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Sensor Planning and Control in a Dynamic Environment

Abstract
This paper presents an approach to the problem of controlling the configuration of a team of mobile agents
equipped with cameras so as to optimize the quality of the estimates derived from their measurements. The
issue of optimizing the robots' configuration is particularly important in the context of teams equipped with
vision sensors since most estimation schemes of interest will involve some form of triangulation.

We provide a theoretical framework for tackling the sensor planning problem and a practical computational
strategy, inspired by work on particle filtering, for implementing the approach. We extend our previous work
by showing how modeled system dynamics and configuration space obstacles can be handled. These ideas
have been demonstrated both in simulation and on actual robotic platforms. The results indicate that the
framework is able to solve fairly difficult sensor planning problems online without requiring excessive
amounts of computational resources.
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Abstract 

This paper presents an approach to the problem of control- 
ling the conjiguration of a team of mobile agents equipped 
with cameras so as to optimize the quality of the estimates 
derived from their measurements. The issue of optimizing 
the robots’ configuration is particularly important in the 
context of teams equipped with vision sensors since most 
estimation schemes of interest will involve some form of tri- 
angulation. 

We provide a theoretical framework for tackling the sen- 
sor planning problem and a practical computational strat- 
egy, inspired by work on particle jiltering, for implementing 
the approach. We extend our previous work by showing how 
modeled system dynamics and conjiguration space obsta- 
cles can be handled. These ideas have been demonstrated 
both in simulation and on actual robotic platforms. The 
results indicate that the framework is able to solve fairly 
difJicult sensor planning problems online without requiring 
excessive amounts of computational resources. 

1. Introduction 
The idea of using teams of small, inexpensive robotic agents 
to accomplish various tasks is one that has gained increas- 
ing currency in the field of robotics research. Figure 1 
shows a picture of a Clodbuster robot which is based on 
a standard remote controlled motion platform and outfit- 
ted with an omnidirectional video camera - its only sen- 
sor. Using teams of these modest robots, fairly sophisti- 
cated applications such as distributed mapping, formation 
control and distributed manipulation have been successfully 
demonstrated [ 1,2]. 

One of the more interesting aspects of these platforms is 
that estimates for relevant quantities in the world are formed 
by combining information from multiple distributed sen- 
sors. For example, the robots in the team shown in Figure 
1 obtain an estimate for their relative configuration by com- 
bining the angular measurements obtained from all of the 
omnidirectional images and performing a simple triangula- 
tion operation. 

Similar techniques can be used to estimate the locations 

Figure 1: A single Clodbuster robot (left) and the team performing 
a distributed manipulation task. 

of other features in the environment. In fact, one could 
choose to view the team as a three-eyed stereo rig where 
the individual eyes can actually be moved on the fly. 

This capability invites the following question: given that 
the robot platforms are mobile, how should they be de- 
ployed in order to maximize the quality of the estimates 
returned by the team? This is a particularly important ques- 
tion in the context of robots equipped with vision sensors 
since most of the estimation techniques of interest in this 
case are based on some form of triangulation. 

Similar questions arise when one considers the problem 
of integrating information from a sea of distributed sensors. 
Given that there is some cost associated with transmitting 
and processing data, which sensor readings should one use 
to form an estimate for the parameters of interest? 

This paper presents a theoretical framework for dis- 
cussing such questions and a practical computational ap- 
proach, inspired by work on particle filtering, for tackling 
them. The suggested approach could be viewed as an appli- 
cation of the theory of games since the problem of control- 
ling the robots’ configuration is reformulated as the prob- 
lem of optimizing a quality function that reflects the ex- 
pected value of assuming a particular formation. Results 
obtained by applying this approach to practical problems 
are presented in Section 3. In this paper, we extend our pre- 
vious work 131 in two important ways by showing how sys- 
tem dynamics can be handled and how obstacle avoidance 
can be incorporated. 

It is important to note that while the approach was de- 
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veloped to handle the problems faced by teams of robots 
equipped with vision sensors, it could also be used to de- 
ploy robots equipped with other types of sensors like laser 
range finders or sonar systems. 

1.1. Related Work 
The problem of controlling sensors to optimize informa- 
tion gathering was considered by Bajcsy and others under 
the heading of Active Perception [4]. This involved fus- 
ing data from both homogeneous and heterogeneous dy- 
namic sensors to improve various performance metrics that 
included ranging accuracy. In this vein, our framework can 
be viewed as an extension of the active perception paradigm 
to the field of distributed mobile robots. 

A significant amount of research has been directed to the 
problems associated with getting teams of robots to coop- 
erate on high level tasks such as distributed manipulation, 
exploration and mapping [5,6]. However, far less emphasis 
has been placed upon optimizing the team’s collective sens- 
ing capabilities. Perhaps most relevant to our approach was 
a methodology for distributed control proposed by Parker 
[7], which maximized the observability of a set of moving 
targets by a team of robots. In this scheme, the objective 
was maximization of the collective time that each target was 
observable by at least one robot. The accuracy of target pose 
estimates was not considered. 

The theory of games has also provided inspiration for 
similar research in target tracking. The pursuit-evasion 
problem was investigated by LaValle er al [SI. They pre- 
sented motion planning strategies that maximized the prob- 
ability of keeping sight of a target as it moved through a 
field of obstacles. Results were limited to the case of a 
single pursuer/evader. Hespanha et a1 also investigated the 
pursuit-evasion problem, but from a multi-agent perspective 
[9]. They proposed a greedy approach to control a group 
of agents so as to maximize the probability of finding one 
or more evaders. In both cases, the focus was on locating 
andlor tracking one or more evaders. The quality of the es- 
timates for target position was again not investigated. 

In the Next Best View (NBV) problem, sensor placement 
is of primary concern [lo, 111. Given, for example, pre- 
vious range scans of an object, an NBV system attempts 
to determine the next best position of the scanner for ac- 
quiring the object’s complete surface geometry. As in our 
framework, the emphasis is optimizing sensor placement. 
However, NEW is intended for use in a static environment. 
Inherent in our approach is the ability to handle dynamic 
scenes which makes it more akin to a control law for dis- 
tributed sensors. 

2. Theoretical Approach 
This section describes the theoretical framework that will 
be used to discuss the problem of sensor deployment. In or- 

der to ground the terminology, we will describe how various 
elements in the framework would relate to the scenario de- 
picted in Figure 2. In this example, three robots are tasked 
with localizing a moving target. 

Figure 2: Target localization by a robot team. 

Let C, denote the configuration space of the robotic plat- 
forms. In this case, one can consider the set of vectors 
formed by concatenating the positions and orientations of 
the three platforms with respect to the base frame of refer- 

an element of this configuration space. 
Similarly let C, denote the configuration space of the pa- 

rameters under consideration. In Figure 2 this space is par- 
ticularly simple since we need only consider the position of 
the moving target with respect to the base frame denoted by 
the vector (Q, yt). In general, however, this space can be 
much more complicated. Let w E C, denote an element of 
this configuration space. 

Let i denote the measurements obtained by the robot 
team. For this example the vector formed by concatenating 
the three angles measured by the robots (01, 02, ~ 3 )  serves 
this purpose. The hat serves to remind us that these mea- 
surements are corrupted by noise. In the sequel it will be 
assumed that the designer has some model for or bounds on 
the noise process. 

Let Est(p,  2) denote a function which can be used to pro- 
duce an estimate for the configuration of the world, &, from 
the noisy measurements, 2, and the robots configuration, p. 
Disp(w,  I.2) is a function which returns a scalar value indi- 
cating the expected dsparity between the estimated value 
1.2 and the actual value w. This value will depend upon the 
distribution of errors on 2. 

P ( w )  denotes a probability density function on the con- 
figuration space C, which can be used to model prior infor- 
mation about the values of the parameters of interest. For 
example, one may have some information about where the 
target could be based on prior measurements. 

Given this terminology, one can define a quality function 
Q(p)  as follows: 

ence (21,yl,el,22,y2,62,23,y3,633). Let p E C, denote 

Q(P) = 1 D W w ,  Est(p, f ) )P(w)dw (1) 
CW 

This function captures how the expected error in the esti- 
mate, 2, varies as the robots configuration changes. 
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Note that there are, of course, several alternative defini- 
tions for this quality function that are equally reasonable. 
One could consider the maximum expected error in the esti- 
mate or the median expected error. Different choices for the 
Q function may be more appropriate in certain situations. 

With these notions in place, one can formulate the prob- 
lem of choosing an appropriate configuration for the robots 
as an optimization problem as shown below. 

The goal in this case is to find a choice of p E A, where 
A c Cr. which minimizes the quality function Q(p).  Limit- 
ing the optimization to a subset of C,, A, allows us to model 
situations where certain configurations cannot be achieved 
due to obstacles in the environment, sensor constraints or 
limitations on the range of motion of the robots. 

Note that the framework is general enough to be applied 
to a wide range of sensor planning problems. The specifics 
of the task would be reflected in the definitions of C,, C,. 2, 
Est and Disp. Specific instances of this framework will be 
discussed in Section 3. 

3. Computational Approach 

For most interesting systems the optimization problem 
given in equation 2 is difficult to solve analytically. It is 
however, possible to approximate this process computation- 
ally. To do this we draw inspiration from prior work on 
particle filtering [12]. 

In particle filtering, probability distributions such as 
P(w) are approximated by sets of tuples (wj, rj), where wj 
is a single sample from C, and 7 ~ j  a weight that reflects the 
likelihood of wj representing the state W. By making use of 
this approximation, we can replace the integral of equation 
1 with a weighted summation. 

Recall that the proposed technique is intended for use in 
online applications where the robot team has an evolving es- 
timate for the state of the system being observed and the ob- 
jective is to determine how the robots should move in order 
to improve the quality of this estimate at the next time in- 
stant. In this context, the maximum velocities of the robots 
serve to limit the configurations that need to be considered 
and the current configuration of the team serves as a natural 
starting point for the optimization procedure. 

One simple but effective approach to optimizing the robot 
configuration is to first approximate the gradient of the qual- 
ity function, $ Q ( p ) ,  by sampling its value in the vicinity of 
the current rogot configuration. The controller then moves 

the robot configuration in the direction indicated by this gra- 
dient. Alternatively one could employ standard optimiza- 
tion techniques, like the simplex method [ 131 to choose the 
best achievable robot configuration in the vicinity for the 
next time instant. 

Note that it is possible to incorporate knowledge of the 
dynamics of the system into this framework by project- 
ing the set of particles used to represent the distribution 
P(u)  through the dynamic model in the usual manner as de- 
scribed by Isard and Blake [12]. One can then use this par- 
ticle distribution to approximate the quality function Q(p)  
(see Eqn. 3), and consequently to control the motion of the 
robot team. 

Our previous work demonstrated how teams of robots 
could use the framework to optimally track the position and 
orientation of multiple, unpredictable targets [3]. Here we 
show examples of how it can be extended to include mod- 
eled system dynamics and workspace obstacles. 

3.1. Incorporating the Dynamical Model 

Integrating target dynamics into sensor planning often pro- 
vides significant improvements in tracking performance. 
Dynamical models can be obtained using an approximation 
of target dynamics, or through “learned” models as demon- 
strated in [12]. For our simulations, we employed the for- 
mer approach. 

Consider the case of n observers on the ground tracking 
a ball traveling through the air with some unknown initial 
velocity Vt. We model these observers as robots equipped 
with omnidirectional cameras. In this case, C, represents 
the concatenation of the robot positions which are con- 
strained to operations in the z-y plane, C, c R3 represents 
the space of target positions. The measurement vector 2 de- 
notes the n azimuth and elevation angle pairs to the target 
measured by members of the robot team. We assume i to be 
corrupted with random bounded noise generated from our 
sensor model. Est@, 2) returns an estimate for the target 
position, G, which minimizes the squared disparity with the 
measurements, 2, and Disp(w,G) simply returns the Eu- 
clidean distance between the estimated target position and 
the actual value. 

We approximated the dynamical model for the ball by as- 
suming constant acceleration under gravity, and estimated 
its velocity from position measurements over time. Actual 
ball dynamics in the simulation were slightly more realis- 
tic, and also approximated drag effects using a Newtonian 
model. 

Since our sensor noise model is assumed bounded, P ( w )  
was initially approximated from a randomly generated set 
of exemplars that were constrained to lie within the inter- 
section of the sensors’ error cones and all of the samples 
were given equal weight. The distribution was then prop- 
agated using standard particle filtering techniques. In our 



Ea 

Figure 3: Ground observer trajectories optimally tracking an aerial 
target. 

simulations, robot motions were constrained by the maxi- 
mum robot velocity V, << Vt. This served to define the 
limits of the set over which the optimization occurs, A. Re- 
sults from a sample Matlab simulation for three robots are 
provided below. For this trial, 100 exemplars were used to 
approximate P(w) ,  and the sensor model was assumed to 
be bounded Gaussian noise of f5' with D = 1'. 

Figure 4: Measurement errors from stationary (dashed line) and 
moving (solid line) robot observers. Reductions in the latter case 
are significant across the entire target trajectory. 

Figure 3 shows a representative simulation run of three 
robots tracking a single target. Robot trajectories are ineffi- 
cient from a "distance-traveled" viewpoint, as they attempt 
to optimize position estimates over the target's entire flight 
rather than its endpoint. Figure 4 shows the error in mea- 
sured target position for the same target trajectory from both 
stationary (dashed line) and moving (solid line) observers. 
When viewed in this light, the benefits of the otherwise curi- 
ous robot trajectories become readily apparent. Reductions 
in measurement errors by a factor of 4-5 over the stationary 
case clearly demonstrate the effectiveness of the integrated 
optimizatioddynamical modeling approach. 

3.2. Tracking targets in a cluttered workspace 

In the simulation results we have presented thus far, con- 
straints to C, were limited solely to pursuer dynamics and 
a mandatory target standoff distance. This is adequate for 
operations in an uncluttered workspace, but does not handle 
the more generic case where obstacles are present. To ad- 
dress the resulting additional constraints on C, (and Cm), 
we assumed that the robots were able to obtain accurate 
pose information for obstacles in their immediate vicinity. 
This was consistent with our approach of generating locally 
optimal trajectories, and did not require apriori information 
of obstacle locations or a global map of the environment. 
A was then defined by the local obstacle-free configuration 
space. 

Next, we applied standard motion planning techniques 
for collision avoidance in this local neighborhood [14]. 
More specifically, we allowed local obstacles detected by 
the robot to impose a repulsive force vector Fpep onto its 
desired trajectory. The magnitude of Prep was proportional 
to the robot velocities and inversely proportional to the dis- 
tances from obstacles. 

Figure 5: Tracking a point target in a cluttered environment. Sig- 
nificant reductions to target position error were still realizable even 
in the presence of obstacles. 

Goal configurations 6 for the robots were then obtained 
using finite difference techniques to perturb the current con- 
figuration p an amount proportional to the robot veloci- 
ties. The attractive forces Fatt could then be expressed as 
the difference in configurations 6 - p. The resultant force 
F = F,ttfF,,, represented the compromise robot trajecto- 
ries as influenced by the presence of obstacles, with a corre- 
sponding compromise configuration 6'. We then evaluated 
Q($) for use in approximating %Q(p).  This effectively 
constrained the optimization of p E A. A representative 
simulation trial can be found in Figure 5.  

While the presence of obstacles in this example con- 
strained the robots' motion, the control law automatically 
adjusted their trajectories in order to compensate for these 
limitations and provide the best possible state estimates. 
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3.3. Experiments with the Clodbusters were then discriminated from obstacles using their relative 

The proposed framework has been implemented on our 
team of Clodbuster robots which use omnidirectional vi- 
sion as their sole sensing modality. In these experiments, a 
pair of robot pursuers was tasked with tracking a third robot 
which played the role of a moving target. Two sets of trials 
were conducted to demonstrate operations in both cluttered 
and uncluttered environments. A picture of the robot team 
used for these trials can be seen in Figure 6. 

Figure 6: Clodbuster team used for experiments. 

Each of the robots was fitted with a colored cylindrical 
color which yielded a 360" symmetrical target about its op- 
tical axis. A color extractor operating in Y W  space was 
used to isolate these targets. The pursuers used these mea- 
surements to localize each other and to estimate the target's 
position. The complete localization process ran at a rate of 
15Hz. 

Figure 7: Trajectory for two pursuer robots tracking a moving tar- 
get robot in an obstacle-free environment. 

In the cluttered workspace trials, it was also necessary 
for the pursuer robots to estimate the position of obstacles. 
This was accomplished by generating a rangemap from the 
omnidirectional image to features in the environment as out- 
lined in our previous work [U]. Target and pursuer robots 

pose as determined during the localization phase. 
For the sake of experimental expediency, the sensor 

model assumed that the angular measurements obtained by 
the robots were corrupted with additive errors drawn from 
a normal distribution with a variance of U = 0.5'. This 
was based upon several thousand measurements from nu- 
merous representative static team poses. In truth, the stati- 
cally measured values were typically lower (U = 0.1-0.3'). 
However, we expect dynamic levels to be higher and in- 
creased U accordingly. Experimental implementation fol- 

Figure 8: Estimated RMS position error (cm) vs. time for the 
single target case. 

lowed closely with that used in the corresponding simu- 
lation experiment. Derivative estimation techniques were 
used to approximate the gradient of the Q function for opti- 
mizing the pursuers' headings. The maximum robot speed 
and a prescribed standoff distance served to define A for a 
given time-step. For the cluttered workspace trials, obsta- 
cles exhibited repulsive forces when the separation was less 
than 1 meter. Using 100 particles to approximate the prob- 
ability P(w) over the target configuration space, we were 
able to compute locally optimal robot configurations at a 
rate of 15Hz. 

A representative trial from our obstacle-free experiments 
is shown in Figures 7 and 8. The former shows a series of 
images from an overhead view of the scene, while the latter 
shows the corresponding position error estimates. Both the 
trajectory and the dramatic drop in the error estimate cor- 
relate well with the corresponding simulation results pre- 
sented previously [3]. 

Figures 9 and 10 show the corresponding trial for a clut- 
tered workspace. The effect on the motion of the right pur- 
suer robot was significant. In contrast to the obstacle-free 
case, its motion was constrained to a much narrower re- 
gion. However, the control scheme automatically adjusted 
the path of the left pursuer to compensate for this limita- 
tion. As a result, the estimated target tracking error still fell 
dramatically. 

It should again be noted that no explicit controllers were 
needed for maneuvering the formation. Trajectories were 
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Figure 9: Trajectory for two pursuer robots tracking a moving tar- 
get robot in a cluttered workspace. The left pursuer adapts its tra- 
jectory to the right pursuer’s mobility constraints. 

implicitly generated by the Q function which captured the 
notion of a good configuration. Additionally, as imple- 
mented the computational complexity of this framework 
scales linearly with both the number of targets and the num- 
ber of robots, making it well suited for distributed, multi- 
robot applications 

I 
6 8 10 12 14 16 16 20 

Figure 10: Estimated RMS position error (cm) vs. time for the 
single target case with obstacles. Results are comparable to the 
obstacle-free case. 

4. Conclusions 
This paper presents an approach to the problem of control- 
ling the configuration of a team of mobile agents so as to op- 
timize the quality of the estimates derived from their mea- 
surements. We provide a theoretical framework for tackling 
the sensor planning problem, and a practical computational 
strategy for implementing the approach while accounting 
for both model system dynamics and obstacles in the envi- 
ronment. The ideas have been demonstrated both in sim- 
ulation and on an actual robotic platform, and the results 

indicate that the system is able to solve fairly difficult sen- 
sor planning problems online without requiring excessive 
amounts of computational resources. 

Future work will investigate the issues involved in ap- 
plying the framework to scenarios involving occluding ob- 
stacles and to teams of robots with heterogeneous sensing 
capabilities. 
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