
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

September 1988

RK: A Real-Time Kernel for a Distributed System With Predictable RK: A Real-Time Kernel for a Distributed System With Predictable

Response Response

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Robert King
University of Pennsylvania

Richard Paul
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Insup Lee, Robert King, and Richard Paul, "RK: A Real-Time Kernel for a Distributed System With
Predictable Response", . September 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-78.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/714
For more information, please contact repository@pobox.upenn.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/714
mailto:repository@pobox.upenn.edu

RK: A Real-Time Kernel for a Distributed System With Predictable Response RK: A Real-Time Kernel for a Distributed System With Predictable Response

Abstract Abstract
Robotics applications must execute in real-time. In addition, complex robotics applications include many
physically distributed components such as manipulator arms and sensors. This paper presents the real-
time kernel RK which is designed to facilitate the development of a distributed sensory system with
multiple arms and sensors. The goal of the kernel is to support distributed applications that require
predictable timing behavior. Our kernel design guarantees predictable response times by scheduling
processes and communications based on timing constraints. In addition, the kernel provides a set of
primitives that can be used to implement applications requiring predictable timing behavior. These
primitives allow the specification of timing requirements that can be guaranteed in advance by the
scheduler and the direct control of devices by application processes for faster and predictable feedback
control. To illustrate the use of our kernel, this paper also describes a multiple sensory system which is
being ported to our distributed test-bed.

Keywords Keywords
distributed robot programming, distributed real-time system, multi-sensory systems, distributed
computing, real-time scheduling, timing analysis

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-78.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/714

https://repository.upenn.edu/cis_reports/714

RK: A Real-Time Kernel
For A Distributed System

With Predictable Response

MS-CIS-88-78
GRASP LAB 155

Insup Lee
Robert King
Richard Paul

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

October 1988

RK: A Real-Time Kernel for a Distributed System
with Predict able Response*

Insup Lee, Robert King and Richard ~ a u l t

General Robotics and Active Sensory Perception Laboratory
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19 104-6389

September 28, 1988

Abstract

Robotics applications must execute in real-time. In addition, complex robotics ap-
plications include many physically distributed components such as manipulator arms
and sensors. This paper presents the real-time kernel RK which is designed to facilitate
the development of a distributed sensory system with multiple arms and sensors. The
goal of the kernel is to support distributed applications that require predictable tim-
ing behavior. Our kernel design guarantees predictable response times by scheduling
processes and communications based on timing constraints. In addition, the kernel
provides a set of primitives that can be used to implement applications requiring pre-
dictable timing behavior. These primitives allow the specification of timing require-
ments that can be guaranteed in advance by the scheduler and the direct control of
devices by application processes for faster and predictable feedback control. To illus-
trate the use of our kernel, this paper also describes a multiple sensory system which
is being ported to our distributed test-bed.

Keywords: Distributed robot programming, distributed real-time system, multi-sensory
systems, distributed computing, real-time scheduling, timing analysis.

*This research was supported in part by NSF DCR 8501482, NSF D M C 8512838, NSF MCS 8219196-
C E R and NSF CCR-8716975. Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

t The authors may be contacted via electronic mail at tlze addresses lee@central. cis.upenn. edu,
king@grasp.ca's.upenn. edu and lou@grasp. cis.upenn. edu, respectively. In addition, the authors may be con-
tacted at their offices by telephone (area code 215) 898-3532, 898-2911 and 898-1592, respectively.

Lee, King & Paul

1 Introduction

Most robotics application programs must not only be logically correct, but they must satisfy

certain timing constraints. The adherence to these timing constraints are import ant for two

reasons. First, the physical characteristics of manipulators and sensors require regular, care-

fully timed feedback control for continuous and smooth operations. Second, the high-level

tasks may require timely execution to avoid possible catastrophic results. In addition to

being real-time, the requirements on timely computations of many numerical and symbolic

functions are such that they can only be met using multiple processors. Furthermore, com-

plex robotics applications include many physical devices that are distributed across multiple

processors. This distributed view of the underlying system allows robotics applications to be

implemented as relatively independent processes which run asynchronously except for occa-

sional synchronization and communication. Concurrent programs such as these, which need

to respond to external and internal stimuli within specified deadlines, are called distributed

real-time programs [I].

As an example, consider a distributed sensory system consisting of three subsystems:

tactile, camera and fusion. Given a world model, the goal of the system is to explore the

world and update the world model using sensory data. To support the sensing, two end-

effectors, one with a tactile sensor and another with a camera, are attached to two six-joint

manipulator arms. The fusion subsystem integrates the state information from each arm

and the data from the two sensors. It then updates the world model based on the integrated

data. Using the world model, the camera subsystem chooses the next viewpoint. The robot

arm then moves to the appropriate position so that the camera subsystem can obtain an

image from that viewpoint. Similarly, the tactile subsystem uses the world model to choose a

sensor viewpoint and then moves its arm to obtain the desired information. Both subsystems

then send their sensory data and position of their respective arms to the fusion subsystem for

integration into the world model. As we describe later, this system is naturally distributed

and must meet various timing constraints in order to operate.

To facilitate the development of robotics applications that require real-time capabilities,

we have been designing and implementing a distributed real-time kernel (RK) that sup-

ports the timely execution of time critical processes and communications. Our research is

motivated by the difficulties encountered when we attempted to implement time dependent

distributed programs such as a distributed sensory system using existing operating systems.

These difficulties arose because most operating systems are designed to provide good average

Lee, King & Paul 3

performance, while possibly yielding unacceptable worst-case response times. Furthermore,

they provide a limited set of primitives for dealing with time, making it impossible to im-

plement programs whose correctness depends on exact timing.

To support real-time applications, RK is designed to exhibit predictable timing behaviors

and to schedule processes and messages based on their timing constraints. In addition, mes-

sage delay and interrupt handler overhead is bounded. The kernel also allows the program-

mer to express timing constraints explicitly. The explicit specification of timing constraints

makes real-time programs easier to write and maintain than those without explicit timing

constraints. Furthermore, the kernel can use timing constraints for scheduling processes and

message transmission and reception. For example, many real-time kernels use a preemptive

priority driven scheduler rather than one that is time driven. Since timing constraints are

implicit in these kernels, the programmer must assign priorities to processes so that all the

implicit timing constraints are met. Assigning proper priorities is a non-trivial task and,

even if the best priority assignment is used, the assigned priorities can potentially result

in very low processor utilization [2]. Priority based real-time programming also makes it

difficult to detect timing errors since their effect may become apparent only at later time.

However, if explicit timing constraints are used with a predictable kernel, timing violations

can be detected as they happen and the kernel can schedule processes and messages so that

as many timing constraints as possible are satisfied.

The remainder of this paper is organized as follows. The next section discusses the ar-

chitecture of our distributed real-time system. The distributed real-time kernel is described

in Section 3; we restrict the discussion to time management, scheduling, communication and

device management. Section 4 illustrates the features of our kernel using the previously

described sensory system. Our description of this distributed sensory system includes a dis-

cussion of its communication and timing requirements. Section 5 summarizes the measured

performance and discusses the bounding of execution behavior. The final section contains

our conclusions and remarks regarding distributed real-time systems.

2 Overall Architecture

Our real-time kernel is used to implement a distributed sensory system. The architecture for

this distributed sensory system is divided into two levels to reflect its logical structure and

is shown in Figure 1. At the high level, the system consists of five MicroVAXes connected

through a 10 Mb Ethernet. These MicroVAXes use our kernel to provide the computation

Lee, I h g & Paul

/--"""""""'"-"""'
I
I - E t h e r n e t

',
1

I
I

I

P a r a l l e l L i n k
1

I
I

I - J o i n t C o n t r o l L i n e s
I

I
I

I - V i d e o S i g n a l s
I

I 111111111111,11 A n a l o g T a c t i l e S i g n a l s ; '.,- - - - - - ~~ P
I

Figure 1: Architecture of the Distributed Sensory System

Lee, King & Paul 5

power needed for the timely execution of processes used in sensing such as deciding where

to probe next, maintaining the world model and determining the path for the robot arm.

At the low level, there is a joint controller for each manipulator arm and the two sensors,

a camera and a tactile sensor. The joint controller consists of a supervisor processor and a

joint processor for each joint of the manipulator arm and is connected to a MicroVAX via

a parallel interface. The joint processors take the commands received from the MicroVAX

via the supervisor processor and use them to control the joint motors. The output of each

probe of the tactile sensor is an analog signal. This signal is converted to a digital value by

the analog-to-digital converter board in a MicroVAX. The image processor reads the camera

image in a frame buffer which is accessible from the MicroVAX as though it were memory.

Distributed Real-Time Kernel

As described in the introduction, our goal is to develop a real-time kernel (RK) that supports

real-time applications with predictable process execution and interprocess communication.

To provide predictable behavior, our kernel provides services with predictable timing be-

havior; that is, their worst case execution time is bounded. In addition, the kernel allows

the programmer to specify timing constraints for process execution and interprocess com-

munication. These timing constraints directly reflect the timing requirements of the applica-

tion. The kernel uses these constraints for scheduling processes and communications. This

approach of treating time explicitly facilitates the implementation and debugging of time

dependent application programs.

The rest of this section describes the salient features of the kernel. We first describe the

basic process structure. Then, we explain how to specify timing constraints and schedule

processes based on them. Next, we describe the three types of interprocess communication:

signals for timing, system and processor errors; timed events for synchronization, periodic

events and device interrupts; and pol-ts for message communication; these communication

primitives allow the propagation of timing constraints from the sender to the receiver. Fi-

nally, we show how application processes directly control devices.

3.1 Process Model

A distributed real-time application consists of a set of communicating processes and a set

of hardware devices. A process is defined by the programmer and represents a logically

independent execution thread of control. Each process has an independent address space,

Lee, King & Paul

and consists of a main body, a set of event handlers and a read-only page of kernel specific

data. All processes are initially non real-time processes and start executing with their main

body. Event handlers execute either periodically or asynchronously when the process receives

the corresponding events. A process becomes a real-time process when it either specifies a

timing constraint or receives a timed event. Within a real-time process, scheduling of the

main body and events handlers depends on their timing constraints.

Every process has access to a read-only page of kernel specific data, which includes the

time of day that the system was booted, the current time of day, and port ids for various

services, such as the nameserver. One key benefit of this page is that the current time of

day is accessible without the overhead of a system call. User processes repeatedly read the

current time of day until two consecutive readings return the same value. This ensures that

the current time has not been corrupted by a system update.

The kernel provides the system services through either system calls or server processes.

In order to bound the execution overheads of system calls, services provided through system

calls are kept to a minimum. System calls are used only for services that require the crossing

of address boundaries or predictably fast response. They include memory management,

process switching, signals, timed events, alarms and interprocess communication. Server

processes provide non-time critical services such as process creation, terminal input/output

and device allocation. An application process sends a service request to a server process and

waits for a reply if needed.

There are two kinds of devices: system devices, which are an integral part of the kernel;

and applications devices, which are only pertinent to a particular application. System de-

vices, such as clocks and network adapters, are managed by the kernel and used indirectly

by many application processes. Application devices are directly controlled by particular ap-

plication processes and include the analog-to-digita.1 conversion board required for the tactile

sensor and the image processing board required for the camera. The kernel converts a device

interrupt into a timed event and provides sha.red memory between a device and a process.

3.2 Scheduling and Timing Constraints

RK supports both real-time and non real-time processes. In addition, real-time processes are

prioritized as imperative, hard real-time, and soft real-time since not all real-time processes

are equally important [3]. Processes are executed in the order of priorities. Within the same

priority, imperative processes are executed on a first-come-first-serve basis, whereas hard

and soft real-time processes are executed based on their timing constraints. The difference

Lee, King & Paul 7

between hard and soft timing constraints is that hard constraints must be scheduled in

advance and if accepted, they are guaranteed to be met by the system. Soft timing constraints

are not guaranteed to be met by the system and are considered less critical than hard timing

constraints. When no real-time processes are ready, non real-time processes are executed on

a first-come-first-serve basis.

Requirements for real-time processing can be viewed as the time when certain processing

has to take place, for how long and how soon. There are two kinds of timing constraints:

periodic and sporadic [4]. A periodic timing constraint becomes effective a t regular intervals

and a sporadic timing constraint can be imposed on a t any time. These timing constraints are

defined on the whole process or on part of the process. They are either explicitly requested by

a process or implicitly specified when a process receives a messa.ge with a timing constraint.

Temporal Scope To facilitate the programming of timing constraints, RK supports a

notion of temporal scope, which identifies explicit timing constraints with a sequence of

statements and event handlers [I]. Each temporal scope consists of five attributes: a hard

or soft timing constraint flag, start time, maximum execution time, deadline and a unique

id. Whenever a temporal scope with a hard timing constraint is entered, the scheduler is

consulted to check whether the adherence of the hard timing constraints can be guaranteed.

The scheduler uses all previously approved hard real-time constraints when determining

whether the requested constraint can be guaranteed.

Associated with each real-time process is a stack of temporal scopes which allow timing

constraints to be nested but not overlapped. Only the current timing constraints, that is,

timing constraints on top of the stack, are used for the scheduling of processes. To ensure

that the adherence of the current timing constraint does not violate the timing constraints

of nested scopes, we maintain the following invariance among nested timing constraints:

the timing constraint of an enclosing scope can never have a later start time, a smaller

execution time or an earlier deadline than its nested temporal scopes. In addition, the

timing constraints nested within a hard temporal scope must all be hard.

There are three library routines for manipulating the temporal scope stack: push-ts to

create a nested temporal scope, pop-ts to restore the previous temporal scope, and change-ts

to change the timing constraints of the current temporal scope. They are called as follows:

ts-id = change-ts (hs-flag, s-time, e-time, deadline)

t s i d = push-ts (hsflag, s-time, e-time, deadline)

Lee, King & Paul

t s i d = pop-ts (hs-flag, s-time, e-time, deadline)

The hs-flag indicates whether the current constraint is hard or soft real-time. A process

cannot start before the start time, s-time, and cannot execute longer than the execution

duration, e-time. The deadline, deadline, specifies when a process must complete the current

temporal scope. The system generates a unique id, ts-id, for each temporal scope. If the

scheduler cannot guarantee the requested hard timing constraint, change-ts and push-ts

return an error code without changing the temporal scope stack.

A timing constraint is violated if either the process executes longer than the maximum

execution time or the deadline for the process is exceeded. When this happens, the kernel

sends a signal to the process. If the timing constraint is missed in a hard real-time process,

then a critical system error has occurred since the constraint was guaranteed by the scheduler.

Thus, the process which missed the constraint becomes an imperative process so that a

controlled shutdown of the system can occur as soon a.s possible. However, when a soft real-

time constraint is violated, the process retains its status as a soft real-time process while the

exception is being handled. This is not considered a fatal error so, at programmer control,

the system may attempt to continue if desired.

Periodic Temporal Scope Most common timing constraints are periodic in nature. To

allow the periodic execution of a function, the notion of temporal scope is extended to include

a periodic temporal scope. A periodic scope is defined using the following system call:

t s i d = set-periodic(function, hsflag, s-time, p-time, e-time, limit)

The function is a pointer to the function that is executed periodically. The hs-flag indicates

whether the periodic event is hard or soft real-time. For a hard periodic scope, the scheduler

guarantees the timing constraints for all periods when the periodic scope is specified. The

s-time is the start time of the first period and p-time is the size of each period. Within each

period, the function cannot execute any longer than the expected maximum execution time

e-time. The function is executed periodically for limit periods. Although periodic scopes

themselves cannot be nested, other temporal scopes can be pushed from within a periodic

scope as long as consistency is maintained.

Timing Constra int Inversion The timing constra.int inversion problem can be viewed as

a priority inversion problem. The term priority inversion refers to a problem which occurs

when a high priority process is waiting for a response from a low priority process and a

Lee, King & Paul 9

middle priority process preempts the execution of the lower priority process [2]. Extra delay

is incurred by the high priority process since the middle priority process must complete before

the low priority process resumes. The timing constraint inversion problem can occur between

processes of different priorities and between real-time processes with different deadlines. The

extra delay from a middle priority process executing could cause a timing constraint to be

missed. We prevent both types of timing constraint inversion from occurring by allowing

the propagation of timing constraints for interprocess communication. In the first case,

suppose a soft real-time process issues a request to a non real-time server process. The

timing constraints associated with the message are propagated to the server process so that

it becomes a soft real-time process to handle the message. After a reply is sent, the priority of

the server process is reduced to that of a non real-time process. Similarly, timing constraints

are propagated from a sender to a receiver within the same real-time priority level.

3.3 Communication

Real-time systems are asynchronous in nature and require predictably fast communication.

Often more important than actual speed of communication is predictability [5] . Commonly

used synchronization and communication primitives such as signals and messages based on

ports have been designed without considering guaranteed response. RK provides three basic

communication methods:

Signals for critical system errors.

Timed events for asynchronous notification of events with the propagation of timing

constraints.

Ports for asynchronous message passing with timing constraints.

3.3.1 Signals

Signals are used by the kernel to notify a process that an error has occurred. The purpose

of sending such a signal is to give the process a chance to clean up its state or to per-

form a controlled shutdown of the system. There are three types of errors: timing errors

(SIG-TOOLONG and SIG-TOOLATE), process errors (SIG-PROCESS) and system errors

(SIG-SYSTEM). Timing errors are only with respect to the timing constraints of the cur-

rent temporal scope. The kernel sends SIC- TOOLONG if a real- time process executes longer

than the maximum execution time, and SIG-TOOLATE if a real-time process misses the

Lee, Ifing & Paul 10

deadline. Unlike timing errors, signals for process and system errors can also be sent to non

real-time processes. Process errors are errors due to a process itself; for example, an access to

an invalid memory address. Systeni errors are errors due to the kernel; for example, running

out of buffers that have been guaranteed to a process.

When the kernel sends a signal to a process, the process executes a signal handler and

it resumes the previous execution flow when the handler is finished. Since any errors to a

hard real-time process can have a disastrous effect on the whole system, a hard real-time

process becomes an imperative process when it receives a signal; its priority is lowered when

it exits the handler. For soft real-time and non real-time processes, they remain at the same

priority level when a signal is received. When a timing, system or processor error occurs and

generates a signal, it is no longer necessary for the system to remain predictable, since the

process itself determines whether to continue or to shutdown the system.

3.3.2 Events and Timed Events

Events are the most basic way to communicate between processes and are also used by

various other components of the kernel such as asynchronous messages, alarms, scheduling

and devices. Events provide features similar to the 4.2 BSD UNIX1 signal package [6]. Like

UNIX signals, events can be sent, waited on, delayed and preempted. In addition, timing

constraints may be associated with each timed event and the sender can pass an integer

value with an event. For each event, the kernel only remembers the last arrival of the event

and the last value associated with the event.

In a manner similar to signals, whenever a process receives an event, it executes an

associated event handler. The previous execution flow resumes once the handler is finished.

In addition, a process can specify which events to wait on and the maximum amount of time

to wait. In this respect, events differ from signals since a process never waits for a signal:

signals are used to notify that a fatal error has occurred. Mutual exclusion on shared data

between an event handler and a process is achieved by delaying any incoming events while

executing within the critical section.

Timed events are events with timing constraints. There are two ways to associate timing

constraints with events. The receiver of an event may specify a timing constraint for execut-

ing the event handler. Here, a temporal scope with this timing constraint is pushed by the

system before executing the event handler and popped when it is completed. Alternatively,

the sender of an event may include a timing constraint when it sends the event. If both the

'UNIX is a trademark of AT&T Bell Labora.tories

Lee, King & Paul 11

sender and receiver specify timing constraints for the same event, then the timing constraint

with the earliest deadline is used for the execution of the handler.

The scheduling of a timed event handler is based on whether or not a temporal scope

for the event can be pushed on top of the current temporal scope. If so, the event handler

preempts the current execution flow; otherwise, the event handler is delayed until its tem-

poral scope can be pushed. If more than one timed event is pending, the timed event with

the earliest deadline is handled first. Since any temporal scope can be pushed on an empty

temporal scope stack, if a non real-time process receives a timed event, it is handled imme-

diately. During the handling of the event, the process becomes a real-time process. This

feature allows non real-time server processes to ha.ndle requests from real-time processes. It

is a process error for real-time processes to receive an untimed event.

3.3.3 Ports

The notion of a port has been used widely for interprocess communication since it provides an

easy to use communication abstraction [7]. In RI<, we extend it for real-time communication

by allowing the sender to pass timing constraints with messages and the receiver to control

message queuing and reception strategies.

A process sends a message to -a port and receives messages from a port. Each port has

a unique system-wide id and has a data structure in the kernel to queue messages. Sending

a message to a port is always non-blocking and its execution time is bounded to ensure a

predictable delay. For time critical messages, it is important when a message is delivered to

a receiver. Thus, the sender can include a timing constraint with each message. The timing

attributes are the start time, the maximum execution duration and the deadline. Using

these timing constraints, the sender can affect the scheduling of message transmissions and

the execution of the receiver process.

Each port also contains information on where to deliver a message when it arrives at the

port. If the delivery is to other ports, the message is forwarded to them. However, if the

message is to be delivered to a process, the port also contains information on how to queue

the message and whether to notify the process using a timed event. Messages are received

either explicitly or asynchronously. The time when a message is received using an explicit

receive is controlled by the receiver. Here, the receiver can specify a timeout to limit the

delay in waiting for a message. For asynchronous receive, the receiver associates a timed

event with a port and each message arrival is notified through the timed event.

Lee, King & Paul 12

Port Creation and Attributes. Every RK process is created with a default reception

port. This port is used during initialization of distributed processes and to request services

from system server processes.

Additional ports are created using the following system call:

portid = port-create(type)

which returns the unique, system-wide port id. The argument type specifies whether the port

is for receiving a message or for multicasting a message from the creator's point of view. For

a reception port, any process can send a message to it. When a message is sent to or arrives

at a multicast port, the message is forwarded to all ports connected to it. This forwarding

of a message is repeated until the message reaches a reception port.

For a reception port, there are various attributes that can only be changed by the creator

of the port. There are four attributes associated with each reception port. First, the ordering

of messages within a queue is either by message sent time, arrival time or deadline. Second,

the size of the queue limits the maximum number of messages; if overflow occurs, this

attribute also specifies whether messages are thrown away at the head or tail of the queue.

Third, messages are removed from the queue when the messa.ge is received by a process unless

its stick attribute is set. Here, the messa.ge remains in the queue even after it is received. It

is replaced only when a new message arrives [S]. Fourth, messages can be received explicitly

or asynchronously. This is described later.

For a multicast port, its attributes are a list of destination ports to which messages are

to be forwarded. Unlike reception ports, these attributes are changed when another process

requests the insertion or removal of its port from the list of destination ports. The two

commands for insertion and removal are as follows:

a port-insert(mportid, portid)

port_remove(mportid, portid)

where mport id is the id of a multicast port and portid is the id of a port owned by a requesting

process. After a reception port is included in the destination list of a multicast port, all

messages sent to the multicast port are forwarded to the reception port. The removal of

messages from the reception port is again controlled by the attributes of the port.

Lee, King & Paul 13

Send The only way to send a message is to invoke the non-blocking send system call. The

syntax of the send call is

send(portid, reply-portid, timing-record, msg, size)

The portid identifies where to send the message and reply-portid specifies where to send the

reply to the message. The timing-record is a record containing three timing attributes which

includes the deadline by which processing of the message must be completed. If the deadline

is zero, then the message is not time-critical. The msg is a pointer to a message and size is

the length of the message in bytes.

In order to provide a predictable kernel, the execution time required for sending a message

must be strictly bounded. In addition, the overhead in performing intermachine communica-

tion must not cause the system to become unpredictable. Since RI< is running on a network

of machines that are isolated from other network traffic, if we limit the number of outgo-

ing messages during any unit period of time, then the number of messages arriving at each

machine can be bounded. Section 5 describes this bounding in detail. With this bound, we

can compute the worst case hardware interrupt overhead in processing these messages. The

scheduler uses this worst case overhead when deciding whether hard real-time constraints

can be guaranteed.

Receive There are two ways to receive a message from a reception port. They differ in

how the timing constraints are handled and in what message reception paradigm is desired.

One way to receive a message is to explicitly invoke the receive system call when the receiver

needs to receive the message. The syntax of the receive call is

receive(portid, reply-portid, timeout, timingsecord, buf, size)

The portid identifies from which port the message is to be removed and reply-portid specifies

where to send a reply. The timeout specifies a non-negative relative amount of time that this

primitive should block waiting for a message if none are available. If the value of timeout

equals zero, the receiver process does not block waiting for a message. The timing-record

points to a record containing the three timing constraints that the sender specified with the

message. Since it is possible that the message is not received before its deadline, the kernel

does not push the timing constraints on the receiver's temporal scope when the message

arrives a t a port. To use these timing constraints after receiving the message, the receiver

process explicitly enters a temporal scope, processes the message and explicitly exits the

Lee, King & Paul 14

temporal scope. The but is a pointer to a message pointer. The size is the size of the

message which was received.

The other way to receive a message is to receive it asynchronously as it arrives on a

reception port. Asynchronous message reception is useful when the main execution flow

performs some task and incoming messages need to provide some simple service that can

be performed at any time. The notification of message arrival is through a timed event

associated with the port. When a message arrives on a port, a timed event is sent to the

process which owns that port. The timing constraint specified with the message is used for

sending the timed event. This timing constraint is propagated to the receiving process only

if it has an earlier deadline than the one associated with the port by the receiver. The timing

constraint is pushed on the temporal stack when the timed event handler executes and is

popped on return from the event handler.

3.4 Application Devices

The purpose of most real-time systems is to either control or collect data from one or more

application devices within timing constraints. Traditional operating systems provide a de-

vice driver which buffers requests between application processes and a device. This scheme

allows the same device to be used by many processes; however, it introduces additional delay

between the time when the device completes a task and the process is notified of its com-

pletion. It is difficult for application processes to control devices within timing constraints

if traditional device drivers are used due to this additional delay. In distributed sensory

systems, sensory devices are not shared among processes as they are controlled by individual

processes that collect and preprocess the sensory data. Thus, our kernel allows processes to

directly control devices.

To control a device, a process requests the device from the device server. After the request

is granted, it is possible to share memory and device registers between the device and the

process. In addition, a process may request to the device server that device interrupts be

converted to timed events. An alternative approa.ch is to let the interrupt handler collect

the data and then send the data to the process in the form of a message [9]. Although

our approach requires the programmer to know low-level details about devices, it inherently

supports faster feedback control than the alternative approach since no process switching is

needed to apply feedback to a device. Furthermore, the kernel need not be changed to reflect

the addition or deletion of devices.

Lee, King & Paul

C - . \

: Communication Flow: From -----) To
\ - - - - - , - - - , , , , - - , , , - - - - - - - - - - - - - - - - - - - r

Figure 2: Logical Structure of the Distributed Sensory System

4 Distributed Sensory System

The kernel described in the previous section is being used to implement a distributed sensory

system. The goal of this distributed sensory system is to generate a world model describing

the locations, sizes and shapes of objects on a table. Initially, this world model contains the

location and size of a table. The distributed sensory system uses the camera and the tactile

sensors to complete the information contained in the world model. To support distributed

sensing, each sensor is attached to a manipulator arm. These manipulators are located

on opposite sides of the table. The camera subsystem collects the location of features in

the camera plane and the tactile subsystem measures its proximity to a surface. These

subsystems collect data at different rates. The fusion subsystem integrates the most recent

data available from the two sensor subsystems into the world model. The fusion subsystem

repeats this integration step until the world model is completed.

Figure 2 shows the logical organization of the distributed sensory system, which consists

of three subsystems: camera, tactile, and fusion. The camera and fusion subsystems are

based on the active sensory system in [lo] and the tactile subsystem is based on the contour

sensor in [ll]. Each sensor subsystem consists of three basic process types: sensor arm,

sensor data, and sensor control.

The fusion subsystem consists of one process that updates the world inodel based on the

data it receives from the various sensors and ma.nipula.tor arms.

Lee, King & Paul 16

The camera subsystem consists of three processes:

The camera control process, Camera-C, generates a new sensor viewpoint using the

world model. Once this viewpoint is determined, it sends the observation position to

the camera arm process and the window parameters to the camera data process.

The camera arm process, Camera-A, moves the six-joint manipulator (PUMA 560)

arm into the desired position. After issuing the move command, the position of the

arm is sent to the fusion process.

The camera data process, Camera-Dl collects and processes the appropriate image

segment from the camera. It then sends the high-level description of the image segment

to the camera arm and fusion processes.

Similarly, the tactile subsystem consists of three processes: the tactile control process,

Tactile-C; the tactile arm process, Tactile-A; and the tactile data process, Tactile-D.

The distributed sensory system must meet various hard timing constraints to be correct.

The joint controllers of each arm requires a sampling period of either 14,28 or 56 milliseconds.

At the end of every sampling period, each a.rm process must receive feedback from the

appropriate data process to prevent that arm from becoming unstable. Since the camera

data cannot be collected more frequently than every 56 milliseconds, the camera arm and

data processes run periodically every 56 milliseconds. However, since the data from the

tactile data process can be provided at a faster rate and since the tactile system needs faster

feedback in order to apply compliance, the tactile a.rm and data processes run every 14

milliseconds.

The distributed sensory system is assigned to five MicroVAXes running our kernel. Since

each application device is attached to a distinct MicroVAX (as shown in Figure I), each

sensor arm and sensor data process is alloca.ted to the a.ppropria.te MicroVAX. That is, the

camera arm, the camera data, the tactile data and the tactile arm processes are assigned

to the first, second, fourth and fifth MicroVAXes, respectively. Each of these four processes

has a hard real-time function which executes periodically every sampling period. Since the

limiting factors for the sampling periods is the ra.te at which the data ca,n be collected from

the appropriate sensor, the computation requirements of the data processes are greater than

that of the arm processes. Thus, data processes are assigned to their own processors. The

camera control process is assigned with the camera arm process to the first MicroVAX and the

tactile control process is assigned with the tactile arm process to the fifth MicroVAX. These

Lee, King & Paul 17

Source

Fusion
Explicit Receive Fusion

CameraC
CameraC

Multicast

worldaodel
worldmodel

CameraA
Camera-D

Data

world model

CameraD

Tac tile-C
Tactile-C

Explicit Receive

world model

command
command

vision-data

Tact ile-A
Tactile-D
Tactile-D

Table 1: Communication Flow for the Distributed Sensory System

Deadline

14ms

vision-data

control processes execute in the background and require approximately 20 to 30 seconds of

real execution time to compute a new sensor viewpoint. The fusion process integrates the

sensory data and the position information at a rate several orders of magnitude slower than

the data is collected (i.e., about one second of real execution time for a single integration).

The third MicroVAX is dedicated to the fusion process so that no other processes compete

for the processor. Thus, the collected information is integrated into the world model as

frequently as possible.

14ms

56ms
56ms

position
vision data

tactile-data
tactile-data

4.1 Communications

Destination

CameraC
Tactile-C

CameraA
Camera-D

Table 1 summarizes how communication flows through the distributed sensory system by

showing the source and destination of each message. The first column, source, specifies the

process sending the message. If a multicast port is used for sending a message, its name is

located in the second column, multicast. The third column, data, specifies the type of data

that is being transferred. The fourth column, deadline, specifies the deadline by when the

message should arrive. Since the size of the period is 56 nlilliseconds for the camera arm and

data processes, all messages should arrive before the next period. Similar reasoning follows

for the tactile arm and data processes. The fifth column, destination, specifies the receiver

process. The sixth column, port attributes, specifies how the message is to be received.

Communication in the system involves four basic ltinds of data. Sensory data is trans-

mitted from the sensor data process to the fusion process and the sensor arm process at

Port Attributes

Explicit Receive

56ms
56ms

Fusion

Tactile-A
Tactile-D

vision data (56ms

position
tactiledata
tactile data

command
command

Fusion
CameraA

14ms
14ms
14ms
14ms
14ms

Explicit Receive
Ex~licit Receive

Fusion
Tactile-A
Fusion

Lee, King & Paul 18

the end of every sampling period. Position information is transmitted from the sensor arm

process to the fusion process at the end of every sampling period. Commands are issued

by the sensor control process to both the sensor arm and sensor data processes. The world

model is sent from the fusion process to the sensor control processes.

The destination of messages may either be a multicast port or a reception port. Multicast

communication is used by the fusion process to send the world model to the two sensor control

processes and by each sensor data process to send sensory data to both its associated arm

process and the fusion process. All other types of communication are one-to-one.

The main execution segment of each process in the distributed sensory system executes

either iteratively, if non real-time, or periodica.lly, if real-time. Depending upon the type

of data involved, messages are either received from their reception ports a t the start of

each iteration (period) or asynchronously during the execution of their iterative (periodic)

segment. The explicit receive method is used to receive messages a t the sta.rt of each iteration

by explicitly using a receive system call to receive the message. The a.synchronous receive

method is used to receive messages during a process' execution, by using a timed event to

notify it of the arriving message. For messages that are received at the start of each iteration,

the message with the most recent arrival time is the one received. The maximum number

of messages permitted on the queue is limited to exactly one, always only keeping the latest

message. For the messages that are received asynchronously, they are queued since each one

must be received and processed individually. Since these asynchronous messages are used

for controlling the iterative or periodic algorithm, they must be processed a t the earliest

possible moment.

The explicit receive method is used for the reception of sensory data, position information

and the world model. In the fusion process, new sensory data and position information is

received during each iteration of the fusion algorithm, since the time required to execute the

fusion algorithm is much longer than the smallest length of time between any two sensory

data or position information messages. Similar rea.soning can be used for the sensor control

and sensor arm processes which also use the explicit receive method.

The asynchronous receive method is used for the reception of commands. In the sen-

sor arm processes, while their periodic component is executing, new commands may arrive

from the appropriate sensor control process. The sensor a.rm process receives the command

message when a timed event arrives. Within its event handler, it removes the message

and processes the command. Sensor data processes receive command messages in a similar

manner.

Lee, King & Paul 19

4.2 Logical Flow

Fusion Subsystem The fusion process is a non real-time process which integrates the

sensory data and position information that is received from the sensor subsystems into the

world model. Since the arrival of the sensor arm and sensor data messages is not guaranteed

to occur a t the same time, the position information and sensory data used may not correspond

to the same sampling period. However, in the worst case, the time that the message was

sent can be off by no more than one sampling period. The statistical model which integrates

the data takes this problem into account. Once an updated world model is generated, it is

sent via a multicast port to the sensor control processes. The fusion process repeats this

integration step until the data provides no new information to the world model.

Camera Subsystem The camera control process uses the current world model to choose

a sensor viewpoint and to generate the appropriate sensor control information. Once the

control information is generated, the sensor viewpoint is sent to the camera arm process and

the sensor control information is sent to the camera data process. Both of these command

messages must not be delayed by more than 56 lnilliseconds (one sampling period).

The camera arm process is a hard real-time process which consists of three execution

segments: its main body which initializes the process, a periodic function which moves the

robot arm every sampling period, and an asynchronous port handler which receives and

processes new commands. The most recent feedback information from the camera data

process is received a t the start of the period. The command used to move the manipulator

to a particular segment is computed from the feedback information and the next destination.

This command is sent to the joint controllers via a parallel link and the position information

is sent to the fusion process. The deadline for this messa.ge equals the sampling period to be

consistent with the deadline of the message sent from the camera data process to the fusion

process. The a,synchronous port ha,ndler executes whenever a new destination is sent to this

process.

The camera data process is also a ha.rd real-time process which consists of three execu-

tion segments: its main body which initializes the process, a periodic function which collects

information for the camera every sampling period, a.nd an asynchronous port handler which

receives and processes new commands. During ea.ch sampling period, the periodic function

cuts a window from the frame buffer, analyzes the window according to the methods found

in [lo], and sends the sensory data to the fusion and camera arm processes via a multicast

port. The deadline for this message is the sampling period since this message is used for feed-

Lee, King & Paul 20

back by the camera arm process which must receive new information during each sampling

period. The asynchronous port handler executes whenever a new set of window parameters

is sent to this process.

Figure 3 shows the skeleton code segments for the camera data process in the C program-

ming language. Three code segments are shown: camera-data, collect-data, and recv-command.

The main body of the process, camera-data prepares the image processor for execution.

First, the image processor device is allocated using the function alloc-dev. Second, the func-

tion map-breg-to-proc is used to map the device register region into the process and returns

the process address of the first device register. Third, the function map-bmem-to-proc is

used to map the address of the frame buffer on the image processor board into the pro-

cess. The constant BUS-ADDRESS specifies the bus address of the first page and the

constant NO-PAGES specifies the number of pages to be mapped in. Fourth, the system

call evt-handler is used to associate the function recv-command with the EVT-COMMA ND

timed event. The constant EVT-COMMAND specifies the numeric value for the timed event.

The set-periodic statement is used to create a. periodic temporal scope for the collect-data

function. This periodic scope has hard real-time constraints since it must send new sensory

data to the camera arm process every sampling period. Its first period begins immediately,

ma.y execute for no longer than some constant EXEC-DUR and has a period of 56 millisec-

onds. Since the robot arm continues to move until a stop command is issued, the limit is

some large constant FOREVER.

Tactile Subsystem The logical execution flow for the tactile control, tactile arm, and

tactile data processes are very similar to their camera counterparts. The primary differences

are in the timing constraints and in the port names. Since the sampling period for the tactile

manipulator is 14 milliseconds and the sampling period for the camera manipulator is 56

milliseconds, wherever a timing constraint of 56 milliseconds is used in the camera processes,

it should be replaced with 14 milliseconds for the tactile processes.

5 Performance

In our real-time system, each processor executes either a process, system call or interrupt

handler at any moment of time. The architecture of the processor permits interrupt handlers

to preempt the execution of processes or system calls. Thus, to be able to predict the response

time of a process, the worst case execution times of system calls and interrupt handlers must

Lee, King & Paul

camera-data()

C
dev-id = CSR of image-processor;
alloc,dev(dev,id);
dev-regs = map,breg,to,proc(dev,id) ;

dev-memory = map,bmem~to~proc(dev~id, BUS-ADDRESS, NO-PAGES);

evt-handler(EVT-COMMAND, recv-command);
tc-id = set,periodic(collect~data, HARD-RT,

now, 56msec, EXEC-DUR, FOREVER) ;

3

collect-data0

C
/* inside frame buffer, cut out a window and perform analysis

on that window (data-msg) */
send (vision-data, NULL-REPLY , within 56ms,

data-msg, sizeof (data-msg)) ;

3

recv-command ()

<
receive(c,d-command, ctrl-reply, timing-rec,

ctrl-msg , ctrl-size);
/* using control information (ctrl-msg), modify window

parameters */

Figure 3: Logical Execution Flow for the Camera Data Process

Lee, King & Paul

Operat ion

I Sending an event I 176 1 195 1

Time (psec)

Minimum 1 Maximum

Timing measurement overhead

Basic system call overhead

- I I

Receiving an event with empty handler (325 1 362

4

120

I Process switching overhead 240 1 240 1

11

123

-

Waking up on a waited event

Device interrupt latency

79

514

Intramachine message send
Messane receive

Table 2: Timing Measurements of the Kernel

109

525

., I I

be bounded. Using the worst case execution time of interrupt handlers and interrupt rates,

91 3
353

End- to-end communication delay

the scheduler computes the amount of processor time available for processes. This processor

957
734

4864 1 5406

time is allocated to guarantee hard timing constraints. This section presents the timing

measurements of commonly used system calls and provides a simple formula that can be

used to compute the overhead of interrupt handlers.

5.1 System Call Execution Times

The current version of our kernel resides on a network of MicroVAX II's, connected through a

10 Mb Ethernet. Table 2 shows the measured execution times of the individual system calls.

A microsecond resolution hardware clock was used for the measurements. The times reported

are the minimum and maximum values observed over ten thousand individual measurements.

All the measurements other than intermachine communication delay were observed on a

single MicroVAX with all interrupts disabled. For intermachine communication delay, we

used two MicroVAXes connected by their own Ethernet.

The first line contains the overhead of performing a timing measurement; that is, the

time elapsed between starting and stopping the clock. All of the other timing measurements

include this overhead. The second line is the time it takes to execute an empty system call;

that is, the overhead of changing execution modes and checking the number of arguments.

This overhead is included in the timing measurements of other system calls.

Lee, King & Paul 23

The next two lines correspond to the times required to send and receive an event. Here,

the receive overhead includes the execution time of an empty event handler. The subsequent

line shows the times for unblocking a process that is waiting for an event.

The sixth and seventh lines indicate the device interrupt latency and the process switching

overhead. The device interrupt latency is the time between when a device requests an

interrupt and when a process starts executing the corresponding event handler. This delay

is the speed with which a process can start executing an event handler after an application

device requests an interrupt. The process switching overhead is the estimated overhead

involved in performing a process switch.

The eight and ninth lines show the times required to send and receive a message between

two processes on the same machine. Here, the receive succeeds immediately as there are

always messages pending. The last line is the end-to-end communication delay of 1K byte

message between two application processes running on two machines. This delay includes

the following components: intramachine send (913 ps), network interrupts (transmit 1269 ps

and receive 1289 ps), transmission delays (780 ps), unblocking of a receiver (79 ps), process

switching (240 ps) and intramachine receive (353 /is). The sum of these components (4923 ps)

confirms our end-to-end delay measurements since it is within the observed range. The 59 ps

error could be attributed to a possible error associated with estimating the process switching

overhead.

5.2 Guaranteed Processor Time

To determine the processor time that ca.n be guara.nt,eecl for the execution of processes, the

worst case overhead of interrupts must be bounded. The kernel contains two interrupt driven

subsystems, time maintenance and network communication. The network communication

subsystem uses a network adapter to transmit a.nd receive messages over the Ethernet. The

network adapter generates an interrupt whenever a message is received or transmitted. The

time maintenance subsystem uses an interval timer to update the time of day clock and to

set off alarms. A queue of alarms is maintained by the kernel for use by the scheduler and

individual processes.

There are two interrupts associated with time maintenance. The interval timer generates

a periodic interrupt every 10 milliseconds. It is used for recording the system time; the

execution time of its handler is 135 ps. Within the interval timer interrupt, if an alarm

has expired, then an alarm interrupt is requested. The alarm interrupt handler determines

the process that owns the alarm, so that it can be notified through a timed event. Its

Lee, King & Paul 24

execution time is 250 ps per alarm. Since the interval timer interrupt handler blocks all

other interrupts, this two level approach allows other high priority interrupts to only be

delayed for a short time.

Network communication consists of two interrupts. A receive interrupt occurs when the

network adapter receives a packet from the network. The receive interrupt handler removes

the packet and forwards it to the appropriate process. This handler takes 1289 ps to execute.

The transmit interrupt consists of two parts: one part to remove the last packet which was

transmitted, and the other part to create a packet and pass it to the network adapter. The

worst case execution time of this handler occurs when both parts execute (1269 ps).

We can compute the worst case interrupt 0verhea.d for each 10 millisecond clock period

if the execution times and rates for each interrupt handler is known. To generate the worst

case interrupt overhead, the equation below uses a. simplified model where the maximum

execution rates for each interrupt is known for ea.ch 10 millisecond clock period:

where, A is the maximum number of ala.rms that can go off, R is the maximum number of

messages that can be received, and S is the maximum number of messages that can be sent.

Using this equation, at least 10 - a milliseconds of processor time can be guaranteed for

process execution.

Equation 1 can be used to compute the amount of time guaranteed for process execution

of each of the MicroVAXes used in our distributed sensory system. For the first and fifth

MicroVAXes, 4.249 milliseconds out of every 10 milliseconds can be guaranteed for the

execution of the sensor arm and control processes since A = 2, R = 2 and S = 2. For

the second and fourth MicroVAXes, 5.518 milliseconds out of every 10 milliseconds can be

guaranteed for the execution of the sensor da.ta processes since A = 2, R = 2 and S = 1.

However, for the third MicroVAX, no time can be guaranteed for the execution of the fusion

process since A = 0, R = 4 and S = 4.

Even though the fusion process is not a real-time process, this shows the limitations of the

simple model. Our method of estimating interrupt overhead bounding is very pessimistic in

that we assume that the interrupt rates are always at the highest rate for each clock period.

However, as one can see with the timing constra.ints, the rates reach their upper bounds

only on certain periods (i.e., for periodic camera data processes, every 56 milliseconds). We

are in the process of formalizing a model tha.t ana.lyzes the interrupt overhead in greater

detail. In addition to those parameters dealt with in the current model, the interrupt will

Lee, King & Paul 2 5

be prioritized as they are in hardware so that the interaction among the interrupts can be

effectively modeled [12].

Conclusions

We have described a distributed real-time kernel which supports distributed real-time ap-

plications. Our notion of real-time is not on its speed of execution but on its predictability

with respect to time. To ensure predictability, system calls are designed to exhibit bounded

execution times and processes are scheduled based on their timing constraints. In addition,

the scheduler guarantees hard timing constraints by computing the worst case overhead of

device interrupts. This overhead bound is very pessimistic; we are currently working on a

less conservative method to bound the worst case 0verhea.d of device interrupts.

We plan to make hardware enhancements for additional versatility in two areas: time

maintenance and network communication. The built-in interval timer for the MicroVAX

has a period of ten milliseconds which is not fine enough for robotics applications. An

accuracy of at least one millisecond would be more suitable. We are adding a timerlcounter

board (Codar Technology) which contains fifteen individually controllable clocks with a finer

resolution, and can be programmed to any range larger than one microsecond. Furthermore,

each clock can generate interrupts at arbitra.ry fixed intervals without the kernel overhead

of updating the clock between intervals.

We are also adding a token ring (Proteon) to our distributed system. As we saw from

the example distributed sensory system, real-time communications are usually periodic and

require bounded communication delays. Thus, we believe that a token ring with bounded

transmission delay is more suitable tha,n a.n Ethernet with nondeterministic transmission

delay. Once we add a token ring, we will be a.l~le to compa.re the real-time suitability of the

two communication media.

In this paper, we have described a real-time kernel tha.t is predictable in the worst case. Its

initial implementation has been completed, and the results shown in Table 2 are promising.

We intend to refine the kernel by adding the hardware enhancements mentioned above. Once

this work is finished, the RI< kernel will provide support for many time-dependent, robotics

applications.

Lee, King & Paul 26

Acknowledgements

The authors wish to thank Gregory Hager for his assistance in describing the example used in

his dissertation and for his valuable suggestions on this paper. We also wish to thank Gaylord

Holder for contributing to the initial design and implementation of various components of

an earlier version of the kernel.

References

[l] I. Lee and V. Gehlot, "Language constructs for distributed real-time programming," in

Proceedings of the Real-Time Systems Symposium, IEEE Computer Society, Dec. 1985.

[2] L. Sha, J. Lehoczky, and R. Rajkumar, "Solutions for some practical problems in pri-

oritized preemptive scheduling," in Proceedings of the Real-Time Systems Symposium,

pp. 181-191, IEEE, 1986.

[3] A. Damm, "Kernel aspects of the distributed real time operating system of MARS,"

Tech. Rep. Mars Research Report Nr. 6/87, Institut fur Technische Informatik, Techni-

cal University of Vienna, Feb. 1987.

[4] A. I<. Mok, Fundamental Design Problems of Distributed Systems f o r the Hard-Real-

Time Environments. PhD thesis, Massachusetts Institute of Technology, 1983.

[5] J. Stankovic and I<. Ramamritham, "The design of the Spring kernel," in IEEE Fourth

Workshop on Real-Time Operating Syste,ms, pp. 19-23, 1987.

[6J W. Joy, E. Cooper, R. Fabry, S. Leffler, I<. h4cI<usick, and D. Mosher, 4.2BSD Sys-

tem A4anual. Computer Systems Research Group, Computer Science Division, EECS,

University of California, Berkeley, July 1983.

[7] K. G. Shin and M. E. Epstein, "Intertask communications in an integrated multirobot

system," IEEE Journal of Robotics and Automation, vol. RA-3, pp. 90-100, Apr. 1987.

[S] I<. Schwan, T. Bihari, B. W. Weide, and G. Taulbee, "High-performance operating

system primitives for robotics and real-time control systems," ACM Transactions on

Computer Systems, vol. 5 , pp. 189-231, Aug. 1987.

Lee, King & Paul 27

[9] M. F. Coulas, G. H. Macewen, and G. hila.rquis, "RNet: a hard real-time distributed

programming system," IEEE Transactions on Computers, vol. C-36, pp. 917-932, Aug.

1987.

[lo] G. D. Hager, Active Reduction of Uncertainty in Multi-Sensor Systems. PhD thesis,

Department of Computer and Information Science, University of Pennsylvania, 1988.

[ll] I. Lee and R. King, "Timix: a distributed real-time kernel for multi-sensor robots," in

International Conference on Robotics and Automation, pp. 1587-1589, IEEE, 1988.

[12] M. Joseph, "On a problem in real-time computing," Information Processing Letters,

vol. 20, pp. 173-177, R4ay 1985.

	RK: A Real-Time Kernel for a Distributed System With Predictable Response
	Recommended Citation

	RK: A Real-Time Kernel for a Distributed System With Predictable Response
	Abstract
	Keywords
	Comments

	tmp.1194560822.pdf.vW2vc

