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1 Introduction 

Most robotics application programs must not only be logically correct, but they must satisfy 

certain timing constraints. The adherence to these timing constraints are import ant for two 

reasons. First, the physical characteristics of manipulators and sensors require regular, care- 

fully timed feedback control for continuous and smooth operations. Second, the high-level 

tasks may require timely execution to avoid possible catastrophic results. In addition to  

being real-time, the requirements on timely computations of many numerical and symbolic 

functions are such that they can only be met using multiple processors. Furthermore, com- 

plex robotics applications include many physical devices that are distributed across multiple 

processors. This distributed view of the underlying system allows robotics applications to be 

implemented as relatively independent processes which run asynchronously except for occa- 

sional synchronization and communication. Concurrent programs such as these, which need 

to respond to external and internal stimuli within specified deadlines, are called distributed 

real-time programs [I]. 

As an example, consider a distributed sensory system consisting of three subsystems: 

tactile, camera and fusion. Given a world model, the goal of the system is to explore the 

world and update the world model using sensory data. To support the sensing, two end- 

effectors, one with a tactile sensor and another with a camera, are attached to two six-joint 

manipulator arms. The fusion subsystem integrates the state information from each arm 

and the data from the two sensors. It then updates the world model based on the integrated 

data. Using the world model, the camera subsystem chooses the next viewpoint. The robot 

arm then moves to the appropriate position so that the camera subsystem can obtain an 

image from that viewpoint. Similarly, the tactile subsystem uses the world model to choose a 

sensor viewpoint and then moves its arm to obtain the desired information. Both subsystems 

then send their sensory data and position of their respective arms to the fusion subsystem for 

integration into the world model. As we describe later, this system is naturally distributed 

and must meet various timing constraints in order to operate. 

To facilitate the development of robotics applications that require real-time capabilities, 

we have been designing and implementing a distributed real-time kernel (RK) that sup- 

ports the timely execution of time critical processes and communications. Our research is 

motivated by the difficulties encountered when we attempted to implement time dependent 

distributed programs such as a distributed sensory system using existing operating systems. 

These difficulties arose because most operating systems are designed to provide good average 
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performance, while possibly yielding unacceptable worst-case response times. Furthermore, 

they provide a limited set of primitives for dealing with time, making it impossible to im- 

plement programs whose correctness depends on exact timing. 

To support real-time applications, RK is designed to exhibit predictable timing behaviors 

and to schedule processes and messages based on their timing constraints. In addition, mes- 

sage delay and interrupt handler overhead is bounded. The kernel also allows the program- 

mer to express timing constraints explicitly. The explicit specification of timing constraints 

makes real-time programs easier to write and maintain than those without explicit timing 

constraints. Furthermore, the kernel can use timing constraints for scheduling processes and 

message transmission and reception. For example, many real-time kernels use a preemptive 

priority driven scheduler rather than one that is time driven. Since timing constraints are 

implicit in these kernels, the programmer must assign priorities to processes so that all the 

implicit timing constraints are met. Assigning proper priorities is a non-trivial task and, 

even if the best priority assignment is used, the assigned priorities can potentially result 

in very low processor utilization [2]. Priority based real-time programming also makes it 

difficult to detect timing errors since their effect may become apparent only at  later time. 

However, if explicit timing constraints are used with a predictable kernel, timing violations 

can be detected as they happen and the kernel can schedule processes and messages so that 

as many timing constraints as possible are satisfied. 

The remainder of this paper is organized as follows. The next section discusses the ar- 

chitecture of our distributed real-time system. The distributed real-time kernel is described 

in Section 3; we restrict the discussion to time management, scheduling, communication and 

device management. Section 4 illustrates the features of our kernel using the previously 

described sensory system. Our description of this distributed sensory system includes a dis- 

cussion of its communication and timing requirements. Section 5 summarizes the measured 

performance and discusses the bounding of execution behavior. The final section contains 

our conclusions and remarks regarding distributed real-time systems. 

2 Overall Architecture 

Our real-time kernel is used to implement a distributed sensory system. The architecture for 

this distributed sensory system is divided into two levels to reflect its logical structure and 

is shown in Figure 1. At the high level, the system consists of five MicroVAXes connected 

through a 10 Mb Ethernet. These MicroVAXes use our kernel to provide the computation 
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Figure 1: Architecture of the Distributed Sensory System 
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power needed for the timely execution of processes used in sensing such as deciding where 

to probe next, maintaining the world model and determining the path for the robot arm. 

At the low level, there is a joint controller for each manipulator arm and the two sensors, 

a camera and a tactile sensor. The joint controller consists of a supervisor processor and a 

joint processor for each joint of the manipulator arm and is connected to a MicroVAX via 

a parallel interface. The joint processors take the commands received from the MicroVAX 

via the supervisor processor and use them to control the joint motors. The output of each 

probe of the tactile sensor is an analog signal. This signal is converted to a digital value by 

the analog-to-digital converter board in a MicroVAX. The image processor reads the camera 

image in a frame buffer which is accessible from the MicroVAX as though it were memory. 

Distributed Real-Time Kernel 

As described in the introduction, our goal is to develop a real-time kernel (RK) that supports 

real-time applications with predictable process execution and interprocess communication. 

To provide predictable behavior, our kernel provides services with predictable timing be- 

havior; that is, their worst case execution time is bounded. In addition, the kernel allows 

the programmer to specify timing constraints for process execution and interprocess com- 

munication. These timing constraints directly reflect the timing requirements of the applica- 

tion. The kernel uses these constraints for scheduling processes and communications. This 

approach of treating time explicitly facilitates the implementation and debugging of time 

dependent application programs. 

The rest of this section describes the salient features of the kernel. We first describe the 

basic process structure. Then, we explain how to specify timing constraints and schedule 

processes based on them. Next, we describe the three types of interprocess communication: 

signals for timing, system and processor errors; timed events for synchronization, periodic 

events and device interrupts; and pol-ts for message communication; these communication 

primitives allow the propagation of timing constraints from the sender to the receiver. Fi- 

nally, we show how application processes directly control devices. 

3.1 Process Model 

A distributed real-time application consists of a set of communicating processes and a set 

of hardware devices. A process is defined by the programmer and represents a logically 

independent execution thread of control. Each process has an independent address space, 
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and consists of a main body, a set of event handlers and a read-only page of kernel specific 

data. All processes are initially non real-time processes and start executing with their main 

body. Event handlers execute either periodically or asynchronously when the process receives 

the corresponding events. A process becomes a real-time process when it either specifies a 

timing constraint or receives a timed event. Within a real-time process, scheduling of the 

main body and events handlers depends on their timing constraints. 

Every process has access to a read-only page of kernel specific data, which includes the 

time of day that the system was booted, the current time of day, and port ids for various 

services, such as the nameserver. One key benefit of this page is that the current time of 

day is accessible without the overhead of a system call. User processes repeatedly read the 

current time of day until two consecutive readings return the same value. This ensures that 

the current time has not been corrupted by a system update. 

The kernel provides the system services through either system calls or server processes. 

In order to  bound the execution overheads of system calls, services provided through system 

calls are kept to a minimum. System calls are used only for services that require the crossing 

of address boundaries or predictably fast response. They include memory management, 

process switching, signals, timed events, alarms and interprocess communication. Server 

processes provide non-time critical services such as process creation, terminal input/output 

and device allocation. An application process sends a service request to a server process and 

waits for a reply if needed. 

There are two kinds of devices: system devices, which are an integral part of the kernel; 

and applications devices, which are only pertinent to a particular application. System de- 

vices, such as clocks and network adapters, are managed by the kernel and used indirectly 

by many application processes. Application devices are directly controlled by particular ap- 

plication processes and include the analog-to-digita.1 conversion board required for the tactile 

sensor and the image processing board required for the camera. The kernel converts a device 

interrupt into a timed event and provides sha.red memory between a device and a process. 

3.2 Scheduling and Timing Constraints 

RK supports both real-time and non real-time processes. In addition, real-time processes are 

prioritized as imperative, hard real-time, and soft real-time since not all real-time processes 

are equally important [3]. Processes are executed in the order of priorities. Within the same 

priority, imperative processes are executed on a first-come-first-serve basis, whereas hard 

and soft real-time processes are executed based on their timing constraints. The difference 
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between hard and soft timing constraints is that hard constraints must be scheduled in 

advance and if accepted, they are guaranteed to be met by the system. Soft timing constraints 

are not guaranteed to be met by the system and are considered less critical than hard timing 

constraints. When no real-time processes are ready, non real-time processes are executed on 

a first-come-first-serve basis. 

Requirements for real-time processing can be viewed as the time when certain processing 

has to take place, for how long and how soon. There are two kinds of timing constraints: 

periodic and sporadic [4]. A periodic timing constraint becomes effective a t  regular intervals 

and a sporadic timing constraint can be imposed on a t  any time. These timing constraints are 

defined on the whole process or on part of the process. They are either explicitly requested by 

a process or implicitly specified when a process receives a messa.ge with a timing constraint. 

Temporal Scope To facilitate the programming of timing constraints, RK supports a 

notion of temporal scope, which identifies explicit timing constraints with a sequence of 

statements and event handlers [I]. Each temporal scope consists of five attributes: a hard 

or soft timing constraint flag, start time, maximum execution time, deadline and a unique 

id. Whenever a temporal scope with a hard timing constraint is entered, the scheduler is 

consulted to  check whether the adherence of the hard timing constraints can be guaranteed. 

The scheduler uses all previously approved hard real-time constraints when determining 

whether the requested constraint can be guaranteed. 

Associated with each real-time process is a stack of temporal scopes which allow timing 

constraints to be  nested but not overlapped. Only the current timing constraints, that is, 

timing constraints on top of the stack, are used for the scheduling of processes. To ensure 

that the adherence of the current timing constraint does not violate the timing constraints 

of nested scopes, we maintain the following invariance among nested timing constraints: 

the timing constraint of an enclosing scope can never have a later start time, a smaller 

execution time or an earlier deadline than its nested temporal scopes. In addition, the 

timing constraints nested within a hard temporal scope must all be hard. 

There are three library routines for manipulating the temporal scope stack: push-ts to 

create a nested temporal scope, pop-ts to restore the previous temporal scope, and change-ts 

to change the timing constraints of the current temporal scope. They are called as follows: 

ts-id = change-ts (hs-flag, s-time, e-time, deadline) 

t s i d  = push-ts (hsflag, s-time, e-time, deadline) 
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t s i d  = pop-ts (hs-flag, s-time, e-time, deadline) 

The hs-flag indicates whether the current constraint is hard or soft real-time. A process 

cannot start before the start time, s-time, and cannot execute longer than the execution 

duration, e-time. The deadline, deadline, specifies when a process must complete the current 

temporal scope. The system generates a unique id, ts-id, for each temporal scope. If the 

scheduler cannot guarantee the requested hard timing constraint, change-ts and push-ts 

return an error code without changing the temporal scope stack. 

A timing constraint is violated if either the process executes longer than the maximum 

execution time or the deadline for the process is exceeded. When this happens, the kernel 

sends a signal to the process. If the timing constraint is missed in a hard real-time process, 

then a critical system error has occurred since the constraint was guaranteed by the scheduler. 

Thus, the process which missed the constraint becomes an imperative process so that a 

controlled shutdown of the system can occur as soon a.s possible. However, when a soft real- 

time constraint is violated, the process retains its status as a soft real-time process while the 

exception is being handled. This is not considered a fatal error so, at programmer control, 

the system may attempt to continue if desired. 

Periodic Temporal  Scope Most common timing constraints are periodic in nature. To 

allow the periodic execution of a function, the notion of temporal scope is extended to include 

a periodic temporal scope. A periodic scope is defined using the following system call: 

t s i d  = set-periodic(function, hsflag, s-time, p-time, e-time, limit) 

The function is a pointer to the function that is executed periodically. The hs-flag indicates 

whether the periodic event is hard or soft real-time. For a hard periodic scope, the scheduler 

guarantees the timing constraints for all periods when the periodic scope is specified. The 

s-time is the start time of the first period and p-time is the size of each period. Within each 

period, the function cannot execute any longer than the expected maximum execution time 

e-time. The function is executed periodically for limit periods. Although periodic scopes 

themselves cannot be nested, other temporal scopes can be pushed from within a periodic 

scope as long as consistency is maintained. 

Timing Constra int  Inversion The timing constra.int inversion problem can be viewed as 

a priority inversion problem. The term priority inversion refers to a problem which occurs 

when a high priority process is waiting for a response from a low priority process and a 
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middle priority process preempts the execution of the lower priority process [2]. Extra delay 

is incurred by the high priority process since the middle priority process must complete before 

the low priority process resumes. The timing constraint inversion problem can occur between 

processes of different priorities and between real-time processes with different deadlines. The 

extra delay from a middle priority process executing could cause a timing constraint to be 

missed. We prevent both types of timing constraint inversion from occurring by allowing 

the propagation of timing constraints for interprocess communication. In the first case, 

suppose a soft real-time process issues a request to a non real-time server process. The 

timing constraints associated with the message are propagated to the server process so that 

it becomes a soft real-time process to handle the message. After a reply is sent, the priority of 

the server process is reduced to that of a non real-time process. Similarly, timing constraints 

are propagated from a sender to a receiver within the same real-time priority level. 

3.3 Communication 

Real-time systems are asynchronous in nature and require predictably fast communication. 

Often more important than actual speed of communication is predictability [ 5 ] .  Commonly 

used synchronization and communication primitives such as signals and messages based on 

ports have been designed without considering guaranteed response. RK provides three basic 

communication methods: 

Signals for critical system errors. 

Timed events for asynchronous notification of events with the propagation of timing 

constraints. 

Ports for asynchronous message passing with timing constraints. 

3.3.1 Signals 

Signals are used by the kernel to notify a process that an error has occurred. The purpose 

of sending such a signal is to give the process a chance to clean up its state or to per- 

form a controlled shutdown of the system. There are three types of errors: timing errors 

(SIG-TOOLONG and SIG-TOOLATE), process errors (SIG-PROCESS) and system errors 

(SIG-SYSTEM). Timing errors are only with respect to the timing constraints of the cur- 

rent temporal scope. The kernel sends SIC- TOOLONG if a real- time process executes longer 

than the maximum execution time, and SIG-TOOLATE if a real-time process misses the 
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deadline. Unlike timing errors, signals for process and system errors can also be sent to non 

real-time processes. Process errors are errors due to  a process itself; for example, an access to 

an invalid memory address. Systeni errors are errors due to the kernel; for example, running 

out of buffers that have been guaranteed to a process. 

When the kernel sends a signal to a process, the process executes a signal handler and 

it resumes the previous execution flow when the handler is finished. Since any errors to a 

hard real-time process can have a disastrous effect on the whole system, a hard real-time 

process becomes an imperative process when it receives a signal; its priority is lowered when 

it exits the handler. For soft real-time and non real-time processes, they remain at  the same 

priority level when a signal is received. When a timing, system or processor error occurs and 

generates a signal, it is no longer necessary for the system to remain predictable, since the 

process itself determines whether to continue or to shutdown the system. 

3.3.2 Events and Timed Events 

Events are the most basic way to communicate between processes and are also used by 

various other components of the kernel such as asynchronous messages, alarms, scheduling 

and devices. Events provide features similar to the 4.2 BSD UNIX1 signal package [6]. Like 

UNIX signals, events can be sent, waited on, delayed and preempted. In addition, timing 

constraints may be associated with each timed event and the sender can pass an integer 

value with an event. For each event, the kernel only remembers the last arrival of the event 

and the last value associated with the event. 

In a manner similar to signals, whenever a process receives an event, it executes an 

associated event handler. The previous execution flow resumes once the handler is finished. 

In addition, a process can specify which events to wait on and the maximum amount of time 

to wait. In this respect, events differ from signals since a process never waits for a signal: 

signals are used to notify that a fatal error has occurred. Mutual exclusion on shared data 

between an event handler and a process is achieved by delaying any incoming events while 

executing within the critical section. 

Timed events are events with timing constraints. There are two ways to associate timing 

constraints with events. The receiver of an event may specify a timing constraint for execut- 

ing the event handler. Here, a temporal scope with this timing constraint is pushed by the 

system before executing the event handler and popped when it is completed. Alternatively, 

the sender of an event may include a timing constraint when it sends the event. If both the 

'UNIX is a trademark of AT&T Bell Labora.tories 
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sender and receiver specify timing constraints for the same event, then the timing constraint 

with the earliest deadline is used for the execution of the handler. 

The scheduling of a timed event handler is based on whether or not a temporal scope 

for the event can be pushed on top of the current temporal scope. If so, the event handler 

preempts the current execution flow; otherwise, the event handler is delayed until its tem- 

poral scope can be pushed. If more than one timed event is pending, the timed event with 

the earliest deadline is handled first. Since any temporal scope can be pushed on an empty 

temporal scope stack, if a non real-time process receives a timed event, it is handled imme- 

diately. During the handling of the event, the process becomes a real-time process. This 

feature allows non real-time server processes to ha.ndle requests from real-time processes. It 

is a process error for real-time processes to receive an untimed event. 

3.3.3 Ports 

The notion of a port has been used widely for interprocess communication since it provides an 

easy to use communication abstraction [7]. In RI<, we extend it for real-time communication 

by allowing the sender to pass timing constraints with messages and the receiver to control 

message queuing and reception strategies. 

A process sends a message to -a port and receives messages from a port. Each port has 

a unique system-wide id and has a data structure in the kernel to queue messages. Sending 

a message to a port is always non-blocking and its execution time is bounded to ensure a 

predictable delay. For time critical messages, it is important when a message is delivered to 

a receiver. Thus, the sender can include a timing constraint with each message. The timing 

attributes are the start time, the maximum execution duration and the deadline. Using 

these timing constraints, the sender can affect the scheduling of message transmissions and 

the execution of the receiver process. 

Each port also contains information on where to deliver a message when it arrives at the 

port. If the delivery is to other ports, the message is forwarded to them. However, if the 

message is to be delivered to a process, the port also contains information on how to queue 

the message and whether to notify the process using a timed event. Messages are received 

either explicitly or asynchronously. The time when a message is received using an explicit 

receive is controlled by the receiver. Here, the receiver can specify a timeout to limit the 

delay in waiting for a message. For asynchronous receive, the receiver associates a timed 

event with a port and each message arrival is notified through the timed event. 
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Port Creation and Attributes. Every RK process is created with a default reception 

port. This port is used during initialization of distributed processes and to request services 

from system server processes. 

Additional ports are created using the following system call: 

portid = port-create(type) 

which returns the unique, system-wide port id. The argument type specifies whether the port 

is for receiving a message or for multicasting a message from the creator's point of view. For 

a reception port, any process can send a message to it. When a message is sent to or arrives 

at  a multicast port, the message is forwarded to all ports connected to it. This forwarding 

of a message is repeated until the message reaches a reception port. 

For a reception port, there are various attributes that can only be changed by the creator 

of the port. There are four attributes associated with each reception port. First, the ordering 

of messages within a queue is either by message sent time, arrival time or deadline. Second, 

the size of the queue limits the maximum number of messages; if overflow occurs, this 

attribute also specifies whether messages are thrown away at the head or tail of the queue. 

Third, messages are removed from the queue when the messa.ge is received by a process unless 

its stick attribute is set. Here, the messa.ge remains in the queue even after it is received. It 

is replaced only when a new message arrives [S]. Fourth, messages can be received explicitly 

or asynchronously. This is described later. 

For a multicast port, its attributes are a list of destination ports to which messages are 

to be forwarded. Unlike reception ports, these attributes are changed when another process 

requests the insertion or removal of its port from the list of destination ports. The two 

commands for insertion and removal are as follows: 

a port-insert(mportid, portid) 

port_remove(mportid, portid) 

where mport id  is the id of a multicast port and portid is the id of a port owned by a requesting 

process. After a reception port is included in the destination list of a multicast port, all 

messages sent to the multicast port are forwarded to the reception port. The removal of 

messages from the reception port is again controlled by the attributes of the port. 
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Send The only way to  send a message is to invoke the non-blocking send system call. The 

syntax of the send call is 

send(portid, reply-portid, timing-record, msg, size) 

The portid identifies where to send the message and reply-portid specifies where to send the 

reply to  the message. The timing-record is a record containing three timing attributes which 

includes the deadline by which processing of the message must be completed. If the deadline 

is zero, then the message is not time-critical. The msg is a pointer to  a message and size is 

the length of the message in bytes. 

In order to  provide a predictable kernel, the execution time required for sending a message 

must be strictly bounded. In addition, the overhead in performing intermachine communica- 

tion must not cause the system to become unpredictable. Since RI< is running on a network 

of machines that are isolated from other network traffic, if we limit the number of outgo- 

ing messages during any unit period of time, then the number of messages arriving at each 

machine can be bounded. Section 5 describes this bounding in detail. With this bound, we 

can compute the worst case hardware interrupt overhead in processing these messages. The 

scheduler uses this worst case overhead when deciding whether hard real-time constraints 

can be guaranteed. 

Receive There are two ways to receive a message from a reception port. They differ in 

how the timing constraints are handled and in what message reception paradigm is desired. 

One way to receive a message is to explicitly invoke the receive system call when the receiver 

needs to receive the message. The syntax of the receive call is 

receive(portid, reply-portid, timeout, timingsecord, buf, size) 

The portid identifies from which port the message is to be removed and reply-portid specifies 

where to send a reply. The timeout specifies a non-negative relative amount of time that this 

primitive should block waiting for a message if none are available. If the value of timeout 

equals zero, the receiver process does not block waiting for a message. The timing-record 

points to a record containing the three timing constraints that the sender specified with the 

message. Since it is possible that the message is not received before its deadline, the kernel 

does not push the timing constraints on the receiver's temporal scope when the message 

arrives a t  a port. To use these timing constraints after receiving the message, the receiver 

process explicitly enters a temporal scope, processes the message and explicitly exits the 
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temporal scope. The but is a pointer to a message pointer. The size is the size of the 

message which was received. 

The other way to receive a message is to receive it asynchronously as it arrives on a 

reception port. Asynchronous message reception is useful when the main execution flow 

performs some task and incoming messages need to provide some simple service that can 

be performed at any time. The notification of message arrival is through a timed event 

associated with the port. When a message arrives on a port, a timed event is sent to the 

process which owns that port. The timing constraint specified with the message is used for 

sending the timed event. This timing constraint is propagated to the receiving process only 

if it has an earlier deadline than the one associated with the port by the receiver. The timing 

constraint is pushed on the temporal stack when the timed event handler executes and is 

popped on return from the event handler. 

3.4 Application Devices 

The purpose of most real-time systems is to either control or collect data from one or more 

application devices within timing constraints. Traditional operating systems provide a de- 

vice driver which buffers requests between application processes and a device. This scheme 

allows the same device to be used by many processes; however, it introduces additional delay 

between the time when the device completes a task and the process is notified of its com- 

pletion. It is difficult for application processes to control devices within timing constraints 

if traditional device drivers are used due to this additional delay. In distributed sensory 

systems, sensory devices are not shared among processes as they are controlled by individual 

processes that collect and preprocess the sensory data. Thus, our kernel allows processes to 

directly control devices. 

To control a device, a process requests the device from the device server. After the request 

is granted, it is possible to share memory and device registers between the device and the 

process. In addition, a process may request to the device server that device interrupts be 

converted to timed events. An alternative approa.ch is to let the interrupt handler collect 

the data and then send the data to the process in the form of a message [9]. Although 

our approach requires the programmer to know low-level details about devices, it inherently 

supports faster feedback control than the alternative approach since no process switching is 

needed to apply feedback to  a device. Furthermore, the kernel need not be changed to reflect 

the addition or deletion of devices. 
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Figure 2: Logical Structure of the Distributed Sensory System 

4 Distributed Sensory System 

The kernel described in the previous section is being used to implement a distributed sensory 

system. The goal of this distributed sensory system is to generate a world model describing 

the locations, sizes and shapes of objects on a table. Initially, this world model contains the 

location and size of a table. The distributed sensory system uses the camera and the tactile 

sensors to complete the information contained in the world model. To support distributed 

sensing, each sensor is attached to a manipulator arm. These manipulators are located 

on opposite sides of the table. The camera subsystem collects the location of features in 

the camera plane and the tactile subsystem measures its proximity to a surface. These 

subsystems collect data at  different rates. The fusion subsystem integrates the most recent 

data available from the two sensor subsystems into the world model. The fusion subsystem 

repeats this integration step until the world model is completed. 

Figure 2 shows the logical organization of the distributed sensory system, which consists 

of three subsystems: camera, tactile, and fusion. The camera and fusion subsystems are 

based on the active sensory system in [lo] and the tactile subsystem is based on the contour 

sensor in [ll]. Each sensor subsystem consists of three basic process types: sensor arm, 

sensor data, and sensor control. 

The fusion subsystem consists of one process that updates the world inodel based on the 

data it receives from the various sensors and ma.nipula.tor arms. 
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The camera subsystem consists of three processes: 

The camera control process, Camera-C, generates a new sensor viewpoint using the 

world model. Once this viewpoint is determined, it sends the observation position to 

the camera arm process and the window parameters to the camera data process. 

The camera arm process, Camera-A, moves the six-joint manipulator (PUMA 560) 

arm into the desired position. After issuing the move command, the position of the 

arm is sent to the fusion process. 

The camera data process, Camera-Dl collects and processes the appropriate image 

segment from the camera. It then sends the high-level description of the image segment 

to the camera arm and fusion processes. 

Similarly, the tactile subsystem consists of three processes: the tactile control process, 

Tactile-C; the tactile arm process, Tactile-A; and the tactile data process, Tactile-D. 

The distributed sensory system must meet various hard timing constraints to be correct. 

The joint controllers of each arm requires a sampling period of either 14,28 or 56 milliseconds. 

At the end of every sampling period, each a.rm process must receive feedback from the 

appropriate data process to prevent that arm from becoming unstable. Since the camera 

data cannot be collected more frequently than every 56 milliseconds, the camera arm and 

data processes run periodically every 56 milliseconds. However, since the data from the 

tactile data process can be provided at a faster rate and since the tactile system needs faster 

feedback in order to apply compliance, the tactile a.rm and data processes run every 14 

milliseconds. 

The distributed sensory system is assigned to five MicroVAXes running our kernel. Since 

each application device is attached to a distinct MicroVAX (as shown in Figure I),  each 

sensor arm and sensor data process is alloca.ted to the a.ppropria.te MicroVAX. That is, the 

camera arm, the camera data, the tactile data and the tactile arm processes are assigned 

to the first, second, fourth and fifth MicroVAXes, respectively. Each of these four processes 

has a hard real-time function which executes periodically every sampling period. Since the 

limiting factors for the sampling periods is the ra.te at which the data ca,n be collected from 

the appropriate sensor, the computation requirements of the data processes are greater than 

that of the arm processes. Thus, data processes are assigned to their own processors. The 

camera control process is assigned with the camera arm process to the first MicroVAX and the 

tactile control process is assigned with the tactile arm process to the fifth MicroVAX. These 
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Source 

Fusion 
Explicit Receive Fusion 

CameraC 
CameraC 

Multicast 

worldaodel 
worldmodel 

CameraA 
Camera-D 

Data 

world model 

CameraD 

Tac tile-C 
Tactile-C 

Explicit Receive 

world model 

command 
command 

vision-data 

Tact ile-A 
Tactile-D 
Tactile-D 

Table 1: Communication Flow for the Distributed Sensory System 

Deadline 

14ms 

vision-data 

control processes execute in the background and require approximately 20 to 30 seconds of 

real execution time to compute a new sensor viewpoint. The fusion process integrates the 

sensory data and the position information at a rate several orders of magnitude slower than 

the data is collected (i.e., about one second of real execution time for a single integration). 

The third MicroVAX is dedicated to the fusion process so that no other processes compete 

for the processor. Thus, the collected information is integrated into the world model as 

frequently as possible. 

14ms 

56ms 
56ms 

position 
vision data 

tactile-data 
tactile-data 

4.1 Communications 

Destination 

CameraC 
Tactile-C 

CameraA 
Camera-D 

Table 1 summarizes how communication flows through the distributed sensory system by 

showing the source and destination of each message. The first column, source, specifies the 

process sending the message. If a multicast port is used for sending a message, its name is 

located in the second column, multicast. The third column, data, specifies the type of data 

that is being transferred. The fourth column, deadline, specifies the deadline by when the 

message should arrive. Since the size of the period is 56 nlilliseconds for the camera arm and 

data processes, all messages should arrive before the next period. Similar reasoning follows 

for the tactile arm and data processes. The fifth column, destination, specifies the receiver 

process. The sixth column, port attributes, specifies how the message is to be received. 

Communication in the system involves four basic ltinds of data. Sensory data is trans- 

mitted from the sensor data process to the fusion process and the sensor arm process at 

Port Attributes 

Explicit Receive 

56ms 
56ms 

Fusion 

Tactile-A 
Tactile-D 

vision data ( 56ms 

position 
tactiledata 
tactile data 

command 
command 

Fusion 
CameraA 

14ms 
14ms 
14ms 
14ms 
14ms 

Explicit Receive 
Ex~licit Receive 

Fusion 
Tactile-A 
Fusion 
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the end of every sampling period. Position information is transmitted from the sensor arm 

process to the fusion process at the end of every sampling period. Commands are issued 

by the sensor control process to both the sensor arm and sensor data processes. The world 

model is sent from the fusion process to the sensor control processes. 

The destination of messages may either be a multicast port or a reception port. Multicast 

communication is used by the fusion process to send the world model to the two sensor control 

processes and by each sensor data process to send sensory data to both its associated arm 

process and the fusion process. All other types of communication are one-to-one. 

The main execution segment of each process in the distributed sensory system executes 

either iteratively, if non real-time, or periodica.lly, if real-time. Depending upon the type 

of data involved, messages are either received from their reception ports a t  the start of 

each iteration (period) or asynchronously during the execution of their iterative (periodic) 

segment. The explicit receive method is used to receive messages a t  the sta.rt of each iteration 

by explicitly using a receive system call to receive the message. The a.synchronous receive 

method is used to receive messages during a process' execution, by using a timed event to 

notify it of the arriving message. For messages that are received at the start of each iteration, 

the message with the most recent arrival time is the one received. The maximum number 

of messages permitted on the queue is limited to exactly one, always only keeping the latest 

message. For the messages that are received asynchronously, they are queued since each one 

must be received and processed individually. Since these asynchronous messages are used 

for controlling the iterative or periodic algorithm, they must be processed a t  the earliest 

possible moment. 

The explicit receive method is used for the reception of sensory data, position information 

and the world model. In the fusion process, new sensory data and position information is 

received during each iteration of the fusion algorithm, since the time required to execute the 

fusion algorithm is much longer than the smallest length of time between any two sensory 

data or position information messages. Similar rea.soning can be used for the sensor control 

and sensor arm processes which also use the explicit receive method. 

The asynchronous receive method is used for the reception of commands. In the sen- 

sor arm processes, while their periodic component is executing, new commands may arrive 

from the appropriate sensor control process. The sensor a.rm process receives the command 

message when a timed event arrives. Within its event handler, it removes the message 

and processes the command. Sensor data processes receive command messages in a similar 

manner. 
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4.2 Logical Flow 

Fusion Subsystem The fusion process is a non real-time process which integrates the 

sensory data and position information that is received from the sensor subsystems into the 

world model. Since the arrival of the sensor arm and sensor data messages is not guaranteed 

to  occur a t  the same time, the position information and sensory data used may not correspond 

to the same sampling period. However, in the worst case, the time that the message was 

sent can be off by no more than one sampling period. The statistical model which integrates 

the data takes this problem into account. Once an updated world model is generated, it is 

sent via a multicast port to  the sensor control processes. The fusion process repeats this 

integration step until the data provides no new information to the world model. 

Camera Subsystem The camera control process uses the current world model to choose 

a sensor viewpoint and to generate the appropriate sensor control information. Once the 

control information is generated, the sensor viewpoint is sent to the camera arm process and 

the sensor control information is sent to the camera data process. Both of these command 

messages must not be delayed by more than 56 lnilliseconds (one sampling period). 

The camera arm process is a hard real-time process which consists of three execution 

segments: its main body which initializes the process, a periodic function which moves the 

robot arm every sampling period, and an asynchronous port handler which receives and 

processes new commands. The most recent feedback information from the camera data 

process is received a t  the start of the period. The command used to move the manipulator 

to a particular segment is computed from the feedback information and the next destination. 

This command is sent to the joint controllers via a parallel link and the position information 

is sent to the fusion process. The deadline for this messa.ge equals the sampling period to be 

consistent with the deadline of the message sent from the camera data process to the fusion 

process. The a,synchronous port ha,ndler executes whenever a new destination is sent to this 

process. 

The camera data process is also a ha.rd real-time process which consists of three execu- 

tion segments: its main body which initializes the process, a periodic function which collects 

information for the camera every sampling period, a.nd an asynchronous port handler which 

receives and processes new commands. During ea.ch sampling period, the periodic function 

cuts a window from the frame buffer, analyzes the window according to the methods found 

in [lo], and sends the sensory data to the fusion and camera arm processes via a multicast 

port. The deadline for this message is the sampling period since this message is used for feed- 
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back by the camera arm process which must receive new information during each sampling 

period. The asynchronous port handler executes whenever a new set of window parameters 

is sent to this process. 

Figure 3 shows the skeleton code segments for the camera data process in the C program- 

ming language. Three code segments are shown: camera-data, collect-data, and recv-command. 

The main body of the process, camera-data prepares the image processor for execution. 

First, the image processor device is allocated using the function alloc-dev. Second, the func- 

tion map-breg-to-proc is used to map the device register region into the process and returns 

the process address of the first device register. Third, the function map-bmem-to-proc is 

used to  map the address of the frame buffer on the image processor board into the pro- 

cess. The constant BUS-ADDRESS specifies the bus address of the first page and the 

constant NO-PAGES specifies the number of pages to be mapped in. Fourth, the system 

call evt-handler is used to associate the function recv-command with the EVT-COMMA ND 

timed event. The constant EVT-COMMAND specifies the numeric value for the timed event. 

The set-periodic statement is used to create a. periodic temporal scope for the collect-data 

function. This periodic scope has hard real-time constraints since it must send new sensory 

data to the camera arm process every sampling period. Its first period begins immediately, 

ma.y execute for no longer than some constant EXEC-DUR and has a period of 56 millisec- 

onds. Since the robot arm continues to move until a stop command is issued, the limit is 

some large constant FOREVER. 

Tactile Subsystem The logical execution flow for the tactile control, tactile arm, and 

tactile data processes are very similar to their camera counterparts. The primary differences 

are in the timing constraints and in the port names. Since the sampling period for the tactile 

manipulator is 14 milliseconds and the sampling period for the camera manipulator is 56 

milliseconds, wherever a timing constraint of 56 milliseconds is used in the camera processes, 

it should be replaced with 14 milliseconds for the tactile processes. 

5 Performance 

In our real-time system, each processor executes either a process, system call or interrupt 

handler at  any moment of time. The architecture of the processor permits interrupt handlers 

to preempt the execution of processes or system calls. Thus, to be able to predict the response 

time of a process, the worst case execution times of system calls and interrupt handlers must 
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camera-data() 

C 
dev-id = CSR of image-processor; 
alloc,dev(dev,id); 
dev-regs = map,breg,to,proc(dev,id) ; 

dev-memory = map,bmem~to~proc(dev~id, BUS-ADDRESS, NO-PAGES); 

evt-handler(EVT-COMMAND, recv-command); 
tc-id = set,periodic(collect~data, HARD-RT, 

now, 56msec, EXEC-DUR, FOREVER) ; 

3 

collect-data0 

C 
/* inside frame buffer, cut out a window and perform analysis 

on that window (data-msg) */  
send (vision-data, NULL-REPLY , within 56ms, 

data-msg, sizeof (data-msg)) ; 

3 

recv-command () 

< 
receive(c,d-command, ctrl-reply, timing-rec, 

ctrl-msg , ctrl-size); 
/*  using control information (ctrl-msg), modify window 

parameters */ 

Figure 3: Logical Execution Flow for the Camera Data Process 
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Operat ion 

I Sending an event I 176 1 195 1 

Time (psec) 

Minimum 1 Maximum 

Timing measurement overhead 

Basic system call overhead 

- I I 

Receiving an event with empty handler ( 325 1 362 

4 

120 

I Process switching overhead 240 1 240 1 

11 

123 

- 

Waking up on a waited event 

Device interrupt latency 

79 

514 

Intramachine message send 
Messane receive 

Table 2: Timing Measurements of the Kernel 

109 

525 

., I I 

be bounded. Using the worst case execution time of interrupt handlers and interrupt rates, 

91 3 
353 

End- to-end communication delay 

the scheduler computes the amount of processor time available for processes. This processor 

957 
734 

4864 1 5406 

time is allocated to guarantee hard timing constraints. This section presents the timing 

measurements of commonly used system calls and provides a simple formula that can be 

used to compute the overhead of interrupt handlers. 

5.1 System Call Execution Times 

The current version of our kernel resides on a network of MicroVAX II's, connected through a 

10 Mb Ethernet. Table 2 shows the measured execution times of the individual system calls. 

A microsecond resolution hardware clock was used for the measurements. The times reported 

are the minimum and maximum values observed over ten thousand individual measurements. 

All the measurements other than intermachine communication delay were observed on a 

single MicroVAX with all interrupts disabled. For intermachine communication delay, we 

used two MicroVAXes connected by their own Ethernet. 

The first line contains the overhead of performing a timing measurement; that is, the 

time elapsed between starting and stopping the clock. All of the other timing measurements 

include this overhead. The second line is the time it takes to execute an empty system call; 

that is, the overhead of changing execution modes and checking the number of arguments. 

This overhead is included in the timing measurements of other system calls. 
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The next two lines correspond to the times required to  send and receive an event. Here, 

the receive overhead includes the execution time of an empty event handler. The subsequent 

line shows the times for unblocking a process that is waiting for an event. 

The sixth and seventh lines indicate the device interrupt latency and the process switching 

overhead. The device interrupt latency is the time between when a device requests an 

interrupt and when a process starts executing the corresponding event handler. This delay 

is the speed with which a process can start executing an event handler after an application 

device requests an interrupt. The process switching overhead is the estimated overhead 

involved in performing a process switch. 

The eight and ninth lines show the times required to send and receive a message between 

two processes on the same machine. Here, the receive succeeds immediately as there are 

always messages pending. The last line is the end-to-end communication delay of 1K byte 

message between two application processes running on two machines. This delay includes 

the following components: intramachine send (913 ps), network interrupts (transmit 1269 ps 

and receive 1289 ps), transmission delays (780 ps), unblocking of a receiver (79 ps), process 

switching (240 ps) and intramachine receive (353 /is). The sum of these components (4923 ps) 

confirms our end-to-end delay measurements since it is within the observed range. The 59 ps 

error could be attributed to a possible error associated with estimating the process switching 

overhead. 

5.2 Guaranteed Processor Time 

To determine the processor time that ca.n be guara.nt,eecl for the execution of processes, the 

worst case overhead of interrupts must be bounded. The kernel contains two interrupt driven 

subsystems, time maintenance and network communication. The network communication 

subsystem uses a network adapter to transmit a.nd receive messages over the Ethernet. The 

network adapter generates an interrupt whenever a message is received or transmitted. The 

time maintenance subsystem uses an interval timer to update the time of day clock and to 

set off alarms. A queue of alarms is maintained by the kernel for use by the scheduler and 

individual processes. 

There are two interrupts associated with time maintenance. The interval timer generates 

a periodic interrupt every 10 milliseconds. It is used for recording the system time; the 

execution time of its handler is 135 ps. Within the interval timer interrupt, if an alarm 

has expired, then an alarm interrupt is requested. The alarm interrupt handler determines 

the process that owns the alarm, so that it can be notified through a timed event. Its 
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execution time is 250 ps per alarm. Since the interval timer interrupt handler blocks all 

other interrupts, this two level approach allows other high priority interrupts to only be 

delayed for a short time. 

Network communication consists of two interrupts. A receive interrupt occurs when the 

network adapter receives a packet from the network. The receive interrupt handler removes 

the packet and forwards it to the appropriate process. This handler takes 1289 ps to  execute. 

The transmit interrupt consists of two parts: one part to remove the last packet which was 

transmitted, and the other part to create a packet and pass it to the network adapter. The 

worst case execution time of this handler occurs when both parts execute (1269 ps). 

We can compute the worst case interrupt 0verhea.d for each 10 millisecond clock period 

if the execution times and rates for each interrupt handler is known. To generate the worst 

case interrupt overhead, the equation below uses a. simplified model where the maximum 

execution rates for each interrupt is known for ea.ch 10 millisecond clock period: 

where, A is the maximum number of ala.rms that can go off, R is the maximum number of 

messages that can be received, and S is the maximum number of messages that can be sent. 

Using this equation, at  least 10 - a milliseconds of processor time can be guaranteed for 

process execution. 

Equation 1 can be used to compute the amount of time guaranteed for process execution 

of each of the MicroVAXes used in our distributed sensory system. For the first and fifth 

MicroVAXes, 4.249 milliseconds out of every 10 milliseconds can be guaranteed for the 

execution of the sensor arm and control processes since A = 2, R = 2 and S = 2. For 

the second and fourth MicroVAXes, 5.518 milliseconds out of every 10 milliseconds can be 

guaranteed for the execution of the sensor da.ta processes since A = 2, R = 2 and S = 1. 

However, for the third MicroVAX, no time can be guaranteed for the execution of the fusion 

process since A = 0, R = 4 and S = 4. 

Even though the fusion process is not a real-time process, this shows the limitations of the 

simple model. Our method of estimating interrupt overhead bounding is very pessimistic in 

that we assume that the interrupt rates are always at the highest rate for each clock period. 

However, as one can see with the timing constra.ints, the rates reach their upper bounds 

only on certain periods (i.e., for periodic camera data processes, every 56 milliseconds). We 

are in the process of formalizing a model tha.t ana.lyzes the interrupt overhead in greater 

detail. In addition to those parameters dealt with in the current model, the interrupt will 
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be prioritized as they are in hardware so that the interaction among the interrupts can be 

effectively modeled [12]. 

Conclusions 

We have described a distributed real-time kernel which supports distributed real-time ap- 

plications. Our notion of real-time is not on its speed of execution but on its predictability 

with respect to time. To ensure predictability, system calls are designed to exhibit bounded 

execution times and processes are scheduled based on their timing constraints. In addition, 

the scheduler guarantees hard timing constraints by computing the worst case overhead of 

device interrupts. This overhead bound is very pessimistic; we are currently working on a 

less conservative method to bound the worst case 0verhea.d of device interrupts. 

We plan to make hardware enhancements for additional versatility in two areas: time 

maintenance and network communication. The built-in interval timer for the MicroVAX 

has a period of ten milliseconds which is not fine enough for robotics applications. An 

accuracy of at  least one millisecond would be more suitable. We are adding a timerlcounter 

board (Codar Technology) which contains fifteen individually controllable clocks with a finer 

resolution, and can be programmed to any range larger than one microsecond. Furthermore, 

each clock can generate interrupts at arbitra.ry fixed intervals without the kernel overhead 

of updating the clock between intervals. 

We are also adding a token ring (Proteon) to our distributed system. As we saw from 

the example distributed sensory system, real-time communications are usually periodic and 

require bounded communication delays. Thus, we believe that a token ring with bounded 

transmission delay is more suitable tha,n a.n Ethernet with nondeterministic transmission 

delay. Once we add a token ring, we will be a.l~le to compa.re the real-time suitability of the 

two communication media. 

In this paper, we have described a real-time kernel tha.t is predictable in the worst case. Its 

initial implementation has been completed, and the results shown in Table 2 are promising. 

We intend to refine the kernel by adding the hardware enhancements mentioned above. Once 

this work is finished, the RI< kernel will provide support for many time-dependent, robotics 

applications. 
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