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Abstract

Recent developments in solid-oxide fuel cells (SOFC) that electrochemically oxidize 

hydrocarbon fuels to produce electrical power without first reforming them to H2 are described. 

First, the operating principles of SOFCs are reviewed, along with a description of state-of-the-art 

SOFC designs. This is followed by a discussion of the concepts and procedures used in the 

synthesis of direct-oxidation fuel cells with anodes based on composites of Cu, ceria, and yttria-

stabilized zirconia. The discussion focuses on how heterogeneous catalysis has an important role 

to play in the development of SOFCs that directly oxidize hydrocarbon fuels.
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Introduction

The first solid-oxide fuel cells (SOFCs) were fabricated more than 65 years ago, and slow 

but steady progress has been made towards their commercialization since that time [1,2]. 

However, while the electrochemical processes that occur at both electrodes are inherently 

catalytic, catalytic scientists have not worked extensively on SOFCs and have not had a major 

impact on the developments that have occurred on these devices. Some excellent catalytic studies 

have been performed with solid-electrolyte membrane reactors, and this has recently been 

reviewed by Stoukides [3]; but the influence of this body of work on SOFC development is not 

large. We believe this is about to change. There is a renewed interest in SOFC technology among 

catalytic scientists and we believe that the insertion of catalytic concepts could fundamentally 

change the ways in which SOFCs are fabricated and used. 

One of the major differences between SOFCs and most other types of fuel cells is the 

high operating temperatures, usually between 600 and 1000ºC. Primarily because of this, most 

effort in SOFC development has focused on large-scale devices, targeting the same market as gas 

turbines for the production of electricity from natural gas [4]. Compared to low-temperature fuel 

cells, like proton-exchange-membrane (PEM) fuel cells, much higher efficiencies are possible 

with SOFCs. In all fuel cells, the fraction of the chemical energy that is not converted to 

electricity is converted to heat. This waste heat is given up at a useful temperature in SOFCs, so 

that some of it can be recovered by passing the effluent from the fuel cell through a steam 

turbine. Furthermore, the operating temperature of an SOFC is similar to that used in steam 

reforming; therefore, reformation of natural gas to syngas can be performed internally, using the 

waste heat for the endothermic, steam-reforming reactions. The high operating temperatures 

nullify the need to use precious metals in electrodes, since oxides and base metals are sufficiently 

active under these conditions.

Large-scale SOFCs have been successfully demonstrated and have even been operated 

continuously for years [4]. Indeed, much of the current effort to commercialize large-scale units 

is focused at lowering their fabrication costs; however, there has recently been significant interest 

in SOFCs for small-scale operation, including Auxiliary Power Units (APU) [5,6] and even for 

engine replacement in automobiles [7]. This interest has been sparked by the relatively high fuel 

flexibility of SOFCs. In low-temperature fuel cells, protons are the ionic specie that migrates 
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through the electrolyte, requiring that only H2, or a molecule like methanol that decomposes to 

hydrogen at low temperatures, can be used for the fuel. There are many problems associated with 

using H2 as the fuel: 1) Most H2 is produced from fossil fuels and there is a significant penalty in 

the overall efficiency of the process due to the reforming steps [8]; 2) H2 is difficult to store; and 

3) H2 is potentially dangerous and requires special safety consideration. Furthermore, low-

temperature fuel cells tend to be very sensitive to small amounts of CO in the fuel because CO 

adsorbs strongly on the precious-metal catalysts that are required in the electrode. With SOFCs, 

any combustible material can, in principle, be used to generate electrons electrochemically. In 

practice, the choice of fuel is limited by the tendency of some fuels to foul the anodes. 

The reactions that occur at the fuel-cell electrodes are obviously at least partially catalytic 

in nature, so that the choice of electrode materials will affect performance and fuel sensitivity.  In 

this paper, we will provide a brief tutorial on the principles involved in SOFCs and then discuss 

direct-oxidation fuel cells, an area where catalytic science can greatly influence SOFC 

development for the future.

Basic Operating Principles of an SOFC

Fig. 1 is a schematic diagram showing how SOFCs work. Like all fuel cells, SOFCs 

generate electricity electrochemically and are not limited by the Carnot cycle, so that high 

chemical-to-electrical efficiencies can be achieved. Starting from the cathode (the air electrode), 

molecular O2 is first reduced to oxygen anions, using electrons external from the cell, in a half-

cell reaction that can be written as follows:

½O2 + 2 e- = O2-. (1)

In order to accomplish this reaction, the cathode must be able to dissociate O2 and be 

electronically conductive. Precious metals, like Pt, were sometimes used in the past but these are 

not commercially practical for cost reasons. Most recent work has focused on electronically 

conductive oxides, such as Sr-doped LaMnO3 (LSM) and similar oxides [2]. While this review 

will not discuss problems with existing cathode materials, the reader should be aware that the 

search for better cathode materials is continuing, particularly for SOFCs that operate at 

temperatures below 800ºC [9]. The ideal cathode material should readily dissociate molecular 



4

oxygen, have high electronic and ionic conductivities, and have a coefficient of thermal 

expansion that matches that of the electrolyte. 

The next major component in the SOFC is the ceramic electrolyte. The electrolyte must 

be dense in order to separate the air and fuel compartments, must possess high ionic conductivity 

in order to allow easy migration of oxygen anions, and must be an electronic insulator. 

Furthermore, the electrolyte must maintain these properties over a wide range of P(O2), since the 

partial pressure (or, more properly, the fugacity) of O2 changes from ~1 atm at the cathode to 

~10-20 atm or lower at the anode. The operating temperature for SOFCs is largely determined by 

the temperature required to achieve sufficient ionic conductivity in the electrolyte, so that 

research on electrolytes has dominated the field. The most commonly used electrolyte material is 

yttria-stabilized zirconia (YSZ). Some other oxides, such as doped ceria, are under consideration 

because they have higher ionic conductivities [10-12]; however, YSZ continues to be the 

material of choice because it is stable over a wide range of P(O2), has reasonable mechanical 

strength, and is inexpensive. Because decreased operating temperatures simplify the materials 

requirements in other parts of the SOFC, there is a trend towards using very thin electrolytes 

supported on one of the electrodes. 

In the electrolyte, the oxygen anions migrate from the cathode towards the anode (the fuel 

electrode) in response to the difference in chemical potentials for O2. At equilibrium, the voltage 

across the electrodes (the cell potential) is given by the Nernst Equation, which simply states that 

the maximum work an electron can perform in going from the anode to the cathode is directly 

related to the difference in the O2 chemical potentials on the two electrodes:

E = RT/2F* ln{P(O2 anode)
½/P(O2 cathode)

½}. (2)

In this equation, the oxygen fugacity at the cathode, P(O2 cathode), is the partial pressure of O2 in 

the air, while the fugacity at the anode, P(O2 anode), is established by an equilibrium reaction. For 

example, if the fuel is H2 and equilibrium is established for H2 oxidation, the partial pressures of 

H2 and H2O in the anode compartment can be used to determine P(O2 anode) from the equilibrium 

expression for H2 oxidation. The Nernst Equation then becomes the following:

E = Eo + RT/2F* ln{P(H2 anode)
½*P(H2O anode)/P(O2 cathode)

½}. (3)

In this equation, Eo is equal to ∆Go/2, where ∆Go is the standard Gibbs Free Energy change for 

the overall reaction at the cell temperature, and the 2 accounts for the number of electrons 
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transferred in the half-cell reactions. Under load conditions, when current is flowing, the cell 

potential will be less the theoretical, equilibrium potential in Equation 3 due to various losses, 

such as the IR drop across the electrolyte. Because the work that can be performed by the 

electrons is directly proportional to the potential, the efficiency of the cell decreases with 

increasing current.

The third major component in the SOFC is the anode, or fuel electrode. The anode must 

catalyze the reaction of the fuel with O2- from the electrolyte and conduct the electrons that are 

produced in this reaction to the external circuit. If H2 is the fuel, the half-cell reaction can be 

written as follows:

H2 + O2- = H2O + 2 e-. (4)

In conventional designs using YSZ as the electrolyte, the anode is a ceramic-metallic composite 

(usually referred to as a “cermet”) of nickel and YSZ. The composition of the Ni cermet is 

typically at least 30-vol% Ni to achieve the percolation threshold for electronic conduction [13]. 

The high metal content of the anode prevents the use of precious metals for obvious reasons. The 

YSZ provides a thermal expansion match with the YSZ electrolyte and ionic conductivity within 

the anode to extend the reaction zone in the anode, referred to as the three-phase boundary. While 

other metals can be used in the anode, Ni is almost universally used because it is inexpensive, it 

has excellent mechanical and electrical properties, and it is a good steam-reforming catalyst. In 

large-scale applications, the fuel is natural gas that must be steam reformed to a syngas. While 

the surface area of the Ni anode may not be sufficient to carry the reaction to completion, the Ni 

anode can certainly assist the reaction.

Traditional, State-of-the-Art SOFC

At the present time, the most advanced SOFCs are clearly those based on YSZ 

electrolytes, with a Ni- YSZ anode and an LSM cathode. Because of the need to decrease the 

resistance of the electrolyte, there is a trend to use thin electrolyte films, ~5 to 20 µm, supported 

on one of the electrodes. Cathode-supported SOFCs are used in the tubular designs being 

promoted by Siemens-Westinghouse [4]. The manufacturing process for these cathode-supported 

cells starts with a porous LSM tube, onto which the electrolyte and anode are deposited. The 

primary problem with this design is that it is difficult to form a dense YSZ layer onto the LSM 
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tube. To form a dense YSZ film by sintering of powders, it is usually necessary to calcine to at 

least 1300ºC, at which temperature La can react with ZrO2 to form an insulating layer of 

La2Zr2O7 [14]. Therefore, the current method of preparing thin films on LSM is by 

electrochemical vapor deposition, which raises the cost of the cells significantly. The power 

densities that are reported for cathode-supported cells also tend to be low.

The other major SOFC design is based on a planar configuration, in which the cells are 

stacked on top of each other [2,15-17]. Unlike tubular designs, planar SOFCs require seals to 

separate the anode and cathode compartments; but they are otherwise easier to construct and can 

give higher power densities on a volumetric scale. With planar SOFCs, there is a trend to use 

anode-supported electrolytes, which are relatively easy to fabricate using methods like tape 

calendaring or tape casting [2]. In this approach, the initial green body is made up of two layers, 

one containing pure YSZ and the other NiO and YSZ. Because NiO and YSZ do not form solid 

solutions, even at high temperatures, the green body can be fired to form a dense YSZ film on a 

NiO-YSZ composite. After addition of the cathode layer by a method such as screen printing, the 

NiO-YSZ layer is reduced to form a porous Ni-YSZ composite. The Ni-YSZ layer in these 

anode-supported cells is typically 0.5 to 1.0 mm thick to provide mechanical strength. Very high 

power densities, up to 1.8 W/cm2 (~3.5 A/cm2 at 0.5 V) have been reported for this type of cell at 

800ºC [6,18].

The Anode Three-Phase Boundary

Because the performance of an SOFC depends strongly on the anode structure and 

because some aspects of electrochemical reactions are quite different from normal heterogeneous 

reactions, it is useful to consider how the anode works on a microscopic scale [19,20]. The 

electrochemical reaction can only occur at the three-phase boundary (TPB), which is defined as 

the collection of sites where the electrolyte, the electron-conducting metal phase, and the gas 

phase all come together. A cartoon of the region between the electrolyte and the anode where the 

TPB exists is shown in Fig. 2. If there is a breakdown in connectivity in any one of the three 

phases, the reaction cannot occur. If ions from the electrolyte cannot reach the reaction site, if 

gas-phase fuel molecules cannot reach the site, or if electrons cannot be removed from the site, 

then that site cannot contribute to the performance of the cell. While the structure and 
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composition clearly affect the size of the TPB, various theoretical and experimental methods 

have been used to estimate that it extends no more than approximately 10 µm from the electrolyte 

into the electrode [19,21,22]. Essentially, so long as the diffusion of ions through the electrolyte 

partially limits the performance, the concentration of excess ions in the oxide phase of the anode 

will be insignificant.

The TPB concept has important implications for optimization of anodes. First, YSZ 

particles like that marked a) in Fig. 2 will not contribute to the electrochemical performance 

because ions from the electrolyte cannot reach the metal-oxide interface at that position. In 

normal heterogeneous catalysis, optimization of the surface area by decreasing the particle size 

usually increases the reactivity. For the electrochemical oxidation in the anode, increasing 

surface area will only help if one can ensure that there is good ionic connectivity between the 

electrolyte and the active site. Another way of stating this is that the “fingers” of electrolyte 

material extending into the anode region in Fig. 2 should have a length and thickness comparable 

to the size of the region where the TPB exists, on the order of several microns [22,23]. Compared 

to catalytic materials, this is very large and corresponds to materials with very low specific 

surface areas. Similarly, metal particles like that marked b) in Fig. 2 will also be ineffective, even 

though there is good ionic connectivity to the electrolyte. In this case, electrons formed by the 

electrochemical reaction cannot be removed to the external circuit. 

The schematic in Fig. 2 has important implications for anode synthesis. Obtaining 

electrolyte “fingers” that extend far into the anode requires high requires high-temperature 

sintering. When oxide particles are simply pressed together at low temperatures, there will be 

large grain-boundary resistances that will prevent the free flow of oxygen anions. Removing the 

grain-boundary resistance between YSZ particles typically requires a sintering temperature of at 

least 1300ºC; however, some materials within the anode and cathode may not be compatible with 

high temperatures, due to either solid-state reactions between materials or melting of some 

components. For example, the problem of having solid-state reactions between the LSM cathode 

and the YSZ electrolyte was discussed in the previous section. Some other implications of high-

temperature compatibility will become apparent later when we discuss fabrication of Cu cermets.

Finally, it is clear that significant electric-field gradients can only occur near the TPB. Far 

from the TPB, the oxide phase will be completely inert, other than providing structural support of 
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the anode. The metal phase in the anode far from the TPB is needed to provide electronic 

conductivity and may also assist in reforming catalysis if the metal is catalytically active. It is 

not, however, possible for there to be significant electric-field gradients in the metal phase in the 

absence of enormous current flows, so that the catalytic properties of the metal phase will be 

affected in exactly the same manner as when one raises the potential of a metal by contact with a 

battery. The catalytic properties of the oxide and metal beyond the electrode-electrolyte 

interfacial region will be those of the materials in the absence of an electrochemical cell. In other 

words, the catalytic enhancements observed for some reactions using anode catalysts, described 

by Vayenas and coworkers and labeled Non-Faradaic Modification of Catalytic Activity 

(NEMCA) [24], can only be important in the TPB region.

Direct-Oxidation of Hydrocarbons

It is common in the fuel- cell literature to refer to fuel cells that reform hydrocarbons to 

syngas internally as “direct-oxidation” fuel cells [25,26]; however, we will only use the term 

“direct-oxidation” to refer to fuel cells in which the hydrocarbon fuel is oxidized 

electrochemically without first producing H2 and CO. Direct oxidation, without reforming, is 

theoretically possible with SOFCs. Given that reforming adds significant cost and complexity to 

the fuel-cell system, direct oxidation would have significant advantages over fuel cells that 

require the fuel to be H2 for reasons discussed earlier. Since the development of direct-oxidation 

fuel cells has been the primary goal of our work at Penn, the remainder of this article will focus 

on issues involving direct oxidation.

Stability Towards Carbon Formation

The main problem preventing direct oxidation is that the presence of hydrocarbons at 

high temperatures can lead to coke formation. For example, with methane as fuel, 

thermodynamic calculations predict that carbon should form at 800ºC and 1 atm unless steam is 

co-fed with the methane at a H2O:CH4 ratio greater than one [27]. Of course, thermodynamics 

also predicts that n-octane should form carbon at room temperature unless the H2O:C ratio is 

greater than 4 [27]. Clearly, kinetics plays a role in the formation of carbon that is at least as 

important as that played by thermodynamics.
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State-of-the-art anodes all use Ni-based anodes. While Ni is an excellent steam-reforming 

catalyst, it is also an excellent catalyst for synthesizing carbon. Indeed, Ni tends to form carbon 

even under conditions where carbon formation is not thermodynamically predicted. For example, 

thermodynamic equilibrium calculations suggest that it should be possible to steam reform n-

octane at 800ºC with a H2O:C ratio of less than 1.5. Experimentally, these conditions would 

certainly lead to carbon formation. The problem with carbon formation is graphically 

demonstrated by the results in Fig. 3, which shows a picture of a Ni-YSZ cermet after heating in 

H2 at 800ºC, after heating in 100% CH4 at 800ºC for 1.5 hrs, and after heating in 40% toluene at 

700ºC for 1.5 hrs [28,29]. The amount of carbon formed on the Ni cermet by exposure to CH4

and toluene are clearly unacceptable. Furthermore, the Ni cermet fractured after exposure to 

toluene, probably due to expansion of the Ni phase upon formation of Ni carbide.

Direct-oxidation SOFCs are only possible if the anodes are inert for carbon formation. 

For example, most oxides do not catalyze carbon formation in the same way that Ni does and 

several groups have demonstrated direct oxidation of methane with electronically conductive 

oxides as the SOFC anode [30,31]. Unfortunately, the power densities for these cells were very 

low. This was probably due to the fact that the oxides anodes had insufficient electronic 

conductivity. At Penn, we chose to examine Cu cermets as anodes because Cu is an excellent 

electronic conductor but a poor catalyst for C-C bond formation, a reaction that is likely related 

to coke formation. Fig. 4 shows pictures of a Cu-YSZ cermet after heating in CH4 at 800ºC for 

1.5 hrs, and after heating in toluene at 700ºC for 1.5 hrs. (The white ring on the outside of the 

sample in Fig. 4a) is a YSZ support ring used to mount the cells.) Unlike the results obtained for 

the Ni cermets following the same treatments, only negligible amounts of carbon were formed on 

the Cu cermets.

While carbon can and does form on Cu when it is exposed to hydrocarbons at high 

temperatures, it is important to notice that there is a fundamental difference in the mechanism for 

carbon formation on Cu compared to metals like Ni, Co, or Fe. The mechanism for carbon 

formation with these latter metals has been studied extensively because of its importance in 

steam reforming [32]. The mechanism involves cracking of the hydrocarbon on the Ni surface, 

dissolution of the carbon into the bulk metal, and the precipitation of carbon at a surface on the 

Ni, often as graphite. The carbon evolving from the bulk metal can produce very high pressures, 
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which can cause materials to fracture, as Fig. 4 demonstrates. On Cu, carbon appears to form by 

simple deposition of carbon compounds on the surface. For example, when a Cu-YSZ sample 

was exposed to 100% toluene at 800ºC for several hours [28], we observed a shiny, graphite 

layer form on the Cu cermet; however, the Cu cermet remained undamaged and physical removal 

of the graphite layer by scraping revealed the unchanged, Cu-colored cermet. The importance of 

this observation is that the physical damage caused by carbon formation on Ni does not appear to 

be a problem on Cu. 

While Cu cermets are very promising for application to direct-oxidation fuel cells, Cu 

does have several limitations. First, the low melting temperature of CuOx makes it more difficult 

to fabricate Cu cermets [33-36]. Similarly, the relatively low melting temperature of Cu metal 

limits the operation of SOFCs based on Cu to the intermediate temperature range. Second, Cu is 

a very poor catalyst for activation of hydrocarbons. The same property that allows Cu to be used 

for direct-oxidation anodes causes anodes made from Cu to exhibit very poor performance in 

hydrocarbon fuels [34]. In the next sections, we will discuss possible solutions for dealing with 

each of these issues. 

Fabrication of Cu Cermets

The most common method for fabricating Ni-YSZ cermets is to simply “press” a mixture 

of NiO and YSZ powders, calcine the mixture to high temperatures, and then reduce the NiO to 

Ni. Tape casting, tape calendaring, and similar ceramics-processing methods can obviously 

replace the initial pressing step for the NiO-YSZ mixture [2]. Typically, the calcination step must 

be carried out above 1300ºC in order to sinter the YSZ component of the cermet and achieve 

good ionic connectivity in the oxide phase. Fortunately, NiO and YSZ have little tendency to 

form solid solutions, so that the two phases remain separate even at high temperatures [36]. 

While the structure of the anode strongly influences the final properties of the fuel cell, the 

structure can be controlled through the size of the NiO and YSZ particles and through the 

addition of sacrificial pore formers [37].

Unfortunately, Cu-YSZ cermets cannot be produced in this manner. First, Cu2O melts at 

1235ºC and CuO at 1326ºC, temperatures that are too low to ensure sintering of the YSZ 

component. Equally serious, we have observed migration of Cu ions into YSZ following high-
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temperature calcination. To avoid these problems, we developed several novel fabrication 

methods in which the porous YSZ part of the cermet is prepared first and the Cu is added in a 

separate step that does not require high-temperature processing. In our early work, the porous 

YSZ was prepared from YSZ fibers, stabilized with a zircon coating, supported on relatively 

thick YSZ electrolyte plates [33]. A glycerol slurry of the fibers and normal YSZ powder was 

applied to the YSZ electrolyte and then calcined to high temperatures to form a porous matrix. 

The matrix was then impregnated with aqueous solutions of Cu(NO3)2, heated to 450ºC to 

decompose the nitrate, and finally reduced in H2 at the operating conditions to form the Cu-YSZ 

composite. This method does not allow for the fabrication of anode-supported, thin electrolytes, 

which are required in order to achieve high performance. 

A second method for establishing a porous YSZ matrix into which Cu can be 

impregnated involves dual tape casting, as shown schematically in Fig. 5 [34,35]. In tape casting, 

oxide powders are mixed together with binders and surfactants, then spread into a film over a 

carrier such as mylar [38]. Upon calcination, the binders are burned out and the oxide particles 

sintered to form dense structures. Pore formers, such as graphite or cellulose, can be added to the 

green tape to introduce a controlled level of porosity. For example, with the appropriate choice of 

conditions, we have observed porosities as high as 80% in YSZ after calcination to 1550ºC [39]. 

In dual tape casting, a second layer, which could have a different composition, is spread onto the 

first green layer. In the case shown in Fig. 5, graphite pore formers are added to the second layer 

to achieve porosity after calcination, but not to the first. Since the porous layer can be thick and 

mechanically strong, the dense electrolyte layer can be very thin. 

A variation on this dual-tape-casting method involves making a NiO-YSZ composite with 

a thin YSZ electrolyte in the same manner that is used to make a normal, anode-supported 

electrolyte with Ni-YSZ cermets [36]. After reduction of NiO, the Ni can be leached out of the 

YSZ using boiling nitric acid, leaving a dense YSZ layer supported on the porous YSZ substrate. 

An SEM picture of a porous YSZ prepared by leaching Ni from a Ni-YSZ cermet is shown in 

Fig. 6. The porosity of this particular sample was estimated to be 77% by Hg porosimetry, with a 

fairly narrow pore-size distribution between 2 and 4 µm; but we have demonstrated that the pore 

sizes can be controlled to a significant extent.
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While it is likely that other methods for preparing Cu-YSZ cermets will be devised, the 

materials prepared by dual tape casting have some very attractive features. Obviously, the YSZ 

components are very well connected because they have been sintered at such high temperatures. 

Because the Cu is added after the YSZ matrix has been established, the structure of the 

composite is clearly not random; therefore, less metal should be necessary for achieving high 

electronic conductivities. Furthermore, all processing steps for adding the Cu phase are 

accomplished at relatively low temperatures, avoiding constraints due to solid-state reactions 

between Cu and YSZ. Obviously, components other than Cu can be added using similar 

procedures. This ability to add additional, catalytic components will be shown to be very 

important in the next section.

Catalytic Requirements

It is well known from the literature that Cu is a poor catalyst for hydrocarbon 

hydrogenolysis [40], and it is likely this property that gives Cu cermets their superior stability 

towards coking. However, in order to catalyze the reaction of hydrocarbon fuels, it is necessary to 

have a good oxidation catalyst, preferably one that is also an ionic conductor capable of 

transferring oxygen ions from the electrolyte to catalyst surface. Obviously, the catalyst cannot 

promote carbon formation. The best way to achieve both high electronic conductivity and 

catalytic activity, without compromising other materials properties, is to use a composite in 

which the catalytic and electron-conduction properties are handled by different materials. In this 

way, Cu does not need to fulfill a catalytic role. The synthesis procedure from the previous 

section allows a wide range of catalysts to be incorporated into the anode structure.

Excluding metal catalysts from consideration, ceria is known to be one of the best 

oxidation catalysts [41]. Along with its catalytic properties, reduced ceria is both an ionic and 

electronic conductor and should assist in charge transfer at the TPB [42]. In agreement with those 

expectations, it has been shown that the addition of ceria to a Cu-YSZ composite anode 

significantly increased the performance of an SOFC for direct oxidation of hydrocarbons 

[34,43,44].

There is ample evidence that the role of ceria is at least partially catalytic. One important 

demonstration of this comes from experiments with Cu-YSZ cells that were prepared with 
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molybdena substituted for ceria in the anode [45]. The Cu-ceria-YSZ or the Cu-molybdena-YSZ 

cells were heated to 450ºC with flowing propylene fed to the anode. The products leaving the cell 

were then monitored with a gas chromatograph while applying an electrical potential across the 

cell to pump oxygen ions through the electrolyte. With the Cu-ceria-YSZ cell, the products were 

CO2 and water, with traces of CO. The rate of CO2 formation increased linearly with the current 

and agreed well with the Faradaic prediction:

C3H6 + 9O2- = 3CO2 + 3H2O + 18e-. (5)

For the Cu-molybdena-YSZ cell, the rate of product formation again increased linearly with 

current; but the primary product at low current densities was acrolein. 

The simplest interpretation of these results is that ceria and molybdena act as catalysts in 

the TPB region, as shown in Fig. 7. Either molybdena or ceria are oxidized by O2- coming 

through the electrolyte and then subsequently reduced by the fuel. According to this picture, 

reaction at the TPB is a simple redox process with a non-conventional oxygen source. Because 

molybdena is selective for the oxidation of propylene to acrolein, while ceria is nonselective, the 

products formed in cells with these two catalysts are different. 

Another result suggesting ceria is a primarily a catalyst comes from varying the method of 

synthesizing the Cu-ceria-YSZ anode [35]. Based on the picture in Fig. 7, the relative position of 

Cu and ceria should be very important, since the ceria must receive oxygen from the electrolyte. 

In agreement with this, we found that the performance of cells in which aqueous Ce(NO3)3 is 

added first and then decomposed to form a ceria layer on the YSZ, followed by Cu addition in a 

subsequent step, is superior to cells in which the Cu is added first. Third, the performance of a 

series of cells made with various catalytic oxides followed closely with the relative rates of these 

oxides in normal, heterogeneous rate measurements for butane oxidation.

The fact that an important step in the electrochemical oxidation within the fuel cell is the 

reduction of ceria by hydrocarbons places some temperature restrictions on the fuel cell. Since it 

is necessary for the redox reaction to be rapid in order to achieve reasonable power densities, it is 

not possible to work at very low temperatures. With Cu-ceria based anodes, we have found that 

the temperature dependence for fuel cells operating with hydrocarbons is considerably stronger 

than that for H2. Furthermore, the temperature dependence for operating with CH4 is much 
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stronger than that for other hydrocarbons, in agreement with the well-known fact that CH4 is less 

reactive than other hydrocarbons.

Given that the catalytic properties of the anode appear to be very important, the addition 

of precious-metal catalysts should greatly improve fuel-cell performance for hydrocarbon fuels. 

While the addition of Pt-group metals to the Cu-based anodes is difficult due to the strong 

tendency for alloy formation, there is indeed evidence that the addition of metals to a ceria-based 

anode significantly improves the performance of an SOFC for methane fuels [30]. It was found 

that the addition of 1 wt% Rh to an anode made of Sm-doped ceria had no effect on power 

densities measured with H2 fuels, but greatly increased the electrochemical reaction rate when 

CH4 was used as the fuel. The logical conclusion is that the precious metal was needed to oxidize 

CH4 and reduce the ceria in the TPB of the anode, but that H2 was reactive enough so that 

catalytic properties did not limit the overall cell performance. 

Fuel Dependences

The performance of SOFCs with Cu-ceria-YSZ anodes has been tested on a wide variety 

of hydrocarbon fuels and this has been documented elsewhere [28,44]. With the exception of 

methane, which is known to be relatively unreactive in normal heterogeneous reactions as well, 

all of the hydrocarbons we examined appear to give similar performance characteristics. The 

fuels that were tested include n-butane [44], n-decane, toluene, and a synthetic diesel [28]. The 

main difference observed between the various fuels is that some fuels tend to form tars via gas-

phase free-radical chemistry. Otherwise, with the exception of CH4, all hydrocarbons that were 

investigated showed similar power densities. This is shown in Fig. 8, which displays the voltage 

and current densities for n-decane, toluene, and synthetic diesel as a function of time. In this case, 

the hydrocarbon fuels were diluted in dry N2 to a concentration of 40-wt% hydrocarbon to 

prevent condensation of unreacted fuels that leave the cell. (In our studies, the active area for the 

fuel cell is ~0.5 cm2 and a current density of 1 A/cm2 would require a flow rate of only ~0.1 g/hr 

of n-decane at 100 % fuel conversion; therefore, the conversions are usually quite low.)

An important issue in direct-oxidation fuel cells is the fuel dilution that occurs with large 

molecules at high conversions. With n-decane for example, each oxidized molecule forms 21 

product molecules. Assuming the only reaction that occurs is the oxidation to CO2 and H2O, the 
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concentration of n-decane at 50% conversion is less than 5 vol%. The effect of dilution will be to 

cause diffusion limitations within the anode. An obvious solution to this problem is to use the 

steam produced by oxidation at the entrance to the fuel cell to reform the hydrocarbon farther 

down the stack. Internal reforming, with the catalyst placed above the anode within the 

interconnect region, is common practice for molten-carbonate fuel cells operating on CH4 [25] 

and the same idea could be used in direct-oxidation SOFCs. However, steam reforming of larger 

hydrocarbons is difficult and will require nonconventional reforming catalysts [46]. This will be 

an important challenge for the catalysis community should direct-oxidation fuel cells be 

commercialized.

Sulfur Tolerance

Essentially all real hydrocarbon fuels contain sulfur and fuel cells can be very sensitive to 

small amounts of sulfur. For example, Ni is used as a getter for H2S in automotive, emissions-

control catalysis [47] and problems of NiS formation can also occur in SOFCs. Indeed, the 

sensitivity of SOFC anodes to sulfur impurities appears to be related to the stability of sulfur 

compounds that can be formed by the materials in the anodes. In the case of Cu-ceria-YSZ 

anodes, the component most sensitive to sulfur is ceria. Conditions that lead to performance 

degradation match well with the thermodynamic regime where Ce2O2S is predicted to be stable 

[48]. It is fortunate that reasonably high sulfur concentrations can be used with the Cu-ceria-YSZ 

anodes; however, the issue of sulfur sensitivity must be evaluated for any additives that are 

incorporated in the anode.

Future Directions

Direct-oxidation anodes are a relatively new discovery that grew directly from the 

application of concepts in heterogeneous catalysis to SOFCs. There is much research to do to 

make these, and all other SOFCs, a commercial reality. Many of the problems that need to be 

solved are materials problems. The materials that make up the fuel cell need to be robust and 

resistant to oxidation or reduction. What we have argued here is that catalytic chemistry is also 
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critical. The ability to oxidize fuels electrochemically requires insights into the surface reactions 

that occur on the anode.

The major difference between heterogeneous catalysis and SOFC anodes is due to the 

requirement that, in the SOFC anode, three phases - the gas phase, the electron-conductor phase, 

and the ionic-conductor phase – must all come together at the site where reaction occurs. This 

connectivity requirement adds an additional level of complexity not found in normal 

heterogeneous catalysis. First, compared to catalysts in which only the gas phase and the surface 

need to be in contact, there is an additional requirement that must be met in the synthesis of 

anodes with optimal structure. Second, because the electric fields in the TPB region could be 

substantial, the chemistry in that region may be affected in ways that are difficult to predict [24]. 

Both of these issues offer exciting research challenges for researchers interested in materials 

synthesis and characterization of catalytic reactions.

The enormous efficiency advantages inherent with fuel cells compared to other power-

generation methods suggest that fuel cells must be part of our energy future. We believe 

heterogeneous catalysis has an important role to play in the commercialization of SOFCs because 

of the unique understanding of surface chemistry that practitioners of this science bring to the 

problem.
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Figure Captions

1) A diagram showing the operating principles for a solid-oxide fuel cell.

2) A schematic of the three-phase-boundary (TPB) region in an SOFC anode. The YSZ 

particle marked a) is not active because ions from the YSZ electrolyte cannot diffuse 

to it. The Ni particle marked b) is not active because electrons cannot be removed

3) Photographs of a Ni-YSZ cermet after (a) heating in H2 at 800ºC, (b) after heating in 

100% CH4 at 800ºC for 1.5 hrs, and (c) after heating in 40% toluene at 700ºC for 1.5 

hrs.

4) Photographs of a Cu-YSZ cermet after (a) heating in CH4 at 800ºC for 1.5 hrs and (b) 

after heating in 40% toluene at 700ºC for 1.5 hrs

5) A diagram of the dual, tape-cast procedure used in preparing anode-supported fuel 

cell.

6) Scanning electron micrographs of the 50:50 NiO/YSZ composite after acid leaching.

7) A schematic of the TPB region of the SOFC anode, showing the location of ceria, the 

catalytically active component for hydrocarbon oxidation.

8) Plots of cell potential and current density as a function of time for n-decane, toluene, 

and the diesel fuel. Each of the fuels was fed to the cell with N2 at a concentration of 

40 wt% hydrocarbon.
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