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Coarse-grained lattice kinetic Monte Carlo simulation of systems of
strongly interacting particles

Abstract
A general approach is presented for spatially coarse-graining lattice kinetic Monte Carlo (LKMC) simulations
of systems containing strongly interacting particles. While previous work has relied on approximations that
are valid in the limit of weak interactions, here we show that it is possible to compute coarse-grained transition
rates for strongly interacting systems without a large computational burden. A two-dimensional square lattice
is employed on which a collection of (supersaturated) strongly interacting particles is allowed to reversibly
evolve into clusters. A detailed analysis is presented of the various approximations applied in LKMC coarse
graining, and a number of numerical closure rules are contrasted and compared. In each case, the overall
cluster size distribution and individual cluster structures are used to assess the accuracy of the coarse-graining
approach. The resulting closure approach is shown to provide an excellent coarse-grained representation of
the systems considered in this study.
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Coarse-grained lattice kinetic Monte Carlo simulation of systems
of strongly interacting particles

Jianguo Dai, Warren D. Seider, and Talid Sinnoa�

Department of Chemical and Biomolecular Engineering, University of Pennsylvania,
Philadelphia, Pennsylvania 19104, USA

�Received 12 December 2007; accepted 1 April 2008; published online 15 May 2008�

A general approach is presented for spatially coarse-graining lattice kinetic Monte Carlo �LKMC�
simulations of systems containing strongly interacting particles. While previous work has relied on
approximations that are valid in the limit of weak interactions, here we show that it is possible to
compute coarse-grained transition rates for strongly interacting systems without a large
computational burden. A two-dimensional square lattice is employed on which a collection of
�supersaturated� strongly interacting particles is allowed to reversibly evolve into clusters. A detailed
analysis is presented of the various approximations applied in LKMC coarse graining, and a number
of numerical closure rules are contrasted and compared. In each case, the overall cluster size
distribution and individual cluster structures are used to assess the accuracy of the coarse-graining
approach. The resulting closure approach is shown to provide an excellent coarse-grained
representation of the systems considered in this study. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2913241�

I. INTRODUCTION

The lattice kinetic Monte Carlo �LKMC� method is an
efficient approach for simulating dynamical evolution in mi-
croscopic systems such as microstructural evolution in crys-
tals, point defect clustering in silicon,1–3 phase segregation in
metallic alloys,4,5 and surface morphological evolution dur-
ing vapor deposition.6–9 The primary advantage of LKMC is
that it effectively circumvents the vibrational motion of at-
oms that is responsible for the temporal bottleneck in mo-
lecular dynamics. Nonetheless, fully atomically resolved
LKMC, in which one lattice site is assigned to each LKMC
degree of freedom, is still highly constrained in scope and is
limited to the micron scale for many problems of interest.

Recently, there has been much interest in the develop-
ment of coarse-grained LKMC �CGLKMC� simulations in
which multiple atomic lattice sites are spatially grouped to-
gether into coarse-grained cells. The coarse-grained system
temporally evolves by a sequence of coarse-grained events
that are related to the microscopic events in the atomic
system.10–17 A key step in formulating such approaches is the
coarse-graining methodology and, most importantly, the
closure rule, both of which dictate how the single-atom
events are averaged within a coarse-grained cell.

In this work, we present a detailed analysis of a LKMC
coarse-graining approach based on extensions to the frame-
work previously published by Vlachos and co-workers.10–14

The study is carried out by using a two-dimensional square
lattice on which a system of strongly interacting particles is
allowed to evolve �reversibly� into clusters. A novel coarse-
graining framework and several new closure approaches are
developed to account for the heterogeneous environments

within each coarse cell that arise because of strong interpar-
ticle interactions. We consider averaging approaches to accu-
rately account for both intracell interactions �i.e., between
particles within the same coarse cell� and intercell interac-
tions �between particles in different coarse cells�. In so do-
ing, we demonstrate the limitations of existing coarse-
graining closure rules, such as the local mean-field �LMF�
approximation,18 which assumes that particles in a given
coarse cell are homogeneously distributed.13 In each case,
the overall evolution of the particle cluster size distribution
and the individual cluster structures that are generated are
used to assess the accuracy of the proposed coarse-graining
approaches by comparing the predictions with the results of
the “atomically” resolved LKMC �i.e., fine-grid LKMC
or FGLKMC� simulations.

The remainder of this paper is organized as follows. In
Sec. II, we describe the FGLKMC model that is used as the
basis for coarse graining. In Sec. III, the basic elements of
the coarse-graining framework are discussed. Approaches to
treat strong interparticle interactions by using new numerical
closure approximations are discussed in Secs. IV and V. Test
applications of the developed coarse-graining framework are
discussed in Sec. VI. Finally, a brief discussion of the
computational gains associated with coarse graining and
conclusions are presented in Secs. VII and VIII, respectively.

II. FINE-GRID LKMC MODEL FOR 2D SYSTEMS
OF INTERACTING PARTICLES „FGLKMC…

The LKMC simulations employed in this work are based
on a broadly applicable bond-counting approach for the cal-
culation of the energy barrier associated with single-atom
hops.16,19 We have demonstrated in previous work that it is
possible to treat continuous systems within LKMC by effec-
tively including configurational entropy associated with off-
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lattice relaxations into a bond-counting LKMC model.1 In
the present work, we limit our discussion to an idealized
two-dimensional square lattice system with mobile interact-
ing particles, although the proposed approach should be
readily generalizable to three-dimensional lattices with
different symmetries.

In the bond-counting model employed here, the energy
barrier associated with a particle hop originating from a site,
x, is calculated based on Arrhenius dynamics.12 In Arrhenius
dynamics, the energy barrier, which is equivalent to the total
binding energy at that site, is a function of the initial but not
the final configuration, i.e.,

Ex = �
y�x

J�x − y��x�y , �1�

where the sum is taken over all sites in the system, J�x−y� is
the interaction potential between sites x and y, and �x is the
occupancy state �0 or 1� at site x. It is often convenient to
calculate the binding energy associated with a particular par-
ticle �i.e., only for occupied sites where �=1� rather than a
site �which can either be occupied or not�. The binding
energy of a given particle is defined by

Ei
b = �

j=1

j�i

Np

J�i, j� , �2�

where J�i , j� is the potential energy between particles i and j,
and the sum is taken over all particles in the system within
interaction range. Note that for particle i residing on site x,
Ei

b=Ex. The hopping rate from site x is therefore given by

r̂x = �x�0 exp�−
Ex

kBT
� , �3�

where �0 is the attempt frequency, kB is the Boltzmann con-
stant, and T is the system temperature. We also define a
conditional hopping rate which is the transition rate from site
x given that site x is filled, such that rx	�r̂x ��x=1�,
and therefore

rx = �0 exp�−
Ex

kBT
� . �4�

III. GENERAL CONCEPTS FOR COARSE-GRAINING
LKMC SIMULATIONS

The principal concept within a spatially CGLKMC
framework is that several adjacent fine-grid lattice sites are
grouped to form a single coarse cell. The collection of coarse
cells forms a new coarse lattice, which in this work is as-
sumed to be uniformly spaced, i.e., we apply a single level of
coarse graining throughout the domain. The relationship be-
tween the fine-grid and a coarse-grid lattice is shown in
Fig. 1 for the two-dimensional square lattice. Each coarse
cell contains q fine-grid �lattice� sites and is characterized by
an occupancy number, 0���q.

The central assumptions implicit in constructing a
CGLKMC approximation have been discussed in detail by
Vlachos and co-workers.10–14 In brief, it is assumed that the
microscopic processes within a coarse cell are fast compared

to the overall system dynamics, i.e., that local quasi-
equilibrium is maintained within a coarse cell at all times.
This quasiequilibrium is a function only of the local mesos-
copic system properties such as local mass, temperature, and
potential energy20 and does not explicitly depend on time.
The system degrees of freedom corresponding to these fast
microscopic processes therefore are “averaged out” of the
overall dynamical equations that govern the CGLKMC sys-
tem. The mesoscopic properties that describe the state of
each coarse cell are, however, explicit functions of time,
evolving �relatively slowly� according to the remaining de-
grees of freedom in the system. In essence, a timescale sepa-
ration is achieved, similar in nature to a pseudo-steady-state
approximation made in continuous systems.21

A. General expressions for the coarse hopping rate

The essence of the coarse-graining procedure is to com-
pute the overall jump rate for a particle from an origination
cell k to an adjacent destination cell ld on the coarse lattice,
under the assumption that the local microscopic system
within each coarse cell is in equilibrium with respect to the
current local mesoscopic conditions �namely, the number of
particles and the temperature in the coarse cell�. The total
rate for this event is given by

r̄�k → ld� = �
x�Dk

1

q� �
y�Dld

�1 − �y��xrx�
= �

x�Dk


�1 − �y��xrx�y = q
�1 − �y��xrx�xy , �5�

FIG. 1. Schematic of �a� fine-grid lattice and �b� corresponding coarse-
grained lattice �q=9�.
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where 
 �y is the average over the y sites in cell ld, and

 �xy 	
 � represents the average over all x and y sites. By
assuming that all spatial correlations can be accounted for in
the calculation of the average transition rate �ATR�, 
rx�,

�x�, and 
�y� in Eq. �5� can be replaced by �k /q and �ld /q,
respectively, where �k and �ld are the occupancy numbers of
cell k and cell ld. The average coarse hopping rate from cell
k to cell ld is then given by

r̄�k → ld� =
�k

q
�1 −

�ld

q
�q
rx� . �6�

By applying Eqs. �4�–�6�, the rate equation for the coarse-
grained hop from cell k to cell ld is therefore given by

r̄�k → ld� =
�k

q
�q − �ld��c�exp�−

Ex

kBT
� , �7�

where it is understood that the term in the 
 � is evaluated
only if site x is occupied. In fact, this conditional average is
simply equivalent to the average over the particles on the
coarse cell k—we therefore use particle-averaging notation
in the remainder of this paper. Also note that in Eq. �7�,
�c=�0 /q, which reflects the fact that the hop length on the
coarse lattice is equal to the distance between the centers of
the coarse cells. For example, for q sites per coarse cell, the
length of one hop effectively increases from a on the fine-
grid lattice to a�q on the coarse-grid lattice.

As shown in Eq. �7�, once the average of the rates cor-
responding to all possible microconfigurations is computed,
the hopping rate in the coarse-grained system is only a func-
tion of the coarse variables, �k and �ld, as required in a
CGLKMC simulation. How this average is computed defines
the particular type of coarse-graining approach. In the fol-
lowing section, we discuss the validity of various assump-
tions used in the calculation of this average and present a
new numerical approach that leads to excellent results even
in the limit of strong interactions.

B. Common approximations in spatial coarse graining
of lattice systems

Two approximations have been generally employed in
literature to simplify the calculation of the ensemble average
in Eq. �7�. In the first approximation, it is assumed that the
ATR can be approximated by an average over the binding
energies of each particle in each microconfiguration, i.e.,

�exp�−
Ei

b

kBT
� � exp�−


Ei
b�

kBT
� . �8�

The approximation is useful because the average binding en-
ergies �ABEs� per particle, 
Ei

b�, are the direct input to
CGLKMC simulations. We refer to this approximation as the
ABE, which has been applied in all previous LKMC coarse-
graining models in literature, with the exception of the
multigrid approach proposed by Katsoulakis et al.12 In this
approximation, the coarse-grained rate is thus given by

r̄�k → ld� =
�k

q
�q − �ld��c exp�−


Ei
b�

kBT
� . �9�

It is intuitive to assume that particles with high binding
energies should contribute less to the ATR from a coarse cell.
On the other hand, in the ABE approximation �Eq. �8��, all
particles are assumed to equally contribute to the ABE, lead-
ing to an error that should increase with the interaction
strength. In the exact general expression, Eq. �7�, the average
is directly taken over the transition rates, which naturally
biases the overall average toward particles �or sites� with low
binding energies. We refer to the direct averaging of transi-
tion rates as the ATR framework.

Nonetheless, the ABE approximation is mathematically

consistent with the ATR framework. With Ẽi
b=Ei

b /kBT, the

weak interaction limit is represented by Ẽi
b�1. Expanding

the transition rate into a Taylor series at this limit gives

exp�− Ẽi
b� � 1 − Ẽi

b + O��Ẽi
b�2� . �10�

Accordingly, a first-order approximation of the ensemble
average of the transition rate in Eq. �7� �neglecting the
pre-exponential factor� is


exp�− Ẽi
b�� � 
1 − Ẽi

b� = 1 − 
Ẽi
b� � exp
− �Ẽi

b�� , �11�

where 
Ẽi
b� is the approximate ensemble average of the di-

mensionless binding energy for one particle. The preceding
shows the origin of the ABE approximation in Eq. �9�. Note
that as the dimensionless binding energy approaches zero,
the two averaging frameworks �ABE and ATR� become
identical.

1. Interaction decoupling approximations

The second approximation used to simplify the calcula-
tion of the averages in Eq. �7� or Eq. �9� is the assumption
that particle interactions within the same cell and those on
different cells can be separated. This is tantamount to assum-
ing that the total binding energy associated with one particle
in a coarse-grid lattice can be decomposed into two parts:
The intracell interaction, which represents binding to other
particles within the same coarse cell, and the intercell inter-
action, which represents binding to particles in neighboring
coarse cells. Most generally, the binding energy per particle
in a given coarse cell k is parametrically given by

Ei
b = Ei

b�k,�l1�,� = 1, . . . ,n1� ,

�12�
�l2�,� = 1, . . . ,n2�, . . . ,�lN�,� = 1, . . . ,nN� ,

where li represents coarse cells at neighbor shell i, � is the
index representing a particular coarse cell in neighbor shell i,
ni is the number of coarse cells at each �coarse lattice� neigh-
bor shell i, and N is the total number of neighbor shells that
must be considered, which is set by the range of the fine-grid
potential. The separation assumption suggests the following
general expression for the per-particle binding energy:

Ei
b = Ei

intra + Ei
inter. �13�

Moreover, the intercell contribution can be further separated
into contributions over each of the neighbor shells on the
coarse lattice so that
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Ei
inter = �

j=1

N

Ei
inter,lj , �14�

where the index lj refers to specific coarse cells at the jth
neighbor shell of coarse cell k. A schematic of the neighbor
shells around a reference coarse cell in a cubic, two-
dimensional coarse lattice is shown in Fig. 2.

Note that the two components in Eq. �13� are also, in
general, functions of particle distributions in multiple cells
but the implied separation allows for systematic decoupling
approximations to be made. For example, while the intracell
particle distribution is still, in principle, a function of particle
distributions in all neighboring coarse cells, particles in the
same cell are �on average� much closer to each other than to
those in neighboring cells. As a result, an important decou-
pling assumption can be made: The intracell binding energies
between particles in reference cell k are only weakly affected
by the surrounding cells and the cell can be considered to be
isolated as shown in Fig. 3�a�, i.e.,

Ei
intra = Ei

intra�k,�l1�,� = 1, . . . ,n1� ,

�15�
�l2�,� = 1, . . . ,n2�, . . . ,�lN�,� = 1, . . . ,nN� � Ei

intra�k� .

Similar approximations can be made for the various
intercell contributions. Consider the first-nearest-neighbor
�1NN� intercell interactions Ei

inter, l1. As before, these interac-
tions are coupled to both the intracell interaction and to
intercell interactions at other neighbor shells on the coarse
lattice, i.e.,

Ei
inter,l1 = Ei

inter,l1�k,�l1�,� = 1, . . . ,n1� ,

�16�
�l2�,� = 1, . . . ,n2�, . . . ,�lN�

,� = 1, . . . ,nN� .

By assuming that the coupling to intercell distributions be-
tween cell k and other neighbor shells is weak, the interac-
tion between cell k and coarse cells at the second �and other�
neighbor shells is not expected to strongly affect the interac-
tions between cell k and the first neighbor shell. The validity

of this approximation will be discussed later. However, the
coupling to the intracell particle distribution is generally
strong and must be included. As will be demonstrated later,
omission of the coupling between intercell and intracell
interactions leads to substantial errors in strongly interacting
systems. With these considerations, a simplified parametric
expression for the 1NN intercell interaction is given by

Ei
inter,l1 = Ei

inter,l1�k,�l1�,� = 1, . . . ,n1�� . �17�

Similar decoupling approximations may be made for the
intercell interactions at each neighbor shell, i.e.,

Ei
inter,lj = Ei

inter,lj�k,�lj�,� = 1, . . . ,nj�� . �18�

Finally, the calculation of the coarse binding energies in
Eqs. �17� and �18� can be further simplified by assuming that
within a given �coarse lattice� neighbor shell j, the total
intercell interaction can be computed by assuming that the
single cell contributions are independent and additive, i.e.,

Ei
inter,lj = �

�

Ei
inter,lj�k,lj�� . �19�

The coupling considered in Eq. �19� is schematically shown
in Fig. 3�b�, where only pairs of cells are considered.

C. A brief summary of previous LKMC coarse-graining
approaches

In general, closure rules for computing the average in
Eq. �7� can be categorized into two types: �1� Methods in
which the average is analytically computed and �2� methods
in which local fine-grid �or multigrid13� simulations are used
to compute the average by numerical sampling.

FIG. 2. Schematic showing the neighboring coarse cells on a cubic two-
dimensional coarse-grid lattice. The dark cell in the center is the reference
cell.

FIG. 3. Coupling between particles in the �a� intracell case and �b� intercell
case. Coarse-graining level in both cases is q=36.
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The LMF method, discussed and analyzed in detail by
Chatterjee and Vlachos,13 is perhaps the simplest approach
for analytically coarse graining a LKMC simulation, and will
be used as the base case for discussing the present work. The
basic assumption in the LMF model is that each microcon-
figuration within a coarse cell has equal probability and that
no spatial correlations exist between the site locations and
the binding energies. In other words, each particle has an
equal probability of residing on any fine-grid site within a
coarse cell and is unaffected by interactions with other
particles �except for same-site exclusion�.

For very short-range interactions relative to the coarse
cell dimensions, the LMF is a poor approximation. Under
these conditions, and ignoring cell boundary effects, the dis-
tribution of pair interactions can be analytically computed.22

Chatterjee and Vlachos have recently applied the qua-
sichemical approximation13,22 �QCA� to the calculation of
ABEs within coarse cells for a situation in which only first
nearest-neighbor interactions are considered within each
coarse cell and intercell interactions are neglected. The latter
assumption implies that there will be no driving force for
particles to further aggregate once each individual coarse cell
is filled, severely limiting the application of the QCA frame-
work in its present form to clustering problems.

Clearly, while computationally efficient, analytical
approaches are limited to fairly simple systems. Numerical
methods, on the other hand, apply fine-grid simulators to
stochastically sample the local configurational space to com-
pute the coarse-grained potential. The fine-grid sampling can
be implemented online �i.e., on the fly during the simulation�
or offline �once before the LKMC simulation�. For example,
in Ref. 13, a FGLKMC simulator was embedded in an online
fashion within a CGLKMC simulation to compute the par-
ticle interaction distribution function in each coarse cell. This
multigrid LKMC simulation significantly improves the accu-
racy of CGLKMC for systems with very short interaction
ranges because it effectively applies ATR averaging over the
intracell processes. On the other hand, the extension of this
approach to long interaction ranges, which include substan-
tial intercell interactions, is a challenge �which we focus on
in the present work�. Other numerical coarse-graining
approaches have also been developed. For example, in
Refs. 15–17 wavelet transforms were employed to ABEs in
Monte Carlo simulations.

IV. A NEW STOCHASTIC CLOSURE APPROACH
FOR LKMC COARSE GRAINING

A. Microscopic Wang–Landau Monte Carlo simulations

In this work, we stochastically �numerically� compute
the ABE or ATR for a single particle in each coarse cell by
using the recently developed Wang–Landau Monte Carlo23

�WLMC� method. This is tantamount to computing a coarse-
grained potential from the fine-grid one. The WLMC ap-
proach is applied because large energy differences between
the various configurations �e.g., multiple isolated clusters in
one coarse cell� often lead to severe sampling bottlenecks in
a standard Metropolis Monte Carlo. Microscopic kinetic
Monte Carlo simulations can also be applied to compute the

coarse potential, but once again, large variations in the bind-
ing energy distribution can lead to inefficient sampling.

For decoupled intracell interactions �Eq. �15��, � par-
ticles are initialized in a single coarse cell with a coarse-
graining level q, as shown in Fig. 3�a�. Throughout the
WLMC simulation, particles are confined to the same coarse
cell. A system energy Es is defined for a given microscopic
configuration such that

Es = E0 − 0.5 � �
i=1

NP

Ei
b 	 E0 − Etot

b , �20�

where E0 is an arbitrary reference energy, and Etot
b therefore

is the total binding energy in the coarse cell at a given mi-
croscopic configuration. The configurational density-of-
states �DOS� function for the system energy, g�Es�, and the
visit histogram, h�Es�, are initialized to unity and zero, re-
spectively. In the present work, both g�Es� and h�Es� are
discretized by using 0.01 eV energy bins.

WLMC moves are performed by moving a randomly
selected particle to a vacant location picked at random
from all sites within the coarse cell. The WLMC
acceptance/rejection criterion for accepting a move from
system energy level Es

1 to Es
2 is given by

p�Es
1 → Es

2� = min�g�Es
1�

g�Es
2�

,1� . �21�

Each time an energy level Es is visited �rejections are treated
as revisits of the current configuration�, the DOS value,
g�Es�, is multiplied by a factor f �1 so that g�Es�=g�Es�f .
The multiplicative factor is initialized with a value of exp�1�
in the present simulations. Concurrently, the visit histogram
is updated by h�Es�=h�Es�+1.

The simulation proceeds until a minimum flatness crite-
rion is achieved in the function h�Es�, which is taken here to
be 85% �defined here by the maximum deviation from the
mean�. Once the flatness criterion is achieved, the value of f
is reduced according to the rule f i+1=�f i �any monotonically
decreasing function will do in practice�, where i represents
the number of simulation “stages,” and h�Es� is reset to zero
for the next stage. The criterion used to end the simulations
in the present work is f =1.000 001. Wang and Landau23 have
shown that the above procedure leads to a converged value
for the DOS, from which the probability distribution function
�PDF� at any temperature can be computed. The PDF for the
lattice system is given by

p�Es� = g�Es�exp�−
Es

kBT
� . �22�

Any ensemble-averaged property of the system can be
computed from the system energy PDF by


A� =� p�Es�A�Es�dEs, �23�

where A�Es� is the value of the property for a configuration
with system energy level Es, and 
A� is the ensemble average
of the property A. Implicit in Eq. �23� is the assumption that
the property A for each particle is uniquely valued at a given
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system energy level Es. In general, this is not true, and an
average value of A must be computed for each system energy
level. In the current application, we are interested in the ABE
�or ATR� associated with a single particle. This average is
generated by averaging over all particles for each WLMC
configuration, and again over many configurations. For ex-
ample, in the ABE framework, the averaging over particles is
taken first at each configuration �with system energy Es�,

�
E1
b��Es

=
1

�k
�
i=1

�k

Ei
b. �24�

The average over configurations is generated on the fly dur-
ing the WLMC simulation, while the DOS and PDFs are
being converged. The final ensemble ABE for one particle
within one coarse cell is therefore given by

Ei
b�ABE� = 
�
E1

b��Es
� =� p�Es��
E1

b��Es
dEs. �25�

Similarly, in the ATR framework, the particle-averaged
property of interest for each configuration is the ATR, which
is given by

��exp�−
E1

b

kBT
��

Es

=
1

�k
�
i=1

�k

exp�−
Ei

b

kBT
� . �26�

Accordingly, the ensemble ATR is given by

�exp�−
E1

b

kBT
� =���exp�−

E1
b

kBT
��

Es

 =� p�Es�

��exp��−
E1

b

kBT
��

Es

dEs. �27�

Since the inputs to a CGLKMC simulation are always bind-
ing energies, not transition rates, an effective binding energy
for one particle in the ATR framework is computed from the
averaged transition rate by

E1
b�ATR� = − kBT ln��exp�−

E1
b

kBT
�� . �28�

Equations �26�–�28� show that the ATR framework is noth-
ing more than an exponentially weighted ABE scheme. Once
again, this makes physical sense—particles that are strongly
bound should contribute less to the total effective transition
rate from a given coarse cell.

The preceding approach is equally applicable to the
computation of intercell interactions. For calculating the in-
tercell binding energy, two interacting coarse cells are con-
structed and the movements of particles in each coarse cell
are also confined to their respective coarse cells. The relative
position of the two coarse cells depends on the interaction
shell being considered; in Fig. 3�b�, for example, the 1NN
interaction on the �square� coarse lattice is shown. Once
again, the number of interaction shells that need to be con-
sidered within the coarse lattice entirely depends on the fine-
grid interaction potential function.

It should be noted that the sampling approach discussed
above fully accounts for the effect of particle
interactions—in other words, particle trajectories are gener-

ated in the WLMC simulations on the basis of a system
energy that is a function of the total binding energy. By al-
lowing the particle trajectories to be influenced by particle-
particle interactions, the system is expected to exhibit clus-
tering, which is a manifestation of nonideality in the context
of solution theory.24 This thermodynamic analogy will be
explored in detail elsewhere—here, we simply use this con-
cept to refer to the interacting particle model as the “nonideal
solution” �NIS� model.

By contrast, the LMF closure is an “ideal solution”
model in which the particle trajectories evolve as if the par-
ticles are free of interactions �other than same-site exclu-
sion�. In the LMF model therefore, the mean interaction en-
ergy in a cell is computed on the basis of interactionless
trajectories. WLMC sampling can be applied for computing
ABEs within the LMF model, although this is only useful for
testing purposes given that the LMF binding energies can be
computed more efficiently by using analytical methods.10 In
the LMF model, the system energy, as defined by Eq. �20� is
always equal to the reference energy, E0, because particles
are assumed not to interact as they move within their respec-
tive coarse cells. Under these conditions, every WLMC
move is accepted �see Eq. �21�� and there is no meaningful
PDF; the ABE per particle is directly computed by averaging
over particles and configurations. The averaging in this spe-
cial case can be performed within both the ABE and ATR
frameworks.

V. CALCULATION OF COARSE INTERACTION
POTENTIALS FOR A 2D LATTICE

In this section, the WLMC sampling method discussed
in Sec. IV is applied to compute the coarse-grained interac-
tions that are used as inputs to CGLKMC simulations. The
intracell and intercell interactions are separately treated. In
the latter case, different approaches are tested for including
interaction coupling.

A. Intracell interactions

As discussed in Sec. III, we assume in the following that
the intracell interaction is independent of the particle distri-
butions in neighboring coarse cells because particles within a
single coarse cell are, on average, much closer to each other
than to other particles in surrounding cells. For a given
coarse-graining level q, the coarse cell is initialized with an
occupancy number �, and WLMC simulation is performed
until the equilibrium criterion is met. In the following ex-
ample, 20 particles are put in a single coarse cell �q=36�. A
constant �fine-grid� interaction potential is applied between
particles up to the 6NN shell �L=6� with 	J	J / �kBT�=1.5,
where J is the �constant in this particular case� interaction
strength between two particles. The converged DOS function
and the PDF obtained from the WLMC simulation are shown
in Fig. 4.

The corresponding ABE �ABE framework� and effective
binding energy �from the ATR framework� for one particle as
a function of system energy are shown in Fig. 5. The ABE,
E1

b�ABE�, is inversely proportional to the system energy,
which is expected from consideration of Eq. �20� and that
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�� /2�E1
b�ABE�=Etot

b . On the other hand, the ATR binding
energy, E1

b�ATR�, is a strongly nonlinear function of the sys-
tem energy and reaches a constant value as the system en-
ergy increases. Furthermore, E1

b�ATR� is much lower than
E1

b�ABE� for all occupancy levels because the ATR is mainly
dominated by the particles with low binding energy.

The intracell ABE experienced by one particle is then
computed for each occupancy number, 1���q, by using a
sequence of WLMC simulations. The results obtained by us-
ing both the ABE and ATR frameworks are shown in Fig. 6.
Also, the results for the two different closure methods are
shown: LMF model and NIS model.

Whether ATR or ABE averaging is employed, the ABE
predicted by the NIS model is always higher than the corre-
sponding LMF value. Physically, this is because interacting
particles tend to cluster under the simulation conditions,
which leads to a higher binding energy per particle for all
occupancy ratios. The NIS model curves converge to the
LMF model at �=0 and �=q, the latter being a result of
geometric confinement. For the particular conditions shown
in Fig. 6, the nonideality of the system is strong and signifi-
cant clustering is present across most of the occupancy
range.

The effective binding energies obtained in the ATR
framework are lower than those obtained by using the ABE
framework at each occupancy level. Once again, this arises
because strongly bound particles in the ATR scheme contrib-
ute less to the overall average. Note also that while the ABE
per particle in the ABE-LMF case is a linear function of
occupancy level, it deviates from linear behavior in the ATR-
LMF case because of the exponential-weighted averaging. In
each framework, the nonideal behavior of the system is ob-
vious and significant compared to LMF �ideal solution�.

B. Intercell interactions

The calculation of coarse intercell binding energies by
using the WLMC framework discussed in the previous sec-
tions is mechanistically similar to the intracell case. In this
section, we present a sequence of different closure rules to
test approaches for capturing the coupling between the intra-
cell and intercell interactions. The generation of different
closure rules is illustrated in Fig. 7. Consider two neighbor-
ing coarse cells, k and l, where cell k is the origination cell
for a particle hop. In the LMF closure rule, particles in both
cells are assumed to be uniformly distributed �as in the in-
tracell case� and the coarse interaction potential can be ana-

FIG. 4. DOS function g�Es�—dashed line, and PDF p�Es�—solid line, for
the system energy in a single coarse cell obtained from WLMC simulation.
System information: q=36, �=20, 	J=1.5, and L=6NN.

FIG. 5. Intracell ABE �per particle� as a function of system energy obtained
with the ABE and ATR averaging frameworks in the NIS closure model.
System information: q=36, �=20, 	J=1.5, and L=6NN.

FIG. 6. Intracell ABE as a function of occupancy ratio. Solid lines—LMF
model; symbols and lines—NIS model. Upper curves—E1

b�ABE�—ABE ob-
tained by using the ABE framework. �b� Lower curves—E1

b�ATR�—ABE by
using the ATR framework. System information: q=36, 	J=1.5, and L
=6NN.

FIG. 7. Schematic of various types of intercell interactions. Cell k represents
the origination cell for a particle hop, while cell l is a neighboring cell.
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lytically computed. This is equivalent to assuming that
the particle trajectories are random, save for volumetric
exclusion.

At the other extreme is the fully coupled closure rule
where particles in both cells interact with each other as well
as with particles in the other cell—we denote this closure
rule by the notation kb-lb, where b stands for “both” self-
and cross interactions, and k and l denote the cell indices.
Similarly, the LMF closure rule is described by the notation
kr-lr, where r denotes “random,” or interactionless trajecto-
ries within a cell. Other possible types of interaction models
include “self” �s�, in which particles within a single cell only
interact with each other, or “cross” �c�, where particles only
interact with those in different cells.

There are several possible combinations that can be ap-
plied to generate a closure rule for intercell interactions;
these are summarized in Table I. For each valid closure
method defined in Table I, the system energy at every fine-
grid configuration is required to compute the DOS function
and PDF. The system energy in each case is defined as

kb-lb: Es = E0 − 0.5 �
i�Dk

�k

�
j�Dk

j�i

�k

J�i, j� − 0.5 �
i�Dl

�l

�
j�Dl

j�i

�l

J�i, j�

− �
i�Dk

�k

�
j�Dl

�l

J�i, j� , �29�

kb-lc: Es = E0 − 0.5 �
i�Dk

�k

�
j�Dk

j�i

�k

J�i, j� − �
i�Dk

�k

�
j�Dl

�l

J�i, j� ,

�30�

kb-lr: Es = E0 − 0.5 �
i�Dk

�k

�
j�Dk

j�l

�k

J�i, j� − �
i�Dk

�k

�
j�Dl

q
�l

q
J�i, j� ,

�31�

kc-lb: Es = E0 − 0.5 �
i�Dl

�l

�
j�Dl

j�i

�l

J�i, j� − �
i�Dk

�l

�
j�Dl

�k

J�i, j� ,

�32�

kc-lc: Es = E0 − �
i�Dk

�k

�
j�Dl

�l

J�i, j� , �33�

kc-lr: Es = E0 − �
i�Dk

�k

�
j�Dl

q
�l

q
J�i, j� , �34�

ks-ls: Es = E0 − 0.5 �
i�Dk

�k

�
j�Dk

j�i

�k

J�i, j� − 0.5 �
i�Dl

�l

�
j�Dl

j�i

�l

J�i, j� ,

�35�

ks-lr: Es = E0 − 0.5 �
i�Dk

�k

�
j�Dk

j�i

�k

J�i, j� , �36�

kr-lb: Es = E0 − 0.5 �
i�Dl

�l

�
j�Dl

j�i

�l

J�i, j� − �
i�Dk

q

�
j�Dl

�l �k

q
J�i, j� ,

�37�

TABLE I. Combinatorial representation of closure rules for intercell interactions. Some rules are not valid because one-way interactions lead to ambiguously
defined system energies �see text.�

Cell l

lb lc ls lr

kb Each particleinteracts
with everyother particle.

Particles in cell k interact
with everyparticle.
Particles incell l only interact
with particles in cell k.

Not defined. Particles in cell k interact
with every particle. Particles
incell l have random movements.

kc Particles in cell k only interact
with particles in cell l.
Particles in cell l may interact
with every particle.

Particles in cell k only interact
with particles in cell l. Particles
in cell l only interact
with particles in cell k.

Not defined. Particles in cell k only interact
with particles in cell l. Particles
in cell l have random movements.

ks Not defined. Not defined. Particles in cell k only interact
with particles in cell k.
Particles in cell l only
interact with particles
in cell l.

Particles in cell k only interact
with particles in cell k.
Particles in cell l have random
movements.

kr Particles in cell k have random
movements. Particles in cell l
interact with every other particle.

Particles in cell k have random
movements. Particles in cell
l only interact with particles
in cell k.

Particles in cell k
have random movements.
Particles in cell l only
interact with particles
in cell l.

Particles in cell k have random
movements. Particles in cell l have
random movements. �LMF�
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kr-lc: Es = E0 − �
i�Dk

q

�
j�Dl

�l �k

q
J�i, j� , �38�

kr-ls: Es = E0 − 0.5 �
i�Dl

�l

�
j�Dl

j�i

�l

J�i, j� , �39�

kr-lr: Es = E0. �40�

In the above expressions, J�i , j� represents the pair inter-
action potential between particles i and j on the fine-grid
lattice. Note that there is a subtlety regarding closure rules
with “one-way” bonding, which are denoted by “not defined”
in Table I. Consider, for example, the closure rule ks-lb in
which particles in cell k only interact with each other, but
those in cell l interact with both each other and particles in
cell k. It is not possible to define the total system energy in
this case because the cross interactions between cells k and l
are effectively one-way and binding energies for these inter-
actions are ill posed.

Closure rules involving random �i.e., interactionless�
particle trajectories are a special case. For example, the last
rule in the list above, kr-lr �Eq. �40��, which is simply the
LMF closure, assumes that particle trajectories are unaf-
fected by the interparticle interactions and therefore that the
mean interaction is computed on the basis of random �uni-
formly distributed� particle positions. To compute the total
system energy for closure rules involving random move-
ments of particles in one cell only �i.e., kr or lr�, we assume
that each site in the interactionless coarse cell is uniformly
occupied by a fractional particle ��k /q or �l /q� and that the
binding energy between that site with particles on other cells
is scaled by that fraction; see, for example, the last term in
Eq. �31�. In this case, the particle positions in cell l are not
evolved during the simulation but their interactions with par-
ticles in cell k are included in the calculation of the total
system energy. Once again, it should be emphasized that clo-
sure rules based on interactionless particles �such as the LMF
approximation� only assume that the particle trajectories are
interactionless—the interaction energies themselves are still
included in the system energy.

For each closure method in Table I, WLMC simulations
were used to compute the intercell binding energy for one
particle in cell k interacting with particles in cell l. In a
WLMC simulation, particles are confined to move within a
given coarse cell; and for each configuration, the ABE for
one particle in cell k to particles in cell l is given by

�
E1
b��Es

=
1

�k
�

i�Dk

�k

�
j�Dl

�l

J�i, j� . �41�

Similarly, the ATR, for a given configuration, for one particle
in cell k due to binding with particles in cell l is

��exp�−
E1

b

kBT
��

Es

=
1

�k
�

i�Dk

�k

exp�−
Ei

b

kBT
� , �42�

where Ei
b is the binding energy associated with particle i in

cell k due to interactions with particles in cell l and is given
by Ei

b=�l�Dl

�l J�i , j�.
For closure rules involving random movements of par-

ticles �i.e., interactionless particles�, the sampling in the in-
teractionless cell is taken over all sites in the coarse cell
where each site is assumed to contain � /q particles �i.e., a
uniform distribution�. For example, if the particles in cell k
are interactionless and therefore uniformly distributed, the
ABE per particle and ATR, respectively, due to interactions
with particles in cell l are given by

�
E1
b��Es

=
1

q
�

i�Dk

q

�
j�Dl

�l �k

q
J�i, j� �43�

and

��exp�−
E1

b

kBT
��

Es

=
1

q
�

i�Dk

q

exp�−
�Ei

b�Es

kBT
� , �44�

where

�Ei
b�Es

= �
j�Di

�l �k

q
J�i, j� . �45�

Similar expressions hold for the case where the particles in
cell l are assumed to be interactionless:

�
E1
b��Es

=
1

�k
�

i�Dk

�k

�
j�Dl

q
�l

q
J�i, j� �46�

and

��exp�−
E1

b

kBT
��

Es

=
1

�k
�

i�Dk

�k

exp�−
�Ei

b�Es

kBT
� , �47�

where

�Ei
b�Es

= �
j�Dl

q
�l

q
J�i, j� . �48�

Obviously, in every case, the intercell binding energy is
a function of the occupancy level in both cells. For each pair
of occupancy levels, WLMC is used to compute the DOS
and PDFs by sampling over all fine-grid configurations. For
example, Fig. 8 shows the DOS and PDF as a function of
system energy for the kb-lb closure rule in which 20 particles
are placed in each of two neighboring cells �q=36�.

The WLMC simulations can be used to calculate the
intercell binding energy surface as a function of occupancy
numbers, which are required as input to CGLKMC simula-
tions. Typical binding energy surfaces are shown in Fig. 9 for
the LMF model by using both the ABE and ATR frameworks
to compute the ABE surface. Note that the ABE averaging
framework leads to substantially higher binding energies for
all occupancy pairs �upper surface�. As noted earlier, this is
because high binding energy configurations in the ATR
framework contribute less to the overall average, as would be
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expected. In both frameworks, the maximum binding energy
occurs at �l=q regardless of �k. As in the intracell case, the
curvature of the lower surface in Fig. 9 arises because the
final binding energy is effectively computed within the ex-
ponentially weighted ATR framework.

Shown in Fig. 10 is the intercell binding surface for the
kb-lb closure model in which full coupling between cell k
and cell l is included. Both the binding energy surfaces pre-
dicted by the ABE and ATR frameworks for the kb-lb closure
rule are plotted. Once again the ATR averaging leads to
lower binding energies than those predicted by ABE, al-
though the difference is much smaller in this case. Note also
that for high �l and low �k, the intercell binding energy
predicted by the kb-lb closure rule is much higher than that
predicted by LMF, reflecting the increased proximity of the
particles in the two cells because of particle coupling across
the shared cell boundary �see Fig. 7�. As we will demonstrate
later, this coupling is important for accurately coarse-
graining clustering dynamics at later times when the average
cluster is comprised of many monomers.

Finally, the intercell binding energy surfaces for the
same system obtained with the kb-lr closure rule in the ABE
and ATR frameworks are shown in Fig. 11�a�. The distribu-
tion of binding energies in both the ATR and ABE schemes is
qualitatively similar to those in Fig. 10, but is somewhat
lower across much of the surface. The kb-lr model also ac-
counts for particle coupling between cells k and l, but does
not presuppose any particular configuration for the particles
in cell l, assuming instead that those particles are uniformly
distributed. The motivation for such a closure rule comes
from assuming that secondary coupling interactions arising
from other cells surrounding cell l act equally strongly on the
particles as those in cell k, leading to a roughly homogeneous
distribution therein. A schematic of this effect is shown in
Fig. 11�b�. Note that the presence of such secondary coupling
effects in general implies that the kb-lb intercell interactions
are likely to be overestimated. The predictions of CGLKMC
by using both the kb-lb and kb-lr closure models are com-
pared in Sec. VI.

The intercell binding energies for other interaction shells
in the coarse lattice can be computed in the same way as for
the 1NN case discussed above. The intercell binding energies
quickly decrease with each interaction shell, and for the 6NN
interaction potential used in the above examples, only the
2NN coarse cell interactions need to be considered. In fact,
the reduced interaction distance on the coarse lattice provides
an important contribution to the overall computational sav-
ings achieved by coarse graining.

VI. CGLKMC SIMULATIONS OF DIFFUSION
AND PARTICLE AGGREGATION

In this section, the ABE and ATR frameworks, along
with different closure methods, are tested by using two sys-
tems. The first is a weakly interacting system in which we
study bulk diffusion, while the second is a strongly interact-

FIG. 8. DOS and PDFs for a system of two 1NN coarse cells in the
kb-lb closure model. System information: q=36, 	J=1.5, L=6NN,
and �k=�l=20.

FIG. 9. �Color� Intercell binding energy �1NN coarse cells� for the LMF
model �kr-lr closure rule� in the ABE framework �upper surface� and ATR
framework �lower surface�. System information: q=36, 	J=1.5,
and L=6NN.

FIG. 10. �Color� Intercell binding energy �1NN coarse cells� for the kb-lb
closure rule in the ABE framework �upper surface� and ATR framework
�lower surface�. System information: q=36, 	J=1.5, and L=6NN.
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ing one in which the focus is on cluster formation. In
both cases, CGLKMC results are compared to FGLKMC
predictions.

A. Weakly interacting system „diffusion…

In order to assess the accuracy of CGLKMC simulation
with the closure rules and averaging frameworks discussed in
the previous sections, we begin by considering a two-
dimensional system subject to a one-dimensional concentra-
tion gradient, motivated by the example in Ref. 6. The con-
centration gradient is imposed along the x-direction while the
y-direction is assumed to be infinitely long through the use of
periodic boundary conditions. The boundary conditions in

the x-direction are given by 
�1�=1 and 
�10�=0; i.e., the
domain lies between 1�x�10. At steady state, the con-
tinuum equation for the concentration 
 is given by

�

�x
�D

�


�x
� = 0, �49�

where D is the effective particle diffusivity, which is a func-
tion of the local concentration and the particle interaction
potential.

The performance of CGLKMC is tested by using weak,
short-ranged interactions at two coarse-graining levels �i.e.,
q=9 and q=36�. A 1NN interaction potential with 	J=1 is
used in the FGLKMC simulations; the corresponding coarse
potential is computed by using WLMC simulations, as dis-
cussed in the previous sections. The steady-state local cov-
erage profile at a coarse-graining level of q=9 is shown in
Fig. 12�a� along with the FGLKMC results. The steady-state
condition is determined by monitoring the local coverage
until a stationary profile is established. In each case, the pro-
file is periodically monitored and the steady state identified
as the point at which the profile is constant to within 3% over
a given number of events �about 106�. Good agreement be-
tween each CGLKMC prediction and the FGLKMC results
is observed, but the profiles obtained by using the ATR

FIG. 11. �Color� �a� Intercell binding energy �1NN coarse cells� for the
kb-lr closure rule in the ABE framework �upper surface� and ATR frame-
work �lower surface�. System information: q=36, 	J=1.5, and L=6NN. �b�
Schematic of a homogeneous neighbor cell �center cell with dark particles�
due to implicit secondary interactions with other cells �peripheral cells with
light particles�.

FIG. 12. Steady state local coverage profile for short, weak interactions at a
coarse-graining level of �a� q=9 and �b� q=36. Black gradients—FGLKMC;
squares—ABE-LMF; deltas—ATR-LMF; circles—ABE-kb-lr;
diamonds—ATR-kb-lr.
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framework �with both LMF and kb-lr closures� are margin-
ally closer to the FGLKMC results than those from the ABE
framework. The performance of CGLKMC at q=36 for the
same simulation conditions is shown in Fig. 12�b�. Note that
the plotted concentrations in both Figs. 12�a� and 12�b� are
all mapped onto the q=36 coarse lattice so that a direct com-
parison can be made. The results for the q=36 case are simi-
lar to those obtained at q=9 although the higher level of
coarse graining exhibits a larger error for all closure rules
and averaging frameworks. No significant difference from
the kb-lr results is observed when the kb-lb closure rule is
applied to either case because the interaction potential is
weak.

For short, weak interactions, therefore, the two averag-
ing frameworks �ABE and ATR� are similar although the
ATR framework appears to provide a systematically better
approximation. Also, the new closure rules appear to give a
slightly better result than the LMF model, but the differences
are small. More conclusive results are demonstrated in the
following section for the case of strongly interacting
particles.

B. Strongly interacting system „aggregation…

For strongly interacting particles, the one-dimensional
diffusion model described in Sec. VI A is no longer appro-
priate because the particles quickly form large clusters and
the diffusivities of the clusters become extremely low, effec-
tively halting the concentration profile evolution. Hence, we
use a different system geometry in which the focus is on the
aggregation dynamics of the particles, and the evolution of
the cluster size distributions and morphologies is studied and
compared to FGLKMC simulations.

We begin by investigating the effect of the closure rule
and the averaging framework on the particle aggregation dy-
namics by using a coarse-grained system with q=36. In the
following simulations, 900 particles are initially uniformly
distributed on a two-dimensional square lattice containing
129 600 sites. A 6NN fine-grid interaction potential with
constant interaction strength, 	J=1.5, is applied for all cases
unless otherwise noted. A sequence of WLMC simulations is
used to compute the coarse interaction potential for each clo-
sure rule at the q=36 coarse-graining level, which is then
used as input into the CGLKMC aggregation simulations.
During the aggregation simulations, the cluster size distribu-
tion and morphology are periodically monitored and com-
pared to the results of the FGLKMC runs. A cluster is de-
fined as a group of particles that are connected at the 2NN
neighbor distance on the coarse-grid lattice. This definition is
self-consistent with the range of the coarse potential applied
in this work. Connectivity between particles on neighboring
coarse cells is assumed to hold at all occupancy levels be-
cause no configurational information within a coarse cell is
available. Note that all lattice configurations from the
FGLKMC simulation are mapped onto the coarse lattice sys-
tem to enable a quantitatively consistent comparison between
the two simulations.

It is immediately obvious that none of the closure meth-
ods coupled with the ABE averaging framework give a good

representation of the FGLKMC clustering dynamics. For ex-
ample, two moments of the cluster size distribution are
shown in Fig. 13 for the ABE-LMF combination; in particu-
lar, we use the average cluster size, M2 /M1, and the total
cluster number, M0, to represent the transient evolution of
the cluster size distribution. All moments of the size distri-
bution are defined as Mn=�ss

nXs, where Xs is the number of
clusters of size s, and n is the moment order. As shown in
Fig. 13, the aggregation dynamics predicted by CGLKMC
are initially in agreement with the FGLKMC results but then
rapidly level off. The apparent kinetic arrest is likely due to
the relatively low intercell binding energy predicted by the
ABE-LMF model, which is the principal driving force for
cluster aggregation after coarse cells begin to fill. Snapshots
of the corresponding particle distributions after about 100 s
for both simulations are shown in Fig. 14. While the
FGLKMC simulation has evolved into a single large cluster,
the CGLKMC system exhibits a distribution of isolated clus-
ters, each of size �q. Note that the occupancy level in each
coarse cell �up to 36 particles� is denoted by both grayscale
shading and sphere size—high occupancy is denoted by large
dark spheres, while low occupancy is denoted by small light
spheres.

Cluster dynamics predicted by the ABE-kb-lr model are
shown in Fig. 15. Some improvement is observed compared
to the ABE-LMF case, but the agreement between the
CGLKMC and FGLKMC results is still poor at later times.
Further tests �not shown� demonstrate that none of the clo-
sure rules in Table I coupled with the ABE averaging ap-
proximation lead to a satisfactory representation of the fine-
grid results simply because the ABE framework is not valid
for a strongly interacting system.

The effect of using the ATR averaging framework was
investigated next by using the same closure rules discussed
above. As shown in Fig. 16, the ATR-LMF model is still
poor because the LMF does not capture any of the coupling
present in the intracell and intercell particle distributions. By
contrast, excellent results are generated with the ATR-kb-lr
�and the closely related ATR-kc-lr� models as shown in

FIG. 13. Cluster size distribution obtained from FGLKMC and CGLKMC
�q=36�. The ABE-LMF framework is poor for strong interactions.
Symbols—FGLKMC: Circles—average cluster size �M2 /M1�;
squares—total number of clusters �M0�. Lines—CGLKMC �q=36�: Dashed
line—average cluster size �M2 /M1�; solid line—total number of clusters
�M0�.
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Figs. 17 and 18. The predictions of these two models are
essentially identical and we will focus on the ATR-kb-lr re-
sults. As previously discussed, the kb-lr closure rule attempts
to capture the coupling between cells k and l, while assuming
that the cell l population is uniformly �or randomly� distrib-
uted because of �equal� interactions with other surrounding
cells. As shown in Fig. 18, this model not only provides
accurate dynamic evolution of the distribution moments but
also captures the details of the cluster morphology through-
out the growth process.

The kc-lr closure rule �i.e., no particle-particle interac-
tions on the origination cell k� leads to very similar results to
the kb-lr case because the particle self-interactions within the
origination cell are effectively introduced by coupling to cell
l. In other words, particles in the origination cell are going to
be drawn to the cell boundary closest to cell l regardless of
whether self-interactions between them are present.

Based on these results, it is clear that both the ATR av-
eraging framework and a realistic closure model are essential
for generating accurate coarse-grained models for strongly
interacting particles. In the latter regard, it is instructive to

consider one additional case, namely, the ATR-kb-lb model.
Recall that the kb-lb model represents “full” coupling be-
tween the origination cell k and each surrounding cell l—i.e.,
each particle in cells k and l is free to interact with all other
particles in those two cells, under the implicit assumption
that all other surrounding cells are empty. The predicted clus-
ter size distribution evolution for kb-lb model is shown in
Fig. 19. Agreement with the FGLKMC data is excellent to
t�0.01 s, but poor thereafter, where the CGLKMC dynam-
ics suddenly slow down, only to accelerate about two time
decades later. As discussed above, this behavior is likely due
to overprediction of the coupling between cells k and l. None
of the other closure rules in Table I lead to satisfactory
results.

Although the effect of coupling to other cells is not ex-
plicitly taken into account in any of the closure rules pre-
sented in our study, the successful kb-lr model attempts to
capture secondary coupling by forcing the �interacting� par-
ticles on neighboring cells to assume random positions. Note
again that secondary coupling is not expected to have a sig-

FIG. 15. Cluster size distribution obtained from FGLKMC and ABE-kb-lr
framework CGLKMC �q=36�. Symbols—FGLKMC: Circles—average
cluster size �M2 /M1�; squares—total number of clusters �M0�.
Lines—CGLKMC �q=36�: Dashed line—average cluster size �M2 /M1�;
solid line—total number of clusters �M0�.

FIG. 16. Cluster size distribution obtained from FGLKMC and ATR-LMF
framework CGLKMC �q=36�. Symbols—FGLKMC: Circles—average
cluster size �M2 /M1�; squares—total number of clusters �M0�.
Lines—CGLKMC �q=36�: Dashed line—average cluster size �M2 /M1�;
solid line—total number of clusters �M0�.

FIG. 14. Cluster morphology predicted by �a� FGLKMC and �b� ABE-LMF
CGLKMC. Both particle distributions are presented on the q=36 coarse
lattice. A single cluster with a dense core is formed in the FGLKMC simu-
lation at t�100 s. Isolated clusters with sizes that are integer multiples of q
observed in CGLKMC. Note that zoom levels in �a� and �b� are different due
to the different microconfigurations.
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nificant impact on the intracell interactions because these are
generally much stronger than intercell interactions due to
particle proximity considerations. In summary, the
ATR-kb-lr �and the closely related ATR-kc-lr� model accu-
rately captures all aspects of the aggregation processes in the
two-dimensional system considered here. Both the averaging
framework and the closure rule are important in obtaining a
good representation when the interparticle interaction
strength is high.

C. Further testing of the ATR-kb-lr model

Two additional tests of the ATR-kb-lr model are pre-
sented in this section to further demonstrate the robustness of
this coarse-graining framework. In particular, different
coarse-graining levels and fine-grid interaction potentials are
tested as described in the following sections.

1. Effect of coarse-graining level

The ATR-kb-lr framework was applied to CGLKMC
simulations with q=64. All other parameters were main-
tained at the values specified in Sec. VI B. Note that addi-
tional WLMC simulations are needed to generate the coarse
interaction potentials for each of the new coarse-graining
levels. The CGLKMC simulation prediction of the cluster
size distribution evolution for the q=64 case is shown in
Fig. 20. Again, the clustering dynamics are captured across
the entire simulation timescale for both coarse-graining lev-
els, as are the final cluster structures �not shown�. Note that
the overall quality of the CGLKMC results does not appear
to appreciably deteriorate with increasing coarse-graining
level.

2. Effect of interaction potential shape

In this test, a decaying, rather than a constant, interaction
potential is applied. The particle interaction distance still
extends to the 6NN shell but the interaction exponentially
decays to about 40% of its 1NN strength as it approaches the
6NN shell. Again, all other parameters are kept unchanged
and the corresponding coarse interaction is computed by us-

ing the WLMC method. The performance of the CGLKMC
simulation with this interaction potential is shown in Fig. 21.
Once again, excellent agreement between FGLKMC and
CGLKMC �q=9� is observed, although a little deviation is
apparent at t�10−6 s, where the cluster dynamics transition
from growth to coalescence. The overall aggregation dynam-
ics predicted by this interparticle potential are about 100
times faster than those predicted by the constant potential
applied in the previous cases.

VII. COMPUTATIONAL EFFICIENCY OF CGLKMC
SIMULATIONS

The single most important driving force for developing
CGLKMC models is to extend the length and timescale
accessible with LKMC by reducing the computational cost
associated with particle hopping events. The savings in com-
putational time in a CGLKMC simulation arise from three
main coarse-graining aspects. The first and probably domi-
nant one is the reduction in the configurational space.17 The
second type of savings is because the particle jump length in
a coarse-grained system can be much larger than in the fine-

FIG. 17. Cluster size distribution obtained from FGLKMC and ATR-kb-lr
framework CGLKMC �q=36�. Symbols—FGLKMC: Circles—average
cluster size �M2 /M1�; squares—total number of clusters �M0�.
Lines—CGLKMC �q=36�: Dashed line—average cluster size �M2 /M1�;
solid line—total number of clusters �M0�.

FIG. 18. Cluster morphology predicted by �a� FGLKMC and �b� ATR-kb-lr
CGLKMC at t�100 s. Both particle distributions are presented on the
q=36 coarse lattice. A single cluster with a dense core is formed in both
simulations.
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grid one; specifically the coarse jump length in each direc-
tion is proportional to the number of fine-grid sites in one
coarse cell along that direction. Finally, the CGLKMC algo-
rithm is also simplified compared to the fine-grid one in that
the range of the potential is reduced by coarse graining. For
example, in the previous sections, the 6NN fine-grid interac-
tion potential was effectively reduced to a 2NN interaction
potential on the coarse lattice, greatly reducing the cost
associated with updating the rates after each particle hop.

To quantitatively assess the savings in CPU time due to
coarse graining, we used a large system in which 4624
particles were distributed across 665 856 lattice sites in two
dimensions. A comparison between the performance of the
FGLKMC and two different levels of CGLKMC �q=9
and q=36� is shown in Fig. 22, which shows the evolution of
CPU time versus simulation time throughout the simulation.
It is interesting to note that the computational advantage is
not uniform throughout the simulation. Specifically, the
maximum advantage is realized at intermediate simulation
times where the q=36 CGLKMC simulation is about 100

times faster than the FGLKMC and 10 times faster than the
q=9 CGLKMC simulation. At this stage, the reduction in
configurational space is most advantageous. The advantage
shrinks at later times because the difference in configura-
tional space between the simulations is not as large, i.e.,
there are only a few large clusters in the system and the main
advantage of CGLKMC is simply the larger jump distance
per event, as well as the reduced CPU cost associated with
the rate database update.

There is a significant overhead cost associated with the
off-line computation of the coarse interaction potentials,
most of which is created in the computation of the coarse
intercell potentials. One WLMC simulation is required for a
given occupancy combination in the origination and destina-
tion cells. Of course, not every single possibility needs to be
computed because interpolation can be applied to fill in the
interaction surfaces, particularly if they are smooth functions
of the occupancy level in a coarse cell. At q=64, which is the
largest degree of coarse graining considered in this work, we
computed the ABE at every third value of occupancy and
interpolated for the others. This results in approximately

FIG. 19. Cluster size distribution obtained from FGLKMC and ATR-kb-lb
framework CGLKMC �q=36�. Symbols—FGLKMC: Circles—average
cluster size �M2 /M1�; squares—total number of clusters �M0�.
Lines—CGLKMC �q=36�: Dashed line—average cluster size �M2 /M1�;
solid line—total number of clusters �M0�.

FIG. 20. Cluster size distribution obtained from FGLKMC and ATR-kb-lr
framework CGLKMC �q=64�. Symbols—FGLKMC: Circles—average
cluster size �M2 /M1�; squares—total number of clusters �M0�.
Lines—CGLKMC �q=64�: Dashed line—average cluster size �M2 /M1�;
solid line—total number of clusters �M0�.

FIG. 21. Cluster size distribution obtained from FGLKMC and ATR-kb-lr
framework CGLKMC �q=9� with a decaying interaction potential.
Symbols—FGLKMC: Circles—average cluster size �M2 /M1�;
squares—total number of clusters �M0�. Lines—CGLKMC �q=9�: Dashed
line—average cluster size �M2 /M1�; solid line—total number of clusters
�M0�.

FIG. 22. Timing profile of CGLKMC simulations. Circles—FGLKMC;
squares—CGLKMC �q=9�; diamonds—CGLKMC �q=36�; solid
line—average cluster size �M2 /M1�.
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about 400 WLMC being required to completely define the
1NN coarse potential. Another 400 simulations are required
for the coarse potential at the 2NN interaction range. A total
of about 4–6 h of CPU time �using the same processors that
were employed in the CGLKMC analysis in Fig. 22� is re-
quired to compute the coarse interaction potential at q=64.
This is significant when compared to the CPU savings im-
plied in Fig. 22, particularly for smaller systems. However, it
should be noted that the WLMC simulations are ideally
suited for execution in a parallel setting and therefore do not
consume much actual time relative to the CGLKMC �which
is much more difficult to parallelize�.

VIII. CONCLUSIONS

A novel CGLKMC simulation framework was devel-
oped and shown to provide excellent representation of par-
ticle aggregation in two-dimensional systems of strongly in-
teracting particles. The accurate modeling of aggregation in
strongly interacting systems has posed challenges for previ-
ously published LKMC coarse-graining approaches. Two
particular elements were shown to be critical for successful
coarse graining in strongly interacting systems. The first is
the use of exponentially weighted ABEs rather than simple
averages. Physically, the former is an average over the tran-
sition rates, which effectively biases the binding energies in a
given coarse cell toward less strongly bound configurations
that are more likely to generate particle hops. In the limit of
weak interactions, both averaging schemes were shown to
converge to the same estimate for the ABE within a coarse
cell.

The second important component of our coarse-graining
framework is the consideration of intra- and intercell cou-
pling by an appropriate choice of closure rule, which has
been largely ignored in the literature to date. Several closure
rules were presented and tested that extend beyond the LMF
closure, which has been widely applied in the literature. In
the LMF closure approach, all particles are assumed to be
interactionless and all configurations are equally likely. In
the present work, both intracell and intercell particle interac-
tions are considered. Intracell interactions are shown to lead
to “nonideal” behavior in which the particles form clusters,
and therefore become heterogeneously distributed within the
coarse cell. Intercell interactions lead to correlations between
particles in adjacent cells and additional heterogeneity.
Moreover, coupling to cells beyond the intercell system can
lead to further bias that must be considered. It was demon-
strated that ignoring these “secondary” coupling effects leads
to overprediction of the intercell coupling. The optimal clo-
sure rule assumes that the neighbor cells are homogeneous
�LMF�, but allows for full coupling within the origin cell.
This hybrid closure rule accurately predicts the cluster evo-
lution dynamics for a variety of interaction potentials and for
all coarse-graining levels considered in our study.

The coarse-graining approach and closure rules pre-
sented here extend previous work to the general case of ar-
bitrary potential interaction range and strength. The multigrid
approach in Ref. 12 was the first to effectively include rate
averaging �rather than binding energy averaging� and the ef-

fect of particle interactions on this average, but did not con-
sider intercell interactions and is therefore limited to very
short interactions. By contrast, the commonly applied LMF
closure rule addresses intercell interactions but does not
consider the effect of particle interactions on the particle
distributions �i.e., nonideality�.

Some limitations of the present approach should be
noted. First, the computational cost for the off-line WLMC
simulations used to compute the coarse-grained interaction
potential is significant, especially for high levels of coarse
graining and small LKMC systems. Second, the present ap-
proach is not highly transferable. In particular, it is not clear
how to apply the present coarse-graining framework to
nonisothermal processes. As the system temperature
changes, the particle distribution function in each coarse cell,
and therefore the coarse interaction potential, changes. It is
not clear whether the computed coarse interactions at one
temperature can be scaled in some way to apply at another
temperature. This issue will be addressed in future work.
Extension of the current methodology to three dimensions
and to other lattice structures should be relatively straightfor-
ward. These extensions will also be addressed in future
work. Finally, we note that extension of the ideas presented
here to off-lattice, or continuous space systems is not imme-
diately obvious. We have, however, demonstrated in previous
work1–3 that certain off-lattice systems can be effectively
mapped onto a lattice representation by using model-to-
model regression. Once this is achieved, it should be readily
possible to apply the ideas presented in this work to provide
further coarse graining.
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