemma 33 (One Change in Consistency). If Ψ s̀t Σ ok, ` ∈ dom(Ψ), and Ψ; Σ [` 7→
v] s̀t1 ` : τ ok, then Ψ s̀t Σ [` 7→ v] ok.

Proof. The only change from Ψ s̀t Σ ok is the entry for ` in Σ. Because Σ(`) for some
Σ and ` is mentioned only in the case for Ψ; Σ s̀t1 ` : τ ok, we must know only that
Ψ; Σ [` 7→ v] s̀t1 ` : τ ok, for Ψ(`) = τ , to conclude that Ψ s̀t Σ [` 7→ v] ok.

Lemma 34 (Type Binding Consistency Weakening). If Ψ `∆;k
ty1 ` : τ ok and `′ /∈ dom(Ψ),

then Ψ [`′ : τ ′] `∆;k
ty1 ` : τ ok.

Proof. Straightforward case analysis on Ψ `∆;k
ty1 ` : τ ok. The rules refer to Ψ only via

lookup operations, and the results of lookup operations do not change with a fresh
binding added.

Theorem 3 (Preservation).

1. If wf (∆,Ψ,Σ, |s| + n), Ψ `∆;n
stmt s ok, and (Σ, s) −→

stmt

n
∆(Σ′, s ′), then there exists Ψ′

such that wf (∆,Ψ′,Σ′, |s|+ n), Ψ `∆;n
stmt s ′ ok, and Ψ ⊆n Ψ′.

26

2. If wf (∆,Ψ,Σ, |e| + n), Ψ `∆;n
exp e : τ , and (Σ, e) −→

exp
n
∆(Σ′, e ′), then there exists Ψ′

such that wf (∆,Ψ′,Σ′, |e|+ n), Ψ′ `∆;n
exp e ′ : τ , and Ψ ⊆n Ψ′.

Proof. We proceed by mutual induction on the evaluation derivations from each portion
of the theorem.

Case eval stmt assign ptr ptr

Σ(`1) = ptr (pv1) Σ(`2) = ptr (pv2)
Σ′ = Σ [`1 7→ ptr (pv2)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign ptr ptr

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: By assumption.

• Ψ s̀t Σ′ ok: Using the subsetting relation we get by inversion on Ψ s̀t Σ ok,
we see that ` ∈ dom(Ψ). We use lemma 33 to show that we need to show
only that Ψ; Σ′

s̀t1 `1 : τ ok. From inversion on Ψ; Σ s̀t1 `1 : τ ok, knowing
that Σ(`1) = ptr (pv1), we see that τ = ptr〈τ ′〉 for some τ ′. We have two cases
here: either pv2 = bad ptr or pv2 = xn ′

@π. In the first case, we can derive
Ψ; Σ′

s̀t1 `1 : ptr〈τ ′〉 ok directly from cons binding ptr null. In the second
case, we use inversion on Ψ; Σ s̀t1 `2 : τ2 ok, knowing that Σ(`2) = ptr (xn ′

@π)
to see that τ2 = ptr〈τ ′2〉, Ψ(xn ′

@π) = τ ′2, and n ′ = 0. Now, we use inversion

on Ψ `∆;n
stmt `1 = `2 ok to see that Ψ `∆;n

exp `1 : τ , Ψ `∆;n
exp `2 : τ2, and τ ⇐ τ2. We

have already determined that τ = ptr〈τ ′〉 and τ2 = ptr〈τ ′2〉. Using inversion
on ptr〈τ ′〉 ⇐ ptr〈τ ′2〉 gives us τ ′ = τ ′2, by type assignable ptr ptr. Thus,
we can conclude Ψ; Σ′

s̀t1 `1 : ptr〈τ ′〉 ok as desired.

• Ψ `∆;n
stmt skip ok: Immediate from type stmt skip.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval stmt assign lptr ptr

Σ(`1) = lptr (pv1) Σ(`2) = ptr (pv2)
Σ′ = Σ [`1 7→ lptr (pv2)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign lptr ptr

Ψ `∆;n
exp e1 : τ1

Ψ `∆;n
exp e2 : τ2

τ1 ⇐ τ2

Ψ `∆;n
stmt e1 = e2 ok

type stmt assign

Choose Ψ′ = Ψ.

We must show the following:

27

• `∆;n
ty Ψ ok: By assumption.

• Ψ s̀t Σ′ ok: We proceed as in the case for eval stmt assign ptr ptr. This
case differs in that Σ(`1) = lptr (pv1) and therefore τ = lptr〈τ ′〉. Later in the
proof, we invoke cons binding lptr null instead of cons binding ptr null
and type assignable lptr ptr instead of type assignable ptr ptr. Note
that the proof above shows that n′ = 0, where Σ(`2) = ptr (xn ′

@π). Because
n ≥ 0 by assumption, we know that n′ ≤ n. The last part to show is that
`1 has the form xn@ — in other words, `1 has no path. This can be seen by
repeated inversion on Ψ s̀t Σ ok, noting that both lptr cases require that `1
have no path. We can now conclude that Ψ; Σ′

s̀t1 `1 : lptr〈τ ′〉 ok, as desired.

• Ψ `∆;n
stmt skip ok: Immediate from type stmt skip.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval stmt assign ptr lptr null

Σ(`1) = ptr (pv1) Σ(`2) = lptr (bad ptr)
Σ′ = Σ [`1 7→ ptr (bad ptr)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign ptr lptr null

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: By assumption.

• Ψ s̀t Σ′ ok: As argued above, we need only show that Ψ; Σ′
s̀t1 `1 : ptr〈τ ′〉 ok.

This fact is immediate from Σ′(`1) = ptr (bad ptr) and cons binding ptr null.

• Ψ `∆;n
stmt skip ok: Immediate from type stmt skip.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval stmt assign ptr lptr

Σ(`1) = ptr (pv1) Σ(`2) = lptr (x 0@π)
Σ′ = Σ [`1 7→ ptr (x 0@π)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign ptr lptr

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: By assumption.

• Ψ s̀t Σ′ ok: As argued above, we need only show that Ψ; Σ′
s̀t1 `1 : ptr〈τ ′〉 ok.

This fact is immediate from Σ′(`1) = ptr (x 0@π) and cons binding ptr,
using the argument presented above to show that τ ′ = τ ′2, where Ψ `∆;n

exp `2 :
lptr〈τ ′2〉.

28

• Ψ `∆;n
stmt skip ok: Immediate from type stmt skip.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Cases eval stmt assign ptr lptr err, eval stmt assign lptr lptr err

Σ(`1) = ptr (pv1) n ′ 6= 0

Σ(`2) = lptr (xn ′
@π2)

(Σ, `1 = `2) −→
stmt

n
∆(Σ, error)

eval stmt assign ptr lptr err

Σ(x1
n1@π1) = lptr (pv1) n2 6≤ n1

Σ(`2) = lptr (x2
n2@π2)

(Σ, x1
n1@π1 = `2) −→

stmt

n
∆(Σ, error)

eval stmt assign lptr lptr err

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: By assumption.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
stmt error ok: Immediate from type stmt error.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval stmt assign lptr lptr null

Σ(`1) = lptr (pv1) Σ(`2) = lptr (bad ptr)
Σ′ = Σ [`1 7→ lptr (bad ptr)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign lptr lptr null

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: By assumption.

• Ψ s̀t Σ′ ok: As argued above, we need only show that Ψ; Σ′
s̀t1 `1 : lptr〈τ ′〉 ok.

We know by repeated inversion on Ψ s̀t Σ ok that `1 has no path. Then, the
fact that Σ′(`1) = lptr (bad ptr) gives us Ψ; Σ′

s̀t1 `1 : lptr〈τ ′〉 ok immediately,
using cons binding lptr null.

• Ψ `∆;n
stmt skip ok: Immediate from type stmt skip.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval stmt assign lptr lptr

Σ(x1
n1@π1) = lptr (pv1)

Σ(`2) = lptr (x2
n2@π2)

Σ′ = Σ [x1
n1@π1 7→ lptr (x2

n2@π2)] n2 ≤ n1

(Σ, x1
n1@π1 = `2) −→

stmt

n
∆(Σ′, skip)

eval stmt assign lptr lptr

29

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: By assumption.

• Ψ s̀t Σ′ ok: As argued above, we need only show that Ψ; Σ′
s̀t1 `1 : lptr〈τ ′〉 ok.

We know by repeated inversion on Ψ s̀t Σ ok that `1 has no path – in
other words π1 is the empty path. By construction of Σ′, Σ′(x1

n1@) =
lptr (x2

n2@π2). By the argument above, we know that Ψ(x2
n2@π2) = τ ′. Thus,

we can conclude Ψ; Σ′
s̀t1 `1 : lptr〈τ ′〉 ok as desired, by cons binding lptr.

• Ψ `∆;n
stmt skip ok: Immediate from type stmt skip.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval stmt seq skip

(Σ, skip; s) −→
stmt

n
∆(Σ, s)

eval stmt seq skip

Choose Ψ′ = Ψ.

We must show the following:

• `∆;|s|+n
ty Ψ ok: By the definition of the size operation, we can see that |skip; s| =
|s|, and so we have this by assumption.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
stmt s ok: By inversion on Ψ `∆;n

stmt skip; s ok.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval stmt assign cong1

(Σ, e1) −→
exp

n
∆(Σ′, e ′

1)

(Σ, e1 = e2) −→
stmt

n
∆(Σ′, e ′

1 = e2)
eval stmt assign cong1

To use the induction hypothesis, we must show only that `∆;|e1|+n
ty Ψ ok; the other

conditions are immediate from the assumptions. We know that source (e2) by the
well-formedness condition swf assign1, along with the fact that e1 takes a step.
By lemma 26, we know that 0 = |e2|. Therefore |e1 = e2| = |e1|. Thus, we have

the desired condition, `∆;|e1|+n
ty Ψ ok, by assumption.

The application of the induction hypothesis gives us a Ψ1 such that `∆;|e′1|+n
ty Ψ1 ok,

Ψ1 s̀t Σ′ ok, Ψ1 `∆;n
exp e ′

1 : τ1, and Ψ ⊆n Ψ1.

Choose Ψ′ = Ψ1.

We must show the following:

30

• `∆;|e′1=e2|+n
ty Ψ1 ok: Because e2 has not changed, we know |e ′

1 = e2| = |e ′
1|.

Therefore, this condition is immediate from IH.

• Ψ1 s̀t Σ′ ok: Immediate from IH.

• Ψ1 `∆;n
stmt e ′

1 = e2 ok: The IH gives us Ψ1 `∆;n
exp e ′

1 : τ1. We must show that

Ψ1 `∆;n
exp e2 : τ2 for the same τ2 as before the step; then inversion on Ψ `∆;n

stmt

e1 = e2 ok gives us τ1 ⇐ τ2. We use lemma 20, noting that source (e2) and
Ψ ⊆n Ψ1, as required. We can then conclude that Ψ1 `∆;n

stmt e ′
1 = e2 ok.

• Ψ ⊆n Ψ1: Immediate from IH.

Case eval stmt assign cong2

(Σ, e2) −→
exp

n
∆(Σ′, e ′

2)

(Σ, `1 = e2) −→
stmt

n
∆(Σ′, `1 = e ′

2)
eval stmt assign cong2

To use the induction hypothesis, we must show only that `∆;|e2|+n
ty Ψ ok; the other

conditions are immediate from the assumptions. We know that 0 = |`1|. Therefore

|`1 = e2| = |e2|. Thus, we have `∆;|e2|+n
ty Ψ ok by assumption.

The application of the induction hypothesis gives us a Ψ1 such that `∆;|e′2|+n
ty Ψ1 ok,

Ψ1 s̀t Σ′ ok, Ψ1 `∆;n
exp e ′

2 : τ2, and Ψ ⊆n Ψ1.

Choose Ψ′ = Ψ1.

We must show the following:

• `∆;|`1=e′2|+n
ty Ψ1 ok: We still know |e ′

2| = |`1 = e ′
2|. Therefore, this condition is

immediate from IH.

• Ψ1 s̀t Σ′ ok: Immediate from IH.

• Ψ1 `∆;n
stmt `1 = e ′

2 ok: The IH gives us Ψ1 `∆;n
exp e ′

2 : τ2. We must show that

Ψ1 `∆;n
exp `1 : τ1 for the same τ1 as before the step; then inversion on Ψ `∆;n

stmt

e1 = e2 ok gives us τ1 ⇐ τ2. From the definition of ⊆n, we can see that
Ψ1(`1) = Ψ(`1). Therefore, Ψ1 `∆;n

exp `1 : τ1 as desired.

• Ψ ⊆n Ψ1: Immediate from IH.

Case eval stmt assign err1

(Σ, error = e2) −→
stmt

n
∆(Σ, error)

eval stmt assign err1

Choose Ψ′ = Ψ.

We must show the following:

31

• `∆;n
ty Ψ ok: By the well-formedness condition, source (e2). Therefore, by lemma 26,
|error = e2| = 0, meaning we have this condition by assumption.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
stmt error ok: Immediate from type stmt error.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval stmt assign err2

(Σ, `1 = error) −→
stmt

n
∆(Σ, error)

eval stmt assign err2

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: We can see that |`1 = error| = 0, meaning that we have this
condition by assumption.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
stmt error ok: Immediate from type stmt error.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval stmt seq cong

(Σ, s1) −→
stmt

n
∆(Σ′, s ′1)

(Σ, s1; s2) −→
stmt

n
∆(Σ′, s ′1; s2)

eval stmt seq cong

To use the induction hypothesis, we must show only that `∆;|s1|+n
ty Ψ ok; the other

conditions are immediate from the assumptions. We know that source (s2) by
the well-formedness condition swf seq. By lemma 26, we know that 0 = |s2|.
Therefore |s1; s2| = |s1|. Thus, we have `∆;|s1|+n

ty Ψ ok by assumption.

The application of the induction hypothesis gives us a Ψ1 such that `∆;|s′1|+n
ty Ψ1 ok,

Ψ1 s̀t Σ′ ok, Ψ1 `∆;n
stmt s ′1 ok, and Ψ ⊆n Ψ1.

Choose Ψ′ = Ψ1.

We must show the following:

• `∆;|s′1;s2|+n
ty Ψ1 ok: By the well-formedness preservation theorem, we know
source (s2) and therefore, by the same reasoning as above, |s ′1| = |s ′1; s2|. Thus,
we have this condition directly from the IH.

• Ψ1 s̀t Σ′ ok: Immediate from IH.

32

• Ψ1 `∆;n
stmt s ′1; s2 ok: The IH gives us Ψ1 `∆;n

stmt s ′1 ok. We must show that Ψ1 `∆;n
stmt

s2 ok. We use lemma 20, noting that source (s2) and Ψ ⊆n Ψ1, as required.
We can then conclude that Ψ1 `∆;n

stmt s ′1; s2 ok.

• Ψ ⊆n Ψ1: Immediate from IH.

Case eval stmt seq error

(Σ, error; s2) −→
stmt

n
∆(Σ, error)

eval stmt seq error

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: By the well-formedness condition, source (s2). Therefore, as rea-
soned above, |error; s2| = 0, meaning that we have this condition by assump-
tion.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
stmt error ok: Immediate from type stmt error.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval exp var

(Σ, x) −→
exp

n
∆(Σ, xn@)

eval exp var

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: We see that |x | = 0, so we have this condition by assumption.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
exp xn@ : τ : From inversion on Ψ `∆;n

exp x : τ , we get that Ψ(xn@) = τ .
In order to use type exp loc to satisfy the desired condition, we must only
show that n ≤ n, which is trivially true.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval exp null

xn fresh for Σ
Σ′ = Σ [xn@ 7→ ptr (bad ptr)]

(Σ, null) −→
exp

n
∆(Σ′, xn@)

eval exp null

We use inversion on Ψ `∆;n
exp null : τ to get τ = ptr〈τ ′〉. Choose Ψ′ = Ψ [xn@ :

ptr〈τ ′〉].
We must show the following:

33

• `∆;n
ty Ψ′ ok: We see that |null| = 0, so we have this condition by assumption..

• Ψ′
s̀t Σ′ ok: We wish to use lemma 9. We already know that Ψ s̀t Σ ok, and the

freshness condition on xn gives us that the domains of the old environments
and new binding are distinct. We need only show that [xn@ : ptr〈τ ′〉] s̀t

[xn@ 7→ ptr (bad ptr)] ok to show that Ψ′
s̀t Σ′ ok. This boils down to [xn@ :

ptr〈τ ′〉]; [xn@ 7→ ptr (bad ptr)] s̀t1 xn@ : ptr〈τ ′〉 ok, which is derivable directly
from cons binding ptr null. We have satisfied this condition.

• Ψ′ `∆;n
exp xn@ : τ : We use type exp loc, as its premises are immediate.

• Ψ ⊆n Ψ′: By construction.

Case eval exp fld

(Σ, (xn ′@π).x ′) −→
exp

n
∆(Σ, xn ′@π++ x ′)

eval exp fld

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: We see that |(xn ′

@π).x ′| = 0, so we have this condition by assump-
tion.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
exp xn ′

@π++ x ′ : τ : In order to use type exp loc, we must show that

Ψ(xn ′
@π++ x ′) = τ and than n′ ≤ n. Repeated inversion on Ψ `∆;n

exp xn ′
@π.x ′ :

τ gives us the following facts:

1. Ψ `∆;n
exp xn ′

@π : C

a) Ψ(xn ′
@π) = C

b) n ′ ≤ n

2. structC { fldsmeths}; ∈ ∆

3. τ x ′; ∈ flds.

Now, we invert `∆;n
ty Ψ ok to get Ψ `∆;n

ty1 xn ′
@π : C ok, which was proved either

by case
cons type binding field class or cons type binding local class. In
both cases, we can see that Ψ(xn ′

@π++ x ′) = τ . Thus, we can use type exp loc
to show that Ψ `∆;n

exp xn ′
@π++ x ′ : τ .

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

34

Case eval exp meth

Σ(`1) = C
structC { fldsmeths}; ∈ ∆
τ1 f (τ2 x){τi xi

i ; s; return e} ∈ meths
Σ2 = copy store(Σ, x2

n2@π2, x
n+1)

Σ3 = [thisn+1@ 7→ lptr (`1)]

Σ4 i = default∆〈τi〉(xi n+1@)
i

Σ′ = Σ Σ2 Σ3 Σ4 i
i

(Σ, `1.f (x2
n2@π2)) −→

exp
n
∆(Σ′, {s; return e})

eval exp meth

Let the following definitions hold:
Ψ2 = copy types(Ψ, `2, x

n ′
)

Ψ3 = [thisn
′
@ : lptr〈C 〉]

Ψ4 i = build types∆〈τi〉(xi n
′@)

i

Note that Ψ2, Ψ3, and the Ψ4 i are uniquely determined, invoking lemma 23. Then,

choose Ψ′ = Ψ Ψ2 Ψ3 Ψ4 i
i
.

First, we show a subsidiary fact: the domains of Ψ, Ψ2, Ψ3, and the Ψ4 i are
all distinct. That the domains of the last 3 are mutually distinct follows di-
rectly from repeated inversion on ènv ∆ ok, noting the uniqueness condition in
rule type meth decl. That the domain of Ψ is distinct from that of the others
follows from `∆;n

ty Ψ ok (noting that |`1.f (`2)| = 0), lemma 12, and that n′ = n+ 1.

We must show the following:

• `∆;|{s; return e}|+n
ty Ψ′ ok: We let k′ = |{s; return e}| + n. We will show that

`∆;k ′

ty Ψ ok, `∆;k ′

ty Ψ2 ok, `∆;k ′

ty Ψ3 ok, and `∆;k ′

ty Ψ4 i ok for any i in range. By

lemma 11, we will have shown `∆;k ′

ty Ψ′ ok.

– `∆;k ′

ty Ψ ok: We use `∆;n
ty Ψ ok and lemma 21.

– `∆;k ′

ty Ψ2 ok: We use lemmas 27 and 25, noting that k′ ≥ n + 1 from
the definition of the size operation. We get ∆̀

twf τ2 from the premises of
type meth decl.

– `∆;k ′

ty Ψ3 ok: Immediate from cons type binding lptr.

– `∆;k ′

ty Ψ4 i ok for any i in range: Immediate from lemma 25.

• Ψ′
s̀t Σ′ ok: To show Ψ′

s̀t Σ′ ok, we break this down into showing that Ψ Ψ2 s̀t

Σ Σ2 ok, Ψ3 s̀t Σ3 ok, and Ψ4 i s̀t Σ4 i ok
i
. Then, by repeated application of

lemma 9 (using the distinctness of names discussed above), we will be able to
conclude Ψ′

s̀t Σ′ ok as desired.

– Ψ Ψ2 s̀t Σ Σ2 ok: We invoke lemma 16. The only condition of that
lemma that is not immediate is the last: we must show that if Σ(`2) =

35

lptr (x3
n3@π3), then n3 ≤ n ′. We know (from eval exp meth) that

`2 = x2
n2@π2. By lemma 6, n3 ≤ n2. By inversion on Ψ `∆;n

exp `1.f (`2) : τ ,

we get Ψ `∆;n
exp `2 : τ2; by further inversion, we get that n2 ≤ n. By the fact

that n ′ = n + 1 (in the premises of eval exp meth), we can conclude
that n3 ≤ n ′ as desired.

– Ψ3 s̀t Σ3 ok: First, we know that dom(Σ3) = thisn
′
@ = dom(Ψ3).

Now, we need to show that [thisn
′
@ : lptr〈C 〉]; [thisn

′
@ 7→ lptr (`1)] s̀t1

thisn
′
@ : lptr〈C 〉 ok. From eval exp meth, we know that Σ(`1) = C .

We know `1 = x1
n1@π1 for some x1, n1, and π1. To use cons binding lptr,

we must show n1 ≤ n ′. By inversion on Ψ `∆;n
exp `1.f (`2) : τ , we get

Ψ `∆;n
exp `1 : τ ′; by further inversion, we get n1 ≤ n. Because n ′ = n + 1,

we have n1 ≤ n ′ as desired.

– Ψ4 i s̀t Σ4 i ok for any i: We simply invoke lemma 13.

• Ψ′ `∆;n
exp {s; return e} : τ : Using type exp body, we must show Ψ′ `∆;n ′

stmt s ok,

Ψ′ `∆;n ′

exp e : τ , and that τ 6= lptr〈τ3〉 for some τ3. By repeated inversion
on ènv ∆ ok, we can get that there exists a Ψ′′ such that the domain of Ψ′′

mentions only index 0, that source (s), source (e), Ψ′′ `∆;0
stmt s ok, Ψ′′ `∆;0

exp e : τ ,

and that τ 6= lptr〈τ3〉. Then, we can use lemma 17 to say that Ψ′′′ `∆;n ′

stmt s ok

and Ψ′′′ `∆;n ′

exp e : τ , where Ψ′′′ is just like Ψ′′ but with all indices changed from

0 to n ′. We wish to show that this Ψ′′′ = Ψ2 Ψ3 Ψ4 i
i
. It is easy to see that

Ψ′′′ has parts equal to Ψ3 and Ψ4 i
i
. To show that the last part of Ψ′′′ equals

Ψ2, we use lemma 27. Thus, Ψ′′′ ⊆ Ψ′. By lemma 20 (and using lemma 18),

we now have Ψ′ `∆;n ′

stmt s ok, Ψ′ `∆;n ′

exp e : τ , and τ 6= lptr〈τ3〉 as required.

• Ψ ⊆n Ψ′: Immediate from the definition of Ψ′ in terms of Ψ.

Case eval exp body ret

xn fresh for Σ
Σ2 = copy store(Σ, `, xn)
Σ′ = Σ Σ2\(n + 1)

(Σ, {skip; return `}) −→
exp

n
∆(Σ′, xn@)

eval exp body ret

Let Ψ2 = copy types(Ψ, `, xn). Then, we choose Ψ′ = (Ψ Ψ2)\n + 1.

We must show the following:

• `∆;n
ty Ψ′ ok: It is straightforward to calculate |{skip; return `}| = |xn@ | + 1.

From `∆;n+1
ty Ψ ok and lemma 12, we know that every domain element of Ψ

either has an index less than or equal to n or an index equal to n+1. By easy
induction on copy types, we can see that every domain element of Ψ2 has an
index of n + 1. Thus, every domain element of Ψ Ψ2 has an index less than
or equal to n or an index equal to n + 1. Then, by lemma 28, every domain

36

element of Ψ′ has an index less than or equal to n. Then, by lemma 22,
`∆;n
ty Ψ′ ok as desired.

• (Ψ Ψ2)\n + 1 s̀t (Σ Σ2)\n + 1 ok: This fact can be shown by lemma 29. To
do so, we must show the following:

– Ψ Ψ2 s̀t Σ Σ2 ok: We use lemma 16. The only premise of this lemma
that is not immediate is the one concerning lptrs. We must show that
if Σ(`) = lptr (x3

n3@π3), then n3 ≤ n. However, we can use the fact
τ 6= lptr〈τ ′〉 (from type exp body). The premises of type exp body
also give us that Ψ `∆;n+1

exp ` : τ . The only rule that could give rise to this
judgment is type exp loc, which, in turn, says that Ψ(`) = τ . Since
τ 6= lptr〈τ ′〉, then τ must be either ptr〈τ ′〉 for some τ ′ or C for some class
C . Because Ψ s̀t Σ ok, we can see that Σ(`) = ptr (`′) (for some `′) or
Σ(`) = C , depending on the nature of τ . Thus, we can see that Σ(`) can
never have the form lptr (x3

n3@π3), and we can use lemma 16 as desired,
giving us (Ψ Ψ2) s̀t (Σ Σ2) ok as desired.

– No domain element in Ψ Ψ2 has an index greater than n+1: By lemma 12,
no domain element in Ψ has an index equal to or greater than n+ 1. By
easy induction on copy types, we can see that every index in a location
in Ψ2 has an index exactly equal to n+ 1.

• Ψ′ `∆;n
exp xn@ : τ : To show this, we will have to show Ψ′(xn@) = τ . (The other

condition in type exp loc is n ≤ n, which is trivially satisfied.) We know
Ψ(`) = τ and Ψ2 = copy types(Ψ, `, xn). We invoke lemma 14 to say that
Ψ2(xn@) = τ . By lemma 31, we can say (Ψ2\n + 1)(xn@) = τ , noting that
n 6= n + 1. Finally, because we know that, by construction and lemma 30,
Ψ2\n + 1 ⊆ Ψ′, Ψ′(xn@) = τ as desired.

• Ψ ⊆n Ψ′: By construction and lemma 30, we know that Ψ\n + 1 ⊆ Ψ′. By
lemma 18, we then know that Ψ\n + 1 ⊆n Ψ′. Therefore, invoking lemma 19
tells us that it is sufficient to show that Ψ ⊆n Ψ\n + 1. We invoke lemma 32
and we are done.

Case eval exp new

xn , y0 fresh for Σ
Σ1 = default∆〈C 〉(y0@) Σ′ = Σ Σ1 [xn@ 7→ ptr (y0@)]

(Σ, newC ()) −→
exp

n
∆(Σ′, xn@)

eval exp new

Let Ψ1 = build types∆〈C 〉(y0@). Choose Ψ′ = Ψ Ψ1 [xn@ : ptr〈C 〉].
We must show the following:

• `∆;n
ty Ψ′ ok: We break this down into three pieces, proved below. We then com-
bine the pieces using lemma 11, noting that the domain distinctness condition
holds from the freshness condition on xn and y0.

37

– `∆;n
ty Ψ ok: We see that |newC ()| = 0, so we have this condition by
assumption.

– `∆;n
ty Ψ1 ok: We wish to use lemma 25. We must show the following:

∗ ∆̀
twf C : Immediate from inversion on Ψ `∆;n

exp newC () : ptr〈C 〉.
∗ 0 ≤ n: By the fact that n is a natural number.

– `∆;n
ty [xn@ : ptr〈C 〉] ok: From the rule cons type bindings, we must

show that [xn@ : ptr〈C 〉] `∆;n
ty1 xn@ : ptr〈C 〉 ok. We use rule cons type -

binding local ptr.

• Ψ′
s̀t Σ′ ok: We similarly break this into pieces:

– Ψ s̀t Σ ok: By assumption.

– Ψ1 [xn@ : ptr〈C 〉] s̀t Σ1 [xn@ 7→ ptr (y0@)] ok: We invoke lemma 13 to
get Ψ1 s̀t Σ1 ok. By inversion on this fact, we get Ψ1; Σ1 s̀t1 `i : τi ok
for every binding [`i : τi] in Ψ1. Noting that the freshness condition
gives us that xn@ 6= y0@ and that all domain elements in Ψ1 and Σ1

start with y0@ (ensuring distinct domains), we use lemma 7 to say that
Ψ1 [xn@ : ptr〈C 〉]; Σ1 [xn@ 7→ ptr (y0@)] s̀t1 `i : τi ok holds for every
binding [`i : τi] in Ψ1. Now, to reach our goal, it is necessary to show the
following:

∗ Ψ1 [xn@ : ptr〈C 〉]; Σ1 [xn@ 7→ ptr (y0@)] s̀t1 xn@ : ptr〈C 〉 ok: We
use cons binding ptr. We need only show that Ψ1(y0@) = C . By
inversion on Ψ1 = build types∆〈C 〉(y0@), we see that Ψ1 = [y0@ :
C] Ψ′

1 for some Ψ′
1. Because all elements in Ψ′

1 have non-empty paths
(as can be easily seen in the premises of aux build types class),
none of the bindings in Ψ′

1 override that first binding in Ψ1. Therefore
Ψ1(y0@) = C as desired.

∗ dom (Σ1 [xn@ 7→ ptr (y0@)]) ⊆ dom (Ψ1 [xn@ : ptr〈C 〉]): From
inversion on Ψ1 s̀t Σ1 ok (established earlier), we get dom (Σ1) ⊆
dom (Ψ1). The new bindings in each have the same domain element,
so we are done.

We combine the pieces shown above by lemma 9 to show Ψ′
s̀t Σ′ ok.

• Ψ′ `∆;n
exp xn@ : ptr〈C 〉: We use rule type exp loc. By construction, Ψ′(xn@) =

ptr〈C 〉, and it is trivial to see that n ≤ n.

• Ψ ⊆n Ψ′: By construction.

Case eval exp addr

yn fresh for Σ

Σ′ = Σ [yn@ 7→ lptr (xn ′
@π)]

(Σ,&xn ′@π) −→
exp

n
∆(Σ′, yn@)

eval exp addr

38

Choose Ψ′ = Ψ [yn@ : lptr〈τ〉], where τ is the τ on inversion of Ψ `∆;n
exp &xn ′

@π :
lptr〈τ〉.
We must show the following:

• `∆;n
ty Ψ′ ok: We note that |&xn ′

@π| = |yn@ | = 0. Then, by inversion on

`∆;n
ty Ψ ok, we get Ψ `∆;n

ty1 `i : τi ok for every binding [`i : τi] in Ψ. We repeatedly

apply lemma 34 (noting that yn is fresh) to get Ψ′ `∆;n
ty1 `i : τi ok for every

binding [`i : τi] in Ψ. Now, we need only show Ψ′ `∆;n
ty1 yn@ : lptr〈τ〉 ok. Then,

we use cons type binding lptr and we are done.

• Ψ′
s̀t Σ′ ok: By inversion on Ψ s̀t Σ ok, we get Ψ; Σ s̀t1 `i : τi ok for every

binding [`i : τi] in Ψ. We repeatedly use lemma 7 to get Ψ′; Σ′
s̀t1 `i : τi ok

for every binding [`i : τi] in Ψ. Now, we must show the following:

– Ψ′; Σ′
s̀t1 yn@ : lptr〈τ〉 ok: We use cons binding lptr. We must show

the following:

∗ Ψ′(xn ′
@π) = τ : We get this from two inversions on Ψ `∆;n

exp &xn ′
@π :

lptr〈τ〉 (type exp addr and then type exp loc).

∗ n ′ ≤ n: We also get this from those same two inversions.

– dom (Σ′) ⊆ dom (Ψ′): We know from inverting Ψ s̀t Σ ok that dom (Σ) ⊆
dom (Ψ). The new bindings have the same domain elements, so we are
done.

• Ψ′ `∆;n
exp yn@ : lptr〈τ〉: Noting that n ≤ n trivially, we use type exp loc

with Ψ′(yn@) = lptr〈τ〉 by construction.

• Ψ ⊆n Ψ′: By construction.

Case eval exp deref ptr

Σ(`) = ptr (xn ′
@π)

(Σ, ∗`) −→
exp

n
∆(Σ, xn ′@π)

eval exp deref ptr

Ψ `∆;n
exp e : ptr〈τ〉

Ψ `∆;n
exp ∗e : τ

type exp deref ptr

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: The size of the starting expression and the resulting expression are
the same, so we have this condition by assumption.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
exp xn ′

@π : τ : Two inversions on Ψ `∆;n
exp ∗` : τ (type exp deref ptr and

type exp loc) give us Ψ(`) = ptr〈τ〉. Inversion on Ψ s̀t Σ ok must therefore
give us Ψ; Σ s̀t1 ` : ptr〈τ〉 ok. Because we know that Σ(`) = ptr (xn ′

@π),

39

Ψ; Σ s̀t1 ` : ptr〈τ〉 ok must be derived by using cons binding ptr. The
premises of this rule state Ψ(xn ′

@π) = τ and n ′ = 0. Therefore, we have
the two premises of type exp loc, and we can derive Ψ `∆;n

exp xn ′
@π : τ as

desired.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval exp deref lptr

Σ(`) = lptr (xn ′
@π)

(Σ, ∗`) −→
exp

n
∆(Σ, xn ′@π)

eval exp deref lptr

Ψ `∆;n
exp e : lptr〈τ〉

Ψ `∆;n
exp ∗e : τ

type exp deref lptr

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: The size of the starting expression and the resulting expression are
the same, so we have this condition by assumption.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
exp xn ′

@π : τ : Two inversions on Ψ `∆;n
exp ∗` : τ (type exp deref lptr

and type exp loc) give us Ψ(`) = lptr〈τ〉. Inversion on Ψ s̀t Σ ok must
therefore give us Ψ; Σ s̀t1 ` : lptr〈τ〉 ok. Because we know that Σ(`) =
lptr (xn ′

@π), Ψ; Σ s̀t1 ` : lptr〈τ〉 ok must be derived by using cons binding lptr.
The premises of this rule state Ψ(xn ′

@π) = τ and n ′ ≤ n ′′, where n′′ is
the index on l. From the premises of type exp loc, we get that n′′ ≤ n.
Therefore, we have the two premises of type exp loc, and we can derive
Ψ `∆;n

exp xn ′
@π : τ as desired.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Cases eval exp deref ptr null, eval exp deref lptr null, eval -
exp fld err, eval exp meth err2, eval exp addr error,
eval exp deref error

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: The size of the starting expression and the resulting expression are
the same, so we have this condition by assumption.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
exp error : τ : By type exp err.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

40

Cases eval exp fld cong, eval exp meth cong2, eval exp addr -
cong, and eval exp deref cong

In this case explanation, we use e1 to refer to the inner expression and e ′
1 to refer

to that expression after it has stepped. e and e ′ refer to the outer expression.

We note that |e1| = |e|, and we can apply the induction hypothesis immediately.
We get the following about some Ψ1:

`∆;|e′1|+n
ty Ψ1 ok
Ψ1 s̀t Σ′ ok
Ψ1 `∆;n

exp e ′
1 : τ1 where T is defined by Ψ `∆;n

exp e1 : τ1

Ψ ⊆n Ψ1

Choose Ψ′ = Ψ1.

We must show the following:

• `∆;|e′|+n
ty Ψ′ ok: We note that |e ′

1| = |e ′|, so this condition is immediate from
the IH.

• Ψ′
s̀t Σ′ ok: Immediate from IH.

• Ψ′ `∆;n
exp e ′ : τ : Use Ψ′ `∆;n

exp e ′
1 : τ1 from the IH with the appropriate type case.

• Ψ ⊆n Ψ′: Immediate from IH.

Case eval exp meth cong1

(Σ, e1) −→
exp

n
∆(Σ′, e ′

1)

(Σ, e1.f (e2)) −→
exp

n
∆(Σ′, e ′

1.f (e2))
eval exp meth cong1

Ψ `∆;n
exp e1 : C

structC { fldsmeths}; ∈ ∆
τ1 f (τ2 x){vardecls; s; return e} ∈ meths

Ψ `∆;n
exp e2 : τ2

Ψ `∆;n
exp e1.f (e2) : τ1

type exp meth

By the well-formedness restriction, we know source (e2). Therefore, by lemma 26,
we know that |e2| = 0. Thus, |e1.f (e2)| = |e1|. With this fact, we can now apply
the induction hypothesis to get the following about some Ψ1:

`∆;|e′1|+n
ty Ψ1 ok
Ψ1 s̀t Σ′ ok
Ψ1 `∆;n

exp e ′
1 : C

Ψ ⊆n Ψ1

Choose Ψ′ = Ψ1.

We must show the following:

• `∆;|e′1.f (e2)|+n
ty Ψ′ ok: We note that |e ′

1.f (e2)| = |e ′
1| by the same reasoning as

above, and we are done.

41

• Ψ′
s̀t Σ′ ok: Immediate from IH.

• Ψ′ `∆;n
exp e ′

1.f (e2) : τ : Immediate from IH and type exp meth.

• Ψ ⊆n Ψ′: Immediate from IH.

Case eval exp meth err1

(Σ, error.f (e2)) −→
exp

n
∆(Σ, error)

eval exp meth err1

Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: Because source (s2), |error.f (e2)| = 0 (using lemma 26), and we
have this by assumption.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
exp error : τ : By type exp err.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Case eval exp body cong1

(Σ, s) −→
stmt

n+1
∆ (Σ′, s ′)

(Σ, {s; return e}) −→
exp

n
∆(Σ′, {s ′; return e})

eval exp body cong1

First, we must ensure the premises of the induction hypothesis. That is, we must

show `∆;|s|+1+n
ty Ψ ok. By lemma 26, |{s; return e}| = max (|s|, |e|) + 1 = |s| + 1,

and so we have this condition by assumption.

Now, we must show that Ψ `∆;n+1
stmt s ok. This fact comes directly from inversion on

type exp body.

Thus, our induction hypothesis tells us the following for some Ψ1:

`∆;|s′|+1+n
ty Ψ1 ok
Ψ1 s̀t Σ′ ok
Ψ1 `∆;n+1

stmt s ′ ok
Ψ ⊆n+1 Ψ1

Choose Ψ′ = Ψ1.

We must show the following:

• `∆;|{s′; return e}|+n
ty Ψ′ ok: Using reasoning similar to that presented above,
|{s ′; return e}| = |s ′|+ 1. Thus, we have this condition from the IH.

• Ψ′
s̀t Σ′ ok: Immediate from IH.

42

• Ψ′ `∆;n
exp {s ′; return e} : τ : All we need to show is Ψ′ `∆;n+1

exp e : τ . We know

Ψ `∆;n+1
exp e : τ . By lemma 20, (noting that we know source (e) from the

well-formedness condition) we can conclude Ψ′ `∆;n+1
exp e : τ as desired.

• Ψ ⊆n Ψ′: Immediate from lemma 18.

Case eval exp body cong2

(Σ, e) −→
exp

n+1
∆ (Σ′, e ′)

(Σ, {skip; return e}) −→
exp

n
∆(Σ′, {skip; return e ′})

eval exp body cong2

Using reasoning like that of the previous case, we find that |{skip; return e}| =
|e| + 1. We can then use the induction hypothesis to get the following for some

Ψ1: `∆;|e′|+1+n
ty Ψ1 ok

Ψ1 s̀t Σ′ ok
Ψ1 `∆;n+1

exp e ′ : τ
Ψ ⊆n+1 Ψ1

Choose Ψ′ = Ψ1.

We must show the following:

• `∆;|{skip; return e′}|+n
ty Ψ′ ok: For reasons similar to those above, |{skip; return e ′}| =
|e ′|+ 1, making this statement immediate from IH.

• Ψ′
s̀t Σ′ ok: Immediate from IH.

• Ψ′ `∆;n
exp {skip; return e ′} : τ : We know Ψ′ `∆;n+1

stmt skip ok from type stmt skip,

and we know Ψ′ `∆;n+1
exp e ′ : τ from the IH. Noting that τ has not changed

(and by inversion on Ψ `∆;n
exp {skip; return e} : τ does not equal lptr〈τ ′〉), we

can apply type exp body.

• Ψ ⊆n Ψ′: Immediate from lemma 18.

Cases eval exp body err1 and eval exp body err2 Choose Ψ′ = Ψ.

We must show the following:

• `∆;n
ty Ψ ok: We note that |error| ≤ |{error; return e}| and |error| ≤ |{skip; return error}|.
We use lemma 18.

• Ψ s̀t Σ ok: By assumption.

• Ψ `∆;n
exp error : τ : By type exp err.

• Ψ ⊆n Ψ: By reflexivity of ⊆n.

Corollary (Pointer lifetime invariant is preserved). If wf (∆,Ψ,Σ, k), Ψ `∆;n
stmt s ok, and

(Σ, s) −→
stmt

n
∆(Σ′, s ′), where k is the maximum stack height used within the statement s,

then the pointer lifetime invariant holds in the store Σ′.

43

Proof. The Preservation theorem says that if a statement is well-formed in a consistent
context Ψ; Σ, then the context after evaluation Ψ′; Σ′ is also consistent. In particular,
the judgment Ψ′; Σ′

s̀t1 ` : τ ok must hold for every binding in Ψ′. By the statement of
the pointer lifetime invariant, we care only about non-null pointers; thus, the following
two rules are the only ones of interest:

Σ(xn@) = lptr (x ′n ′
@π′) n ′ ≤ n

Ψ(x ′n ′
@π′) = τ

Ψ; Σ s̀t1 xn@ : lptr〈τ〉 ok
cons binding lptr

Σ(xn@π) = ptr (x ′n ′
@π′) n ′ = 0

Ψ(x ′n ′
@π′) = τ

Ψ; Σ s̀t1 xn@π : ptr〈τ〉 ok
cons binding ptr

By inspection, we can see that these enforce the pointer lifetime invariant. Thus, the
pointer lifetime invariant is maintained during evaluation, as desired.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] C. DeLozier, R. Eisenberg, S. Nagarakatte, P.-M. Osera, M. M. K. Martin, and
S. Zdancewic. Ironclad C++: A library-augmented type-safe subset of C++. In
Proceedings of the ACM international conference on Object-oriented programming,
systems, languages, and applications (OOPSLA), Oct. 2013.

[3] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-
based memory management in Cyclone. In Proceedings of the SIGPLAN 2002
Conference on Programming Language Design and Implementation, June 2002.

[4] A. Igarashi, B. Pierce, and P. Wadler. Featherweight java: a minimal core calculus
for Java and GJ. In Proceedings of the 14th SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Application (OOPSLA), Oct.
1999.

[5] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A
safe dialect of C. In Proceedings of the 2002 USENIX Annual Technical Conference,
June 2002.

[6] J. Jonathan G. Rossie and D. P. Friedman. An algebraic semantics of subobjects.
In Proceedings of the 17th SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Application (OOPSLA), Nov. 2002.

[7] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. Softbound: Highly
compatible and complete spatial memory safety for C. In Proceedings of the SIG-
PLAN 2009 Conference on Programming Language Design and Implementation,
June 2009.

44

[8] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. CETS: Compiler
enforced temporal safety for C. In Proceedings of the 2010 International Symposium
on Memory Management, June 2010.

[9] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured: Type-
safe retrofitting of legacy software. ACM Trans. Prog. Lang. Syst., 27(3), May
2005.

[10] T. Ramananandro, G. D. Reis, and X. Leroy. Formal verification of object layout for
C++ multiple inheritance. In Proceedings of The 38th ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages (POPL), Jan. 2011.

[11] D. Wasserrab, T. Nipkow, G. Snelting, and F. Tip. An operational semantics
and type safety proof for multiple inheritance in C++. In Proceedings of the 21st
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Application (OOPSLA), Oct. 2006.

A. Core Ironclad Language Definition

A.1. Syntax

Types τ : : = ptr〈τ〉 | lptr〈τ〉 | C
Surface exprs e : : = x | null | e.x | e1.f (e2) | newC () | &e | ∗e
Internal exprs e : : = ` | {s; return e} | error
Statements s : : = e1 = e2 | s1; s2 | skip | error
Class decls cls : : = structC { fldsmeths};
Fields flds : : = τ1 x1; .. τm xm ;
Methods meth : : = τ1 f (τ2 x){τi xi

i ; s; return e}
Class context ∆ : : = {cls1 .. clsm}
Programs prog : : = ∆; void main() {s}
Locations ` : : = xn@y1 .. ym
Pointer values pv : : = ` | bad ptr
Values v : : = ptr (pv) | lptr (pv) | C
Store Σ : : = · | Σ [` 7→ v]
Store typing Ψ : : = · | Ψ [` : τ]

A.2. Auxiliary Definitions

Σ = default∆〈τ〉(`) Default store

[` 7→ ptr (bad ptr)] = default∆〈ptr〈τ〉〉(`)
aux default ptr

[` 7→ lptr (bad ptr)] = default∆〈lptr〈τ〉〉(`)
aux default lptr

45

structC { fldsmeths}; ∈ ∆
τi xi ;

i = flds

Σi = default∆〈τi〉(xn@π++ xi)
i

Σ = [xn@π 7→ C] Σi
i

Σ = default∆〈C 〉(xn@π)
aux default class

Ψ = build types∆〈τ〉(`) Default store typing

[` : lptr〈τ〉] = build types∆〈lptr〈τ〉〉(`)
aux build types lptr

[` : ptr〈τ〉] = build types∆〈ptr〈τ〉〉(`)
aux build types ptr

structC { fldsmeths}; ∈ ∆
τi xi ;

i = flds

Ψi = build types∆〈τi〉(xn@π++ xi)
i

Ψ = [xn@π : C] Ψi
i

Ψ = build types∆〈C 〉(xn@π)
aux build types class

Σ′ = copy store(Σ, `, base) Copy store

· = copy store(·, `, base)
aux copy store empty

Σ′ = copy store(Σ, x1
n1@π1, x2

n2)

Σ′ [x2
n2@π 7→ v] = copy store(Σ [x1

n1@π1 ++π 7→ v], x1
n1@π1, x2

n2)
aux copy store bind match

Σ′ = copy store(Σ, xn@π, base)

xn@π 6= x ′n ′
@π′ π is not a prefix of π′ ++π′′

Σ′ = copy store(Σ [x ′n ′
@π′ ++π′′ 7→ v], xn@π, base)

aux copy store bind no match

Ψ′ = copy types(Ψ, `, base) Copy types

· = copy types(·, `, base)
aux copy types empty

46

Ψ′ = copy types(Ψ, x1
n1@π1, x2

n2)

Ψ′ [x2
n2@π : τ] = copy types(Ψ [x1

n1@π1 ++π : τ], x1
n1@π1, x2

n2)
aux copy types bind match

Ψ′ = copy types(Ψ, xn@π, base)

xn@π 6= x ′n ′
@π′ π is not a prefix of π′ ++π′′

Ψ′ = copy types(Ψ [x ′n ′
@π′ ++π′′ : τ], xn@π, base)

aux copy types bind no match

k = |s| Size of statements

k1 = |e1| k2 = |e2| k ′ = max (k1, k2)

k ′ = |e1 = e2|
aux stmt sizeassign

k1 = |s1| k2 = |s2| k ′ = max (k1, k2)

k ′ = |s1; s2|
aux stmt sizeseq

0 = |skip|
aux stmt sizeskip

0 = |error|
aux stmt sizeerror

k = |e| Size of expressions

0 = |x |
aux exp size var

0 = |null|
aux exp size null

k = |e|
k = |e.x |

aux exp size fld

k1 = |e1| k2 = |e2| k ′ = max (k1, k2)

k ′ = |e1.f (e2)|
aux exp size meth

47

0 = |newC ()|
aux exp size new

k = |e|
k = |&e|

aux exp size addr

k = |e|
k = | ∗ e|

aux exp size deref

0 = |error|
aux exp size error

0 = |`|
aux exp size loc

k1 = |s|
k2 = |e|
k ′ = max (k1, k2) + 1

k ′ = |{s; return e}|
aux exp size body

Σ′ = Σ\n Store quotienting

· = ·\n
aux store quot empty

Σ′ = Σ\n
Σ′ = Σ [xn@π 7→ v]\n

aux store quot remove value

Σ′ = Σ\n
Σ′ = Σ [xn@π 7→ C]\n

aux store quot remove tag

Σ′ = Σ\n n 6= n ′

Σ′ [xn ′@π 7→ v] = Σ [xn ′@π 7→ v]\n
aux store quot keep value

48

Σ′ = Σ\n n 6= n ′

Σ′ [xn ′@π 7→ C] = Σ [xn ′@π 7→ C]\n
aux store quot keep tag

Ψ′ = Ψ\n Type context quotienting

· = ·\n
aux type quot empty

Ψ′ = Ψ\n
Ψ′ = Ψ [xn@π : τ]\n

aux type quot remove

Ψ′ = Ψ\n n 6= n ′

Ψ′ [xn ′@π : τ] = Ψ [xn ′@π : τ]\n
aux type quot keep

A.3. Store Consistency

wf (∆,Ψ,Σ,n) Well-formedness summary judgement

ènv ∆ ok `∆;n
ty Ψ ok Ψ s̀t Σ ok

wf (∆,Ψ,Σ,n)
cons wfsummary wf

`∆;n
ty Ψ ok Type context consistency

Ψ = [`i : τi]
i

Ψ `∆;n
ty1 `i : τi ok

i

`∆;n
ty Ψ ok

cons type bindings

Ψ `∆;n
ty1 ` : τ ok Type binding consistency

n ′ ≤ n

Ψ `∆;n
ty1 xn ′@ : lptr〈τ〉 ok

cons type binding lptr

Ψ(xn ′
@π) = C

structC { fldsmeths}; ∈ ∆
ptr〈τ〉 x ′; ∈ flds

Ψ `∆;n
ty1 xn ′@π++ x ′ : ptr〈τ〉 ok

cons type binding field ptr

49

n ′ ≤ n

Ψ `∆;n
ty1 xn ′@ : ptr〈τ〉 ok

cons type binding local ptr

Ψ(xn ′
@π) = C

structC { fldsmeths}; ∈ ∆
C ′ x ′; ∈ flds
structC ′ { flds′meths′}; ∈ ∆
τi yi ;

i = flds′

π′ = π++ x ′ Ψ(xn ′@π′ ++ yi) = τi
i

Ψ `∆;n
ty1 xn ′@π++ x ′ : C ′ ok

cons type binding field class

n ′ ≤ n
structC { fldsmeths}; ∈ ∆
τi xi ;

i = flds

Ψ(xn ′@xi) = τi
i

Ψ `∆;n
ty1 xn ′@ : C ok

cons type binding local class

Ψ s̀t Σ ok Store consistency

Ψ = [`i : τi]
i

Ψ; Σ s̀t1 `i : τi ok
i

dom (Σ) ⊆ dom (Ψ)

Ψ s̀t Σ ok
cons store bindings

Ψ; Σ s̀t1 ` : τ ok Binding consistency

Σ(xn@) = lptr (bad ptr)

Ψ; Σ s̀t1 xn@ : lptr〈τ〉 ok
cons binding lptr null

Σ(xn@) = lptr (x ′n ′
@π′) n ′ ≤ n

Ψ(x ′n ′
@π′) = τ

Ψ; Σ s̀t1 xn@ : lptr〈τ〉 ok
cons binding lptr

Σ(xn@π) = ptr (bad ptr)

Ψ; Σ s̀t1 xn@π : ptr〈τ〉 ok
cons binding ptr null

50

Σ(xn@π) = ptr (x ′n ′
@π′) n ′ = 0

Ψ(x ′n ′
@π′) = τ

Ψ; Σ s̀t1 xn@π : ptr〈τ〉 ok
cons binding ptr

Σ(xn@π) = C

Ψ; Σ s̀t1 xn@π : C ok
cons binding cls

A.4. Well-formedness of Terms

source (s) Statement source predicate

source (e1) source (e2)

source (e1 = e2)
ssrc assign

source (s1) source (s2)

source (s1; s2)
ssrc seq

source (error)
ssrc err

source (skip)
ssrc skip

source (e) Expression source predicate

source (x)
esrc var

source (null)
esrc null

source (e)

source (e.x)
esrc fld

51

source (e1) source (e2)

source (e1.f (e2))
esrc meth

source (newC ())
esrc new

source (e)

source (&e)
esrc addr

source (e)

source (∗e)
esrc deref

source (error)
esrc err

∆wf Well-formed class context

clsi wf
i

{ clsi
i }wf

Dwf list

clswf Well-formed class

methi wf
i

structC { fldsmethi
i}; wf

Clswf decl

meth wf Well-formed method

source (s) source (e)

τ1 f (τ2 x){vardecls; s; return e}wf
methwf decl

s wf Well-formed statement

e1 6= `1
source (e2)

e1 = e2 wf
swf assign1

`1 = e2 wf
swf assign2

52

source (s2)

s1; s2 wf
swf seq

skip wf
swf skip

error wf
swf err

e wf Well-formed expression

x wf
ewf var

null wf
ewf null

e.x wf
ewf fld

e1 6= `1
source (e2)

e1.f (e2)wf
ewf meth1

`1.f (e2)wf
ewf meth2

newC ()wf
ewf new

&e wf
ewf addr

∗e wf
ewf deref

53

error wf
ewf err

`wf
ewf loc

s 6= skip
source (e)

{s; return e}wf
ewf body1

{skip; return e}wf
ewf body2

A.5. Typing

∆̀
twf τ Type well-formedness

∆̀
twf τ

∆̀
twf lptr〈τ〉

type well formed lptr

∆̀
twf τ

∆̀
twf ptr〈τ〉

type well formed ptr

structC { fldsmeths}; ∈ ∆
∆̀
twf C

type well formed class

τ1 ⇐ τ2 Assignable

ptr〈τ〉 ⇐ ptr〈τ〉
type assignable ptr ptr

lptr〈τ〉 ⇐ ptr〈τ〉
type assignable lptr ptr

54

ptr〈τ〉 ⇐ lptr〈τ〉
type assignable ptr lptr

lptr〈τ〉 ⇐ lptr〈τ〉
type assignable lptr lptr

Ψ `∆;n
exp e : τ Expression typing

Ψ(xn@) = τ

Ψ `∆;n
exp x : τ

type exp var

Ψ `∆;n
exp e : C

structC { fldsmeths}; ∈ ∆
τ x ; ∈ flds

Ψ `∆;n
exp e.x : τ

type exp fld

Ψ `∆;n
exp e : ptr〈τ〉

Ψ `∆;n
exp ∗e : τ

type exp deref ptr

Ψ `∆;n
exp e : lptr〈τ〉

Ψ `∆;n
exp ∗e : τ

type exp deref lptr

Ψ `∆;n
exp error : τ

type exp err

Ψ(xn ′
@π) = τ n ′ ≤ n

Ψ `∆;n
exp xn ′@π : τ

type exp loc

Ψ `∆;n
exp null : ptr〈τ〉

type exp null

Ψ `∆;n
exp e1 : C

structC { fldsmeths}; ∈ ∆
τ1 f (τ2 x){vardecls; s; return e} ∈ meths

Ψ `∆;n
exp e2 : τ2

Ψ `∆;n
exp e1.f (e2) : τ1

type exp meth

55

∆̀
twf C

Ψ `∆;n
exp newC () : ptr〈C 〉

type exp new

Ψ `∆;n
exp e : τ

Ψ `∆;n
exp &e : lptr〈τ〉

type exp addr

∀τ ′.τ 6= lptr〈τ ′〉
Ψ `∆;n+1

stmt s ok Ψ `∆;n+1
exp e : τ

Ψ `∆;n
exp {s; return e} : τ

type exp body

Ψ `∆;n
stmt s ok Statement consistency

Ψ `∆;n
exp e1 : τ1

Ψ `∆;n
exp e2 : τ2

τ1 ⇐ τ2

Ψ `∆;n
stmt e1 = e2 ok

type stmt assign

Ψ `∆;n
stmt s1 ok

Ψ `∆;n
stmt s2 ok

Ψ `∆;n
stmt s1; s2 ok

type stmt seq

Ψ `∆;n
stmt skip ok

type stmt skip

Ψ `∆;n
stmt error ok

type stmt error

C `∆meth meth ok Method consistency

56

xi
i , x , this distinct

∆̀
twf τ2

∆̀
twf τi

i

Ψ1 = build types∆〈τ2〉(x 0@)
Ψ2 = build types∆〈lptr〈C 〉〉(this0@)

Ψ3 i = build types∆〈τi〉(xi0@)
i

Ψ′ = Ψ1 Ψ2 Ψ3 i
i

Ψ′ `∆;0
stmt s ok Ψ′ `∆;0

exp e : τ1

∀τ ′1.τ1 6= lptr〈τ ′1〉 source (s) source (e)

C `∆meth τ1 f (τ2 x){τi xi i ; s; return e} ok
type meth decl

`∆class cls ok Class consistency

flds = τi xi ;
i

∆̀
twf τi

i

τi = ptr〈τ ′i 〉 ∨ τi = Ci
i

meths = methj
j

C `∆meth methj ok
j

`∆class structC { fldsmeths}; ok
type cls decl

ènv ∆ ok Class environment consistency

∆ = { clsi
i }

`∆class clsi ok
i

all names in ∆ are unique within their scope
classes in ∆ contain no cycles

ènv ∆ ok
type env delta

p̀rog prog ok Program typing

ènv ∆ ok

· `∆;0
stmt s ok

p̀rog ∆; void main() {s} ok
type prog main

A.6. Evaluation

(Σ, s) −→
stmt

n
∆(Σ′, s ′) Statement evaluation

57

Σ(`1) = ptr (pv1) Σ(`2) = ptr (pv2)
Σ′ = Σ [`1 7→ ptr (pv2)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign ptr ptr

Σ(`1) = lptr (pv1) Σ(`2) = ptr (pv2)
Σ′ = Σ [`1 7→ lptr (pv2)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign lptr ptr

Σ(`1) = ptr (pv1) Σ(`2) = lptr (bad ptr)
Σ′ = Σ [`1 7→ ptr (bad ptr)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign ptr lptr null

Σ(`1) = ptr (pv1) Σ(`2) = lptr (x 0@π)
Σ′ = Σ [`1 7→ ptr (x 0@π)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign ptr lptr

Σ(`1) = ptr (pv1) n ′ 6= 0

Σ(`2) = lptr (xn ′
@π2)

(Σ, `1 = `2) −→
stmt

n
∆(Σ, error)

eval stmt assign ptr lptr err

Σ(`1) = lptr (pv1) Σ(`2) = lptr (bad ptr)
Σ′ = Σ [`1 7→ lptr (bad ptr)]

(Σ, `1 = `2) −→
stmt

n
∆(Σ′, skip)

eval stmt assign lptr lptr null

Σ(x1
n1@π1) = lptr (pv1)

Σ(`2) = lptr (x2
n2@π2)

Σ′ = Σ [x1
n1@π1 7→ lptr (x2

n2@π2)] n2 ≤ n1

(Σ, x1
n1@π1 = `2) −→

stmt

n
∆(Σ′, skip)

eval stmt assign lptr lptr

Σ(x1
n1@π1) = lptr (pv1) n2 6≤ n1

Σ(`2) = lptr (x2
n2@π2)

(Σ, x1
n1@π1 = `2) −→

stmt

n
∆(Σ, error)

eval stmt assign lptr lptr err

58

(Σ, skip; s) −→
stmt

n
∆(Σ, s)

eval stmt seq skip

(Σ, e1) −→
exp

n
∆(Σ′, e ′

1)

(Σ, e1 = e2) −→
stmt

n
∆(Σ′, e ′

1 = e2)
eval stmt assign cong1

(Σ, e2) −→
exp

n
∆(Σ′, e ′

2)

(Σ, `1 = e2) −→
stmt

n
∆(Σ′, `1 = e ′

2)
eval stmt assign cong2

(Σ, error = e2) −→
stmt

n
∆(Σ, error)

eval stmt assign err1

(Σ, `1 = error) −→
stmt

n
∆(Σ, error)

eval stmt assign err2

(Σ, s1) −→
stmt

n
∆(Σ′, s ′1)

(Σ, s1; s2) −→
stmt

n
∆(Σ′, s ′1; s2)

eval stmt seq cong

(Σ, error; s2) −→
stmt

n
∆(Σ, error)

eval stmt seq error

(Σ, e) −→
exp

n
∆(Σ′, e ′) Expression evaluation

(Σ, x) −→
exp

n
∆(Σ, xn@)

eval exp var

xn fresh for Σ
Σ′ = Σ [xn@ 7→ ptr (bad ptr)]

(Σ, null) −→
exp

n
∆(Σ′, xn@)

eval exp null

59

(Σ, (xn ′@π).x ′) −→
exp

n
∆(Σ, xn ′@π++ x ′)

eval exp fld

Σ(`1) = C
structC { fldsmeths}; ∈ ∆
τ1 f (τ2 x){τi xi

i ; s; return e} ∈ meths
Σ2 = copy store(Σ, x2

n2@π2, x
n+1)

Σ3 = [thisn+1@ 7→ lptr (`1)]

Σ4 i = default∆〈τi〉(xi n+1@)
i

Σ′ = Σ Σ2 Σ3 Σ4 i
i

(Σ, `1.f (x2
n2@π2)) −→

exp
n
∆(Σ′, {s; return e})

eval exp meth

xn fresh for Σ
Σ2 = copy store(Σ, `, xn)
Σ′ = Σ Σ2\(n + 1)

(Σ, {skip; return `}) −→
exp

n
∆(Σ′, xn@)

eval exp body ret

xn , y0 fresh for Σ
Σ1 = default∆〈C 〉(y0@) Σ′ = Σ Σ1 [xn@ 7→ ptr (y0@)]

(Σ, newC ()) −→
exp

n
∆(Σ′, xn@)

eval exp new

yn fresh for Σ

Σ′ = Σ [yn@ 7→ lptr (xn ′
@π)]

(Σ,&xn ′@π) −→
exp

n
∆(Σ′, yn@)

eval exp addr

Σ(`) = ptr (xn ′
@π)

(Σ, ∗`) −→
exp

n
∆(Σ, xn ′@π)

eval exp deref ptr

Σ(`) = lptr (xn ′
@π)

(Σ, ∗`) −→
exp

n
∆(Σ, xn ′@π)

eval exp deref lptr

Σ(`) = ptr (bad ptr)

(Σ, ∗`) −→
exp

n
∆(Σ, error)

eval exp deref ptr null

60

Σ(`) = lptr (bad ptr)

(Σ, ∗`) −→
exp

n
∆(Σ, error)

eval exp deref lptr null

(Σ, e) −→
exp

n
∆(Σ′, e ′)

(Σ, e.x) −→
exp

n
∆(Σ′, e ′.x)

eval exp fld cong

(Σ, error.x) −→
exp

n
∆(Σ, error)

eval exp fld err

(Σ, e1) −→
exp

n
∆(Σ′, e ′

1)

(Σ, e1.f (e2)) −→
exp

n
∆(Σ′, e ′

1.f (e2))
eval exp meth cong1

(Σ, e2) −→
exp

n
∆(Σ′, e ′

2)

(Σ, `1.f (e2)) −→
exp

n
∆(Σ′, `1.f (e ′

2))
eval exp meth cong2

(Σ, error.f (e2)) −→
exp

n
∆(Σ, error)

eval exp meth err1

(Σ, `1.f (error)) −→
exp

n
∆(Σ, error)

eval exp meth err2

(Σ, s) −→
stmt

n+1
∆ (Σ′, s ′)

(Σ, {s; return e}) −→
exp

n
∆(Σ′, {s ′; return e})

eval exp body cong1

(Σ, e) −→
exp

n+1
∆ (Σ′, e ′)

(Σ, {skip; return e}) −→
exp

n
∆(Σ′, {skip; return e ′})

eval exp body cong2

(Σ, {error; return e}) −→
exp

n
∆(Σ, error)

eval exp body err1

61

(Σ, {skip; return error}) −→
exp

n
∆(Σ, error)

eval exp body err2

(Σ, e) −→
exp

n
∆(Σ′, e ′)

(Σ,&e) −→
exp

n
∆(Σ′,&e ′)

eval exp addr cong

(Σ,&error) −→
exp

n
∆(Σ, error)

eval exp addr error

(Σ, e) −→
exp

n
∆(Σ′, e ′)

(Σ, ∗e) −→
exp

n
∆(Σ′, ∗e ′)

eval exp deref cong

(Σ, ∗error) −→
exp

n
∆(Σ, error)

eval exp deref error

62

	Core Ironclad
	Recommended Citation

	Core Ironclad
	Abstract
	Author(s)

	tmp.1375726596.pdf.UUbKN

