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Progress in the development and application of computational methods
for probabilistic protein design

Abstract
Proteins exhibit a wide range of physical and chemical properties, including highly selective molecular
recognition and catalysis, and are also key components in biological metabolic, catabolic, and signaling
pathways. Given that proteins are well-structured and can now be rapidly synthesized, they are excellent
targets for engineering of both molecular structure and biological function. Computational analysis of the
protein design problem allows scientists to explore sequence space and systematically discover novel protein
molecules. Nonetheless, the complexity of proteins, the subtlety of the determinants of folding, and the
exponentially large number of possible sequences impede the search for peptide sequences compatible with a
desired structure and function. Directed search algorithms, which identify directly a small number of
sequences, have achieved some success in identifying sequences with desired structures and functions.
Alternatively, one can adopt a probabilistic approach. Instead of a finite number of sequences, such
calculations result in a probabilistic description of the sequence ensemble. In particular, by casting the
formalism in the language of statistical mechanics, the site-specific amino acid probabilities of sequences
compatible with a target structure may be readily identified. The computational probabilities are well suited
for both de novo protein design of particular sequences as well as combinatorial, library-based protein
engineering. The computed site-specific amino acid profile may be converted to a nucleotide base distribution
to allow assembly of a partially randomized gene library. The ability to synthesize readily such degenerate
oligonucleotide sequences according to the prescribed distribution is key to constructing a biased peptide
library genuinely reflective of the computational design. Herein we illustrate how a standard DNA synthesizer
can be used with only a slight modification to the synthesis protocol to generate a pool of degenerate DNA
sequences, which encodes a predetermined amino acid distribution with high fidelity.
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Abstract 

Proteins exhibit a wide range of physical and chemical properties, including highly 

selective molecular recognition and catalysis, and are also key components in biological 

metabolic, catabolic, and signaling pathways.  Given that proteins are well-structured and 

can now be rapidly synthesized, they are excellent targets for engineering of both 

molecular structure and biological function.  Computational analysis of the protein design 

problem allows scientists to explore sequence space and systematically discover novel 

protein molecules.  Nonetheless, the complexity of proteins, the subtlety of the 

determinants of folding, and the exponentially large number of possible sequences 

impede the search for peptide sequences compatible with a desired structure and function.  

Directed search algorithms, which identify directly a small number of sequences, have 

achieved some success in identifying sequences with desired structures and functions. 

Alternatively, one can adopt a probabilistic approach. Instead of a finite number of 

sequences, such calculations result in a probabilistic description of the sequence 

ensemble.  In particular, by casting the formalism in the language of statistical mechanics, 

the site-specific amino acid probabilities of sequences compatible with a target structure 

may be readily identified.  The computational probabilities are well suited for both de 

novo protein design of particular sequences as well as combinatorial, library-based 

protein engineering.  The computed site-specific amino acid profile may be converted to 

a nucleotide base distribution to allow assembly of a partially randomized gene library.  

The ability to synthesize readily such degenerate oligonucleotide sequences according to 

the prescribed distribution is key to constructing a biased peptide library genuinely 

reflective of the computational design.  Herein we illustrate how a standard DNA 
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synthesizer can be used with only a slight modification to the synthesis protocol to 

generate a pool of degenerate DNA sequences, which encodes a predetermined amino 

acid distribution with high fidelity. 
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1. Introduction  
Nature has been engineering nanoscale devices in the form of proteins for billions 

of years.  In particular, biological proteins epitomize the elegance of biomolecules with 

their versatility, high fidelity synthesis, efficiency, and atomically well-defined complex 

structures.  Proteins and other folding biomolecules perform a wide variety of functions 

within living organisms including selective catalysis, molecular recognition, cell 

signalling, and energy transduction. These machines have been “engineered” via 

evolution, but the potential exists to harness and extend the versatility of proteins and 

other folding chain molecules to provide new types of molecular structures and devices.  

Herein, we discuss recent methods for the design of particular proteins and---especially 

for cases where the determinants of structure and molecular function are not transparent--

-the probabilistic design of ensembles of proteins. 

 
 Despite their well-defined structures, proteins possess many special “processing” 

properties that provide versatile routes to structures that are ordered at nanometer length 

scales.  Being linear heteropolymers, proteins are straightforward to synthesize from their 

constituent amino acids via solid phase peptide synthesis or the expression of an 

encoding gene in a suitable cell line.  Proteins are not machined; no molding, templating, 

masking or other techniques are necessary for the protein to form a particular structure.  

Under appropriate conditions, the protein spontaneously folds to a well-defined three-

dimensional shape, where the information necessary for this ordering is contained in the 

sequence of monomers, the amino acids.  Upon folding, essentially a single structure is 

selected from among a huge ensemble of possible collapsed, unstructured conformations.  
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Stabilizing this folded state are a combination of effects:  constraints on bond lengths and 

bond angles due to the covalent connectivity of the backbone and a myriad of 

noncovalent interactions, including van der Waals forces, hydrogen bonding, 

hydrophobic effects, and electrostatic interactions.  The folded state of most proteins is a 

thermodynamic minimum and is robust with respect to thermal fluctuations.  Exquisite 

control of structure is potentially achievable via the manipulation of sequence, which in 

turn extends the possibility of the de novo design of predetermined backbone structures, 

i.e., fold topologies.  The search for sequences with desired structural and functional 

properties is also partially facilitated by the fact that there may be more than one solution.  

We have many natural examples of sequences folding to essentially the same overall 

structure, but these sequences may have little similarity with one another.  Successful 

protein design has advanced dramatically with the use of computational methods to 

address the enormous range of monomer and conformational variability that is possible 

with these molecules.   

1.1. Protein design 

 The design of proteins requires three main elements (Saven, 2001).  One being a 

target structure or topology, which usually involves specifying the coordinates of atoms 

in the polypeptide backbone.  Such structures may be extracted from the protein data 

bank (PDB)(Sussman et al., 1998)  or created via molecular modeling (Summa et al., 

1999).  Secondly, an energy function is needed so as to quantify the compatibility 

between sequence and a particular structure.  Lastly, constraints are typically imposed on 

the sequences.  Such constraints can be used to pattern hydrophobic and hydrophilic 

amino acids appropriately(Kamtekar et al., 1993) or to specify the identities of amino 
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acids in the vicinity of a site in the structure to be used for binding or catalysis (Benson et 

al., 1998a; DeGrado et al., 1999). 

Successes in protein design have come despite the fact that the noncovalent forces 

stabilizing proteins are some of the most difficult to quantify accurately.  Most molecular 

potentials in use for protein design result (a) from fitting interatomic interactions to data 

derived from quantum chemical calculations or from spectroscopic experiments, resulting 

in molecular force fields such as CHARMM (Brooks et al., 1983) or AMBER (Weiner et 

al., 1984), or (b) from fitting the potentials to the structural preferences observed among 

atomically detailed structures in the PDB. Fortunately, current energy functions have 

proven practical, and the successful design of proteins is possible even without a 

complete, detailed quantitative understanding of all the forces involved in specifying their 

structures and stabilities. Via the design of targeted protein structures, including those 

having desired functions, our understanding of the forces and effects that specify the 

properties of the folded state can be further refined.   

Designing proteins is nontrivial due to both the subtlety of the interactions that 

stabilize and specify the folded state and their conformational complexity. Proteins are 

large (tens to hundreds of amino acid residues), and many variables are required to 

specify the folded state: the amino acid sequence, the global (tertiary) structure of the 

backbone, and the side chain conformations.  Each monomer (residue) has a pendant side 

chain, which may have multiple conformations even when the backbone structure is 

specified. In addition to structural complexity, there is also sequence complexity.  Design 

involves identifying folding sequences from the enormous ensemble of possible 

sequences:  for a modestly sized 100-residue protein, there are more than 10130 possible 
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sequences. Exhaustive searching of the mN possible sequences is tractable only if the 

number of variable sites in the structure N is small and/or the number of degrees of 

freedom per monomer site m is greatly reduced, where the site degrees of freedom 

include both different amino acid identities and conformational states.   If the different 

side-chain conformations (rotamer states (Dunbrack & Cohen, 1997; Ponder & Richards, 

1987)) of each amino acid are considered, the complexity of the search is further 

compounded, since m may easily increase by an order of magnitude. As a result, 

complete enumeration of sequences is typically intractable for all but the smallest 

peptides.  However, a number of search algorithms exist that identify suitable sequences 

without exhaustive enumeration.  These searches are guided by the large degree of 

“consistency” seen in folded proteins (Go, 1983).  On average, a folded protein is 

atomically well-packed with favorable van der Waals interactions, hydrophobic residues 

are sequestered from solvent, most hydrogen bonding interactions are satisfied, and the 

residues are in harmony with their local secondary structural preferences (α-helix or β-

strand).  However, it has been known since the first protein structure appeared that this 

global consistency is often complex and may have little simplifying symmetry. As 

mentioned, noncovalent interactions are some of the most difficult to accurately quantify, 

and estimating free energies associated with mutation or structural ordering remains a 

subtle and computationally demanding area of physical chemical research (Brooks, 2002; 

Shea & Brooks, 2001).  Despite the predictive capabilities of molecular potentials, 

presently it is impractical to determine the relative stability changes of a large number of 

sequences using the type of detailed simulation methods commonly used to estimate such 

free energy differences.  Nonetheless, molecular potentials derived from small molecules 
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and from the protein structure database do contain at least partial information about the 

interactions and forces known to be important for specifying and stabilizing protein 

structures, e.g., van der Waals interactions, steric (excluded volume) interactions, and 

hydrogen bonding.  In some cases, the optimization of such potentials has lead to striking 

successes in protein design (Kraemer-Pecore et al., 2001).  These potentials are 

necessarily approximate, however, and any sequence so designed may be sensitive to the 

particular potential and target structure used.   Alternatively, the partial information 

contained in these potentials may be used in a probabilistic manner to yield directly the 

site-specific likelihoods of the amino acids. A probabilistic approach is also appropriate 

for characterizing the variability of sequences that fold to a common structure, where 

complete sequence enumeration is impractical. 

Probabilistic approaches are particularly appropriate for de novo protein design in 

the context of combinatorial protein experiments, which create and rapidly assay many 

different sequences (Moffet & Hecht, 2001). Even though combinatorial methods can 

address large numbers of sequences (104-1012), these numbers are still infinitesimal 

compared to the numbers of possible protein sequences, e.g., 20100 ≈ 10130 for a 100-

residue protein. Thus even with combinatorial methods, we still must focus on selected 

regions of sequence space.  This pre-selection is most often done by identifying a few 

residues within the protein by inspection and allowing full or partial variability at these 

sites.  Recently, computational methods have been developed that can keep track of a 

much wider range of sequence variability and provide quantitative methods for 

selectively winnowing the sequence search space.  Here, we discuss directed and 
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probabilistic computational methods for sequence design with an emphasis on design 

applications of the probabilistic methods.  

1.2.  “Directed” methods of protein design 

The sequence energy landscape may be explored in a directed manner so as to identify 

sequences having low energies when they take on the target structure.  This we refer to as 

“directed protein design.”  Such sequences can then be realized experimentally, and their 

thermodynamic stability, structure, and functional properties may be determined.  Early 

efforts in de novo design were guided by the local structural tendencies of the amino 

acids as inferred from known structures of natural proteins.  Such tendencies include 

preferences for secondary structure(O'Neil & DeGrado, 1990) and exposure to solvent 

(hydrophobic effects) (Miller et al., 1987; Rose et al., 1985).  Such inspection-based 

efforts identified polypeptides that were compact and had substantial secondary structure, 

but these early sequences did not necessarily fold to well-defined tertiary structures 

(Bryson et al., 1995).  With their abilities to address quantitatively systems containing 

large numbers of degrees of freedom, computational methods have dramatically 

accelerated advances in protein design.  Such methods most often cast the sequence 

search as an optimization process, wherein amino acid identity and side chain 

conformation are varied in order to optimize a scoring or energy function, which serves 

as a sequence-structure compatibility metric.  Furthermore, in arriving at sequences 

where the target structure has a well-packed interior and favorable inter-atomic 

interactions, the search must include variation in the side-chain conformations (rotamer 

states) of each amino acid (see (Dunbrack, 2002)).  Since the number of possible “states” 

for a residue can increase rapidly when the amino acid side chain conformers are taken 
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into account, it is often necessary to allow only a few residues to vary at a time while 

constraining the conformations of the remaining residues.  Although complete 

enumeration is often not feasible, the sequence space can be sampled in a directed 

manner so that the search moves progressively toward optimal (or nearly optimal) 

sequences.  Genetic algorithms and simulated annealing are two commonly used 

stochastic methods that search the sequence space in a partially random fashion 

(Desjarlais & Handel, 1995; Hellinga & Richards, 1994; Jones, 1994; Shakhnovich & 

Gutin, 1993).   Such searches have sufficient “noise” or recombination to permit escape 

from local minima in the sequence-rotamer landscape while at the same time 

preferentially sampling low energy states as the calculation progresses.  When applied to 

atomically detailed representations, the stochastic methods focus primarily on repacking 

the interior of a structure with hydrophobic residues (Hellinga & Richards, 1994).  Both 

genetic algorithms and simulated annealing have been successfully applied to re-design a 

number of natural proteins:  434 Cro (Desjarlais & Handel, 1995), ubiquitin (Johnson et 

al., 1999), the B1 domain of protein G (Jiang et al., 2000), the WW domain (Kraemer-

Pecore et al., 2001), and helical bundles (Bryson et al., 1998; Jiang et al., 1997).  In many 

cases, these methods have aided in identifying experimentally viable sequences 

(Kraemer-Pecore et al., 2001; Walsh et al., 1999).  However, since stochastic search 

methods do not always identify global optima (Voigt et al., 2000), other search methods 

have also been developed. For molecular potentials involving only site (residue-backbone) 

and pair (residue-residue) interaction energies, elimination and pruning methods such as 

“dead end elimination” can find the global optima (Gordon & Mayo, 1998; Gordon & 

Mayo, 1999; Looger & Hellinga, 2001; Pierce et al., 2000; Voigt et al., 2000).  By 
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considering possible pair interactions between residues, these pruning methods 

successively remove from each site amino acid-rotamer states that cannot be part of the 

global optimum until no further states can be eliminated.  Dead end elimination was 

applied to the full sequence design of a 28-residue zinc finger mimic (Dahiyat & Mayo, 

1997), as well as a 51-residue homeodomain motif once the protein has been patterned 

with hydrophobic and polar sites (Marshall & Mayo, 2001).  Residue subsets within 

portions of a variety of proteins have been redesigned (Malakauskas & Mayo, 1998; 

Shimaoka et al., 2000; Strop & Mayo, 1999). Functional properties such as metal or small 

molecule binding or catalysis may also be included as elements of the design process 

(Benson et al., 1998b; Bolon & Mayo, 2001; DeGrado et al., 1999; Looger et al., 2003). 

Directed protein design has been the subject of several recent reviews (Kraemer-Pecore et 

al., 2001; Saven, 2001; Street & Mayo, 1999). 

Despite some striking successes, computational methods for the directed design of 

sequences have limitations. While stochastic methods can be applied to large proteins and 

permit many sites to be varied simultaneously, the computational times and resources 

used for such calculations can be extensive even for small proteins. Directed methods are 

necessarily sensitive to the energy or scoring function used, since they identify low 

energy states of a particular energy function.  These energy functions are approximate, 

however, and inaccuracies in the energy function may not merit the search for global 

optima. In addition, many naturally occurring proteins are not optimized. In fact, most 

proteins are only marginally stable, e.g., ∆Go < 10 kcal/mol for folding (Gromiha et al., 

2002), and mutants of natural proteins with increased stability are well known (Eriksson 

et al., 1992).  This is not unexpected since nature selects for biological activity rather than 
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stability.  Proteins need to be stable to be structured, but hyperstability is usually only a 

requirement of organisms such as hyperthermophiles.  Thus it is important to develop 

methods complementary to those used for directed protein design, methods that reveal the 

properties of those sequences likely to fold to a particular structure but which may not be 

structurally “optimal.” Such methods may be used in designing particular proteins and 

may also be applied to a new class of protein design studies, combinatorial experiments, 

where large numbers of proteins may be synthesized and subsequently assayed for 

desired structures and activities. 

 

1.3. Probabilistic approaches to protein design 

In the context of protein design, the use of site-specific amino acid probabilities rather 

than specific sequences is here referred to as probabilistic protein design.  Probabilistic 

approaches, as opposed to directed approaches, are often used in science and engineering 

for cases where we have incomplete information about a system.  For protein design, 

such a probabilistic approach is motivated by the complexity and uncertainty associated 

with describing folded proteins.  Probabilistic design methods directly provide sequence 

information, particularly with regard to structurally important amino acids.  The amino 

acid probabilities can guide the design of specific sequences and can also highlight sites 

likely to tolerate mutation with minimal impact on structure; such sites can be targets of 

variation upon multiple rounds of protein design and can mark regions likely to tolerate 

mutations that can confer biological activity or other desired properties. 

The probabilistic methods described below may be used in several ways to guide 

protein design.  In each case, sequences are generated in a manner consistent with the 
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calculated probabilities.  Firstly, the most straightforward choice is a low energy 

consensus sequence, the sequence comprising the most probable amino acid at each 

position.  Although the consensus sequence would not necessarily account directly for 

correlations between residue identities due to inter-residue interactions, such correlation 

may be better addressed by an iterative series of calculations, each time constraining an 

increasing number of amino acid degrees of freedom until a unique sequence is identified.  

Such an approach has been used in the design of a 114-residue four-helix metalloprotein 

(Calhoun et al., 2003).  Secondly, the calculated probabilities may be used to guide a 

search algorithm.  This approach has been applied to develop an efficient  Monte Carlo 

(MC) based method which uses predetermined amino acid probabilities to bias the 

generation of trial sequences at each step of the Monte Carlo Markov trajectory (Zou & 

Saven, 2002).  These methods are similar to well-known configurational bias MC 

methods but use a predetermined probability-profile to bias the sampling. Lastly, 

probabilistic methods may be used to quantitatively guide the design of combinatorial 

libraries of proteins, in which an ensemble of biased sequences is generated in a manner 

that best reproduces the calculated site-specific amino acid probabilities. 

1.4. Combinatorial experiments 

Combinatorial protein experiments can be used to investigate sequence-structure 

compatibility and to discover novel sequences folding to desired structures. In protein 

combinatorial design experiments, large numbers of sequences (libraries) are synthesized 

and screened for evidence of folding to predetermined structures or for a desired activity, 

e.g., small molecule binding or enzymatic activity. Depending upon how the sequence 

diversity is generated and assayed, experiments of this type can explore a large number of 
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sequences, up to 1012 (Keefe & Szostak, 2001).  The protein diversity may be generated 

via solid phase peptide synthesis, but more commonly a library of partially random genes 

is expressed in phage (Hoess, 2001), bacteria (E. coli) (Kamtekar et al., 1993), or yeast (S. 

cerevisiae)(Boder & Wittrup, 1997).  Such experiments can go “beyond the protein 

sequence database,” since the diversity of the sequences is at the control of the 

researchers. Sequence features important to folding (and other biological properties) may 

be explored in a manner decoupled from the evolutionary pressures that determine the 

sequences of Nature’s proteins. Combinatorial protein experiments have been used to 

identify helical proteins (Rojas et al., 1997; Roy et al., 1997a; Roy et al., 1997b), 

ubiquitin variants (Finucane et al., 1999), high affinity antibodies (Boder et al., 2000), 

self-assembled protein monolayers (Xu et al., 2001), proteins with amyloid-like 

properties (Xu et al., 2001), metal-binding peptides (Case & McLendon, 2000), and 

stable inter-helical oligomers (Arndt et al., 2000). Several excellent reviews of 

combinatorial experiments and methodology have appeared recently (Giver & Arnold, 

1998; Hoess, 2001; Moffet & Hecht, 2001; Zhao & Arnold, 1997). 

 

2. Methods for probabilistic protein design 

For a given target structure, there are several methods that may be used to identify 

the site specific probabilities of the amino acids for sequences likely to fold to this 

structure.  We give special emphasis here to statistical methods (section 2.3) that provide 

the amino acid probabilities directly. 
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2.1. Alignment of related sequences 

The sequence variability of a protein structure can be examined using sequence and 

structural databases.  Sequences known to have similar structures can be identified from 

the PDB or from a database of structural alignments (Holm & Sander, 1998).  If the 

structure of a sequence is known, other proteins having sufficient sequence similarity 

(e.g., greater than 40% sequence identity) may be assumed to share the same overall 

structure.  Multiple sequence alignments (MSA) of such similar sequences can used to 

estimate the site specific probabilities as simply the frequencies of each amino acid at 

each position in the alignment (Luthy et al., 1992).  In case the number of sequences is 

insufficient to fully represent all amino acids at particular sites, pseudo-count and other 

methods may be used to “regularize” the frequencies (Durbin, 1998).  Nonetheless, the 

probabilities from such a profile are likely to be heavily biased by known sequences in 

the database.  This is especially a problem for sequences with a small number of other 

homologous sequences.   At conserved sites, it may be difficult to resolve the 

determinants of amino acid identity, such as whether conservation arises from functional 

or structural constraints on the sequences. Finally,the database-derived probabilities are 

perforce inappropriate for engineering novel protein structures.  Since there are many 

natural examples of sequences folding to similar structures but with little sequence 

similarity, it is desirable to obtain a broader understanding of the full range of sequence 

variability.  Unencumbered with evolutionary constraints, more transferable 

computational methods permit direct determination of the amino acid probabilities using 

only a given backbone structure as a template.  
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2.2. Directed search methods to build profiles 

Directed search methods can estimate the properties of an ensemble of sequences 

by repeatedly applying the search to build up a set of low energy sequences.  A target 

structure is chosen by specifying the coordinates of the main chain (backbone) atoms.  

Several recent directed design studies have obtained sequences similar to the wild type 

sequence when a single protein structure was used (Koehl, 1999a; Koehl, 1999b; 

Kuhlman & Baker, 2000; Raha et al., 2000).  For a given structure, multiple sequence 

search calculations may be run independently, resulting in a set of sequences whose 

alignment yields the site-specific probabilities.  This approach was adopted by Desjarlais 

and coworkers, who used independent runs of their sequence prediction algorithm (SPA) 

for each member of an ensemble of closely related structures consistent with a particular 

fold.  They were able to identify sequences consistent with the fold of a WW domain, a 

small beta-sheet protein (Kraemer-Pecore et al., 2001), some of which have been 

experimentally characterized.  By designing sequences for each of 100 minor structural 

variants (1 Å root mean square deviation) of a particular fold using the SPA of Desjarlais, 

Larson et al have built computational profiles exhibiting much more diversity than those 

obtained using a single structure (Larson et al., 2002).  Workers at Xencor, Inc. have 

recently used Monte Carlo sampling of sequences to mutate residues in the vicinity of the 

active site of β-lactamase (Hayes et al., 2002).  Sequences with more than 1000-fold 

increases in resistance to an antibiotic were identified.  Though obviously useful, these 

approaches to building profiles require repeated directed searches in order to build the 

site specific frequencies of the amino acids, making such calculations computationally 

demanding.  Nonetheless, with the advent of faster processors and improved algorithms, 
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such calculations are not infeasible.  Although stochastic and directed search methods 

may work well for optimization, it is not straightforward to impose constraints on the 

values of effective energies of the sequences in such methods.  Given that empirical 

energies (e.g., a hydrophobicity score) may be well determined or bounded---but not 

optimized---for known folding sequences, it is of interest to develop methods than allow 

the facile implementation of such constraints. 

2.3. Statistical theory of sequence ensembles 

An alternative theory to identify amino acid probabilities for a given backbone 

structure has been developed (Kono & Saven, 2001; Zou & Saven, 2000).   This entropy-

based formalism applies statistical mechanical concepts to directly estimate the number 

of sequences and the site-specific probabilities.   The theory addresses the whole space of 

available compositions and is not limited to the small fraction that is accessible to 

experiment or to computational enumeration and sampling.  Using this approach, the 

features of suboptimal sequences may be readily examined.  Large protein structures 

(more than 100 residues) can also be easily accommodated in the calculation.  Here the 

“entropy” quantifies the variability of sequences consistent with the target structure.  The 

number of possible sequences is reduced using concepts from thermodynamics—

decreasing the energy or imposing constraints on the system reduces the entropy and 

hence diminishes the number of allowed sequences. 

A key concept in this methodology is the notion of entropy maximization, which 

is also fundamental to statistical mechanics and information theory.  There are an infinite 

number of possible sets of site-specific state probabilities, where “state” is defined by 

both monomer identity and side chain conformation.  The most probable set of such 
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probabilities is determined by optimizing an effective entropy function, where the 

maximization is done subject to constraints.   The method takes as input (a) a target 

structure determined by the coordinates of the backbone atoms, (b) energy functions that 

quantify sequence-structure compatibility, and (c) constraints on amino acid properties.  

For a target structure, the method estimates the probabilities of individual identity-

rotamer states at each residue position. Both global considerations (e.g., the overall 

energy of the sequences in the target) and local features (e.g., the allowed amino acids at 

particular sites) can be specified via constraints.  With judicious application of such 

constraints, the method provides a systematic means to reduce the size of sequence space 

to be searched to an experimentally feasible size.  

Among sequences with desired properties as specified by constraint functions, let 

wi(α,rk(α)) denote the probability that amino acid α is present at residue position i,and its 

side chain is in a discrete rotamer state rk(α) (Dunbrack & Cohen, 1997).  The total 

sequence-conformational entropy Sc (here simply referred to as “conformational 

entropy”) is written as  

 

))(,(ln))(,(
,,

αααα
α

kik
ki

ic rwrwS ∑−=                               (1) 

 

The sum extends over each sequence position i and all available amino acids α at each 

position.  Furthermore, for each amino acid, the sum is taken over each of the k possible 

rotamer states rk(α). Implicit in writing the entropy Sc in this manner is a factorization 

approximation, which would seem to imply that the probabilities are independent.  

Constraints on the sequences, however, will cause these probabilities to be coupled to one 
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another.  The wi(α,rk(α)) are determined as those that maximize Sc subject to any 

constraints fi, which are functions of the wi(α,rk(α)).  In order to impose these constraints 

during maximization, a variational functional V is defined using the method of Lagrange 

multipliers:  

L−−−= 2211 ffSV ββ                                (2) 

 

To identify the state probabilities consistent with particular values of constraints, the m-th 

constraint function fm is constrained to have a particular value .  

The constraint functions fm may be used to specify such features as the overall energy of 

the structure or the patterning of residue properties.  The set of equations that must be 

solved simultaneously to determine the probabilities and the Lagrange multipliers βi then 

take the form: 

{ })))(,(( αα kim
o

m rwff =

 

/ ( , ( ))i kV w r 0α α∂ ∂ =                                            (3) 

({ ( , ( ))}) o
m i k mf w r fα α =                                        (4) 

 

This large set of on the order of 104 coupled, nonlinear equations is solved using root 

finding methods (Press et al., 1992).  These equations may be solved for a series of 

constraint values to study how the amino acid profiles vary with the value of the 

constraint, e.g., how the probabilities change as the overall conformational energy is 

decreased.  A typical calculation for a protein of 100 residues allowing all 20 amino acids 

at each position can be completed in less than 24 hours using a 1GHz Pentium IV 

processor.  Typically, the site probabilities are sensitive to their initial conditions only for 
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very low effective energies and temperatures, well below those values where the 

probabilities to be used in protein design are determined (see Fig. 2 and discussion of 

effective heat capacity Cv in the Appendix). 

 Detailed descriptions of the energetic constraints have been discussed elsewhere 

(Calhoun et al., 2003; Kono & Saven, 2001) and are also presented in the Appendix.  

Here we briefly summarize how such effects are included in the calculations.  A key 

energetic constraint on the sequences involves an effective “conformational energy” Ec, 

which quantifies van der Waals, electrostatic, and hydrogen bonding energies.  The 

conformational energy consists of one-body energies which involve interactions of the 

side chains with the backbone as well as two-body energies involving interactions 

between side chains.  Ec essentially accounts for intramolecular interactions within the 

protein.  Effective reference energies for each amino acid may also be included in the 

conformational energy to crudely approximate the energetics of the unfolded ensemble of 

conformations.  A second energy constraint involves an “environmental energy” Eenv, 

which accounts for the solvation preferences of the amino side chains and hence 

quantifies intermolecular interactions involving protein and solvent. This environmental 

energy is a database-derived effective one-body potential and is a function of  the local 

density of Cβ atoms ρ about a particular amino acid side chain.  Higher values of ρ 

appear more often within the interior of a protein than on the surface, and thus a local 

effective energy dependent on ρ may effectively parameterizes the propensities of amino 

acids to be buried within the typically hydrophobic interior of a folded protein or to be 

exposed to solvent.  Conjugate to these effective energies, Ec and Eenv, are effective 

temperatures, Tc and Tenv, that arise as Lagrange multipliers during maximization subject 
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to constraints on the energies.  We may choose to characterize the sequence energy 

landscape in terms of either effective energy or temperature. 

By way of example the theory has been applied to a 57-residue protein, the SH3 

domain.  The conformational entropy decreases as the effective temperature Tc, or 

equivalently Ec, decreases (Fig. 1).   At high energies (corresponding to high Tc), many 

high energy interactions between the possible amino acids are permitted, and one 

observes a broad distribution of sequence-rotamer states at each site.  However, as energy 

is lowered, the number of probable amino acids and rotamer states per site also decreases 

on average.  From a thermodynamic perspective, this is consistent with a positive 

temperature, since 
VNE

ST
,

/ 







∂
∂

=1 .  As shown in Fig. 1, Cv possesses a peak around 10 

kcal/mol and reaches a valley around Tc = 2 kcal/mol, where the identities and 

conformations of residues in the interior become relatively well defined (Kono & Saven, 

2001).  Still, surface residues, while predominantly hydrophilic, may occupy a large 

number of rotamer states with comparable probability.  This is consistent with the 

observation seen in structural databases that surface exposed residues are often less well 

defined structurally than interior residues.  Thus, the heat capacity is a useful quantity to 

help determine at which “effective temperature” one should examine the amino acid 

probabilities.  In addition, direct comparisons of the calculated profile shows good 

agreement with one obtained by sequence alignments using the HSSP database (Sander & 

Schneider, 1991).  A few representative amino acid profiles from the buried region are 

shown in Fig. 2. 
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3. Gene libraries from site-specific probabilities 

In section 1.3, we discussed how to make use of the site-specific amino acid 

probabilities.  A specific sequence may be identified either as a consensus sequence or as 

the result of a directed search.  This sequence can then be synthesized by solid phase 

peptide synthesis or expressed from a constructed gene coding for the sequence.  In 

general, larger proteins (more than 50 residues) are most often created using gene 

expression.  In order to apply the computed probabilistic sequence information to 

construct a combinatorial library, the protein profiles must first be reverse-translated into 

libraries of partially random gene sequences.  As genes consist of nucleotide triplets, or 

codons, each of which is translated to a specific amino acid, non-uniform distributions of 

nucleotides are necessary to encode libraries of sequences with the amino acids at 

variable sites appearing with the predetermined probabilities.  To obtain such libraries, 

we need computational methods to solve for the nucleotide frequencies consistent with 

the amino acid profiles, and methods to generate an ensemble of genes having 

predetermined nucleotide frequencies at selected positions.  

3.1. Computational design of gene libraries  

Pseudo-independent nucleotide probabilities at each position of a set of partially random 

genes can be calculated to best reproduce a  protein library having the calculated set of 

site specific amino acid probabilities (Wang & Saven, 2002).  The calculated gene library 

can then be constructed by standard DNA synthesis, as shown in the next section. 

Let P1(n1), P2(n2), P3(n3) be the probabilities of each of the four possible 

nucleotides (ni = A, T, G, C) in the first, second and third position of a codon respectively. 

 22



If these are treated as independent, the probability that amino acid α will appear as 

encoded by the codon n1n2n3 is P(α|n1,n2,n3) = P1(n1)P2(n2)P3(n3)δ(α|n1,n2,n3), where 

δ(α|n1,n2,n3) = 1 only if n1,n2,n3 is a codon for amino acid α and is zero otherwise. If the 

codons of amino acid α are equally likely (no codon bias), the probability of an amino 

acid α is the sum of codon probabilities corresponding to this amino acid. 
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The next step is to identify an objective function that quantifies the deviation of the 

amino acid probabilities encoded by a given set of nucleotide probabilities from the 

desired set of site specific amino acid probabilities (Jensen, 1998; Wolf & Kim, 1999). 

To identify the nucleotide probabilities that not only best reproduce the desired amino 

acid frequencies but also prevent the occurrence of stop codons, a new objective function 

has been presented(Wang & Saven, 2002). The objective function comprises both a 

relative entropy term and a χ2 function, which quantifies the difference between the 

desired and calculated amino acid probabilities in a least-squares manner.  Relative 

entropies are commonly used to measure the ‘distance’ between two probability 

distributions and are strong indicators of when information in one distribution is not 

contained in the other (Durbin, 1998).  The objective function takes the following form. 
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Here ε is introduced as an arbitrary small constant (ε = 10-6) so as to avoid numerical 

instability in case Pdes(α) vanishes. The stop codons are treated as the 21st amino acid for 

the purpose of this calculation.  The objective function is optimized (minimized) subject 

to the usual constraints on the nucleotide probabilities: 0 1)( ≤≤ ii nP  and   

This may be done by the Lagrange multiplier method or using computational packages 

available for constrained minimization (Wang & Saven, 2002).    Codons optimized for a 

particular organism or expression system may also be included in objective function of 

this type (Wang & Saven, 2002). 

∑ =
in ii nP 1)( .

As an example, this nucleotide design approach was applied to residue 54 of the 

SH3 domain discussed in the previous section, and the resulting nucleotide distributions 

are summarized in Fig. 3.  The desired and encoded frequencies of the amino acids are 

displayed as open and filled bars, respectively, at the top of Fig. 3, while the computed 

nucleotide probabilities are shown at the bottom.  The agreement between the two is 

excellent in this case, and in general, the calculated probabilities agree well with desired 

ones. In some cases, an exact match between the desired and calculated probability 

distribution cannot be achieved due to the partial degeneracy of codons to amino acids.  

This computational method, however, provides excellent yields of complete sequences, 

avoiding stop codons, which would otherwise render the protein incomplete.  For several 

test proteins in which more than 50 residues were subject to selective randomization, the 

yield of complete sequences was 96% or greater, substantially better than other methods 

of determining nucleotide frequencies.   High yields are particularly important when a 

large fraction (or all) of a gene is subject to combinatorial mutation, as introduction of 

premature stop codons can offset the advantages of having a large diversity library. 
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3.1. Synthesis of oligonucleotides subject to arbitrary 

nucleotide probabilities  

While peptide libraries may be chemically synthesized if the peptide chain is short 

enough, there are times when the peptide chain is too long to be easily assembled.  In 

such cases, the library can be assembled in a biological system (e.g. phage, bacteria, yeast, 

or mammalian cells) before being screened.  This is accomplished by designing suitable 

DNA oligonucleotides (oligos), assembling the oligos to create the genes by polymerase 

chain reaction or primer extension, and expressing the gene products in vivo.  In order to 

introduce targeted mutations in the library, degenerate oligos specifically tailored for the 

purpose must first be synthesized.  However, the synthesis of all but the simplest 

degenerate oligos is technically difficult and often costly.  For each degenerate nucleotide 

(base), various phosphoramidites need to be individually weighed out and be premixed.  

This process is time-consuming and error-prone.  Once the mixture is prepared, it must be 

installed on the DNA synthesizer as a distinct base, occupying a dedicated port.  As the 

number of such ports is typically limited, only a few can be fitted at any given time.  For 

oligos containing more degenerate positions than there are ports, the synthesis must be 

halted regularly to allow bottles to be exchanged.  This chain of events is labor-intensive, 

not amenable to parallel synthesis, and often results in a low overall yield due to the 

repeated stop-and-go cycles.  Manual mixing of phosphoramidites also results in waste of 

reagents, as the leftover mix not used up by the end of the synthesis goes to waste, thus 

driving the cost of custom oligos higher.   

Hence, it is preferable to develop an alternate means of synthesizing custom 

degenerate oligos that is reliable, efficient and cost-effective.  The availability of such a 
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method would not only allow biased libraries to be constructed with high accuracy but 

would also reduce the cost of assembling them by keeping the prices of degenerate oligos 

down.  In order to demonstrate the feasibility of automated synthesis of arbitrary 

degenerate oligos, we synthesized degenerate 7-base pair oligos of the sequence 

ACX1X2X3GT, where Xi is a degenerate base.  For the present study, the degenerate 

positions comprised the following arbitrary distributions of the bases: 

 
Base A C G T 
X1 20% 20% 20% 40% 
X2 40% 30% 10% 20% 
X3 10% 20% 60% 10% 

 
Table 1.  Input nucleotide base probabilities 

 

During the standard DNA synthesis, each base is coupled to the growing chain of 

oligonucleotides by adding a predetermined amount (to be determined by the scale of the 

synthesis) of activated phosphoramidite to a column containing resin.  This is done in 

practice by periodically opening the mechanical valve controlling the outflow of 

phosphoramidite.  The same principle can be applied to add bases nonuniformly at a 

variable position, where two or more bases are injected according to the prescription 

dictated by the calculated base frequencies.   Their corresponding valves in the 

synthesizer are opened and closed for a specific number of times, each time allowing a 

fixed amount of phosphoramidite into the column.  Coupling at each position was 

achieved with a total of ten such pulses.  As such, opening a valve once raised the 

percentage of the corresponding base by 10%.  For the example in Table 1, at position X1, 

the A, C, G valves were each opened twice so that they are present in 20% of the final 

sequences, while the T valve was opened four times in accord with this base having 40% 
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probability.  The phosphoramidite added first may have a greater chance of coupling to 

the growing oligonucleotide chain, and hence may be slightly overrepresented in the end.  

The synthesis of the simple oligonucleotide probes whether this would pose a major 

obstacle. 

 

The resulting sixty-four sequences correspond to twenty distinct masses due to 

mass degeneracy.  The synthesized oligos were purified by reverse phase HPLC on a C-8 

column, run over an ion exchange column to exchange buffer to (NH4)2SO4, lyophilized, 

and finally subjected to mass analysis by electrospray ionization (ESI) on Micromass 

Quattro II using 1:1 mix of acetonitrile:water as mobile phase.  The oligos appeared as 

multiply charged species under the experimental condition with the minimum of charge 

two.  For some adjacent peaks, the difference in mass to charge ratio (m/z) was less than 

one atomic mass unit. The complexity of the spectrum due to this near mass degeneracy 

as well as the isotopic abundances, made it difficult to resolve closely lying peaks.  The 

peaks that were too close to be resolved separately, were considered as a single peak at 

the lower molecular weight with the combined intensity of both peaks.  The intensities of 

the observed mass peaks were normalized to one to allow ready comparison with the 

predicted values.  The observed peak intensities were then compared to the theoretical 

intensities.  While there are many sources of uncertainties that could influence the 

ultimate sequence distribution, we wanted to estimate the sensitivities of the peak 

intensities to the uncertainties in the precise amounts of the phosphoramidites.  To this 

end, we calculated the error in the expected peak intensities by assuming a 1% error in 

the probabilities of the bases at degenerate positions and propagating the error to the final 
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sequences.  The expected peak intensities were further corrected to account for the 

molecular weight differences among phosphoramidites.   

We calculated the individual base probabilities at each of the three degenerate 

positions from the observed peak intensities.  As the intensity of the peak at mass m, Im, is 

the sum of the probabilities of all sequences consistent with that mass, we have 
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where s is a specific triplet sequence, s(i) is the base at position i, Pi,s(i) is the probability 

of the base s(i) at position i, mi,s(i) is the mass of the base s(i) at position i.  The Kronecker 

delta δ(x, y) is 1 if x equals y, or 0 otherwise.  Then the individual nucleotide probabilities 

are calculated via linear least squares fit subject to the constraints  

, , , , 1i A i C i G i TP P P P+ + + =                 (8) 

for i = 1, 2, and 3.  The fitted base probabilities are as follows: 

 

 A C G T 
X1 18.7% 19.3% 19.0% 43.0% 
X2 38.4% 29.6% 9.8% 22.2% 
X3 9.5% 19.9% 59.4% 11.2% 

 
Table 2  Fitted nucleotide base probabilities 

 

Finally, the amino acid probabilities computed from the input and calculated nucleotide 

distributions plotted in Fig. 3 show that the desired amino acid profile is accurately 

mimicked by the designed library.   

Given that no measures were taken to avoid the systematic error coming from 

sequential addition of phosphoramidites, the theoretical mass spectroscopy profile is 
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remarkably well reproduced experimentally.  Even more remarkable is the consistency 

between the programmed and resulting nucleotide probabilities and the corresponding 

amino acid profiles.  This study demonstrates that the synthesis of custom degenerate 

oligos can be fully automated by simple modifications to the software controlling 

standard oligonucleotide synthesizers.  Furthermore, computation of the nucleotide 

probabilities and amino acid profile demonstrates that a peptide library with an arbitrary 

profile can be easily designed with high precision by using this approach.  The gap 

between computational and experimental protein engineering may be bridged with an 

automated synthesis of degenerate oligos, which would help achieve routine construction 

of computationally designed polypeptide library.   

4. Summary 

 Facile construction of large diversity libraries has led to continuous discovery of 

novel protein molecules with unexpected chemical properties.  Equally impressive 

advances have also been made in computational protein engineering whereby polypeptide 

sequences that embody desired functions are beginning to be predicted in silico.  No 

doubt further improvements will allow ever more complex protein systems to be 

examined computationally, leading to rapid identification of interesting de novo protein 

molecules.   

This paper discusses two broad categories of computational protein engineering, i.e. 

direct protein design and probabilistic protein design.  Whereas the former seeks to 

produce a list of protein sequences that satisfy functional and structure requirements, the 

latter attempts to describe these candidate sequences as a string of probabilities, each 

describing the likelihood of the amino acids at variable positions.  The probabilistic 
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approach has the advantage of being readily configured to help design a biased peptide 

library.  Given the subtlety of biological function and the uncertainties in the energy 

functions used to evaluate many competing sequences, the ability to combine a 

computational approach with a powerful experimental approach may be more productive 

in the long run.  We have also presented how the probabilistic formalism may be applied 

to an exercisable laboratory procedure.  Two further developments were required, one 

dealing with the reverse-translating the amino acid probabilities to nucleotide frequencies 

and the other addressing the physical synthesis of degenerate oligonucleotides satisfying 

the given nucleotide distribution.  Together, they can convert a given amino acid profile 

to a pool of easily realized degenerate DNA sequences with the minimum infusion of 

incidental stop codons.  These oligonucleotides can then be assembled to a functional 

gene and create a peptide library that is computationally biased in a site specific manner. 

Proteomics is beginning to reveal the mysteries of how proteins encoded by a cell’s 

genome interact as a complex system, controlling and modulating cellular activities and  

ensuring the ultimate survival of the cell and the organism.  Many existing models of 

biochemical processes including cell signaling, response to environment, intracellular 

biosynthesis, reproduction, and gene expression are based upon those used to describe 

electric circuits and complex networks (Alm & Arkin, 2003).  Just as we must understand 

how to build switches and transistors before we can build integrated circuits, we must 

first have a comprehensive understanding of the component protein molecules before we 

hope to understand and engineer biological systems as a whole.  Here we have discussed 

recent progress in developing general methods for probabilistic protein design.  The 

promise of such methods lies in their ability to accelerate the design of functional 
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molecules through synergistic collaboration with protein synthesis and library-based 

experiments, even when our understanding of the determininants of particular activities is 

less than complete. 
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6. Appendix 

This appendix details both the various energy terms that are included as part of the 

energy constraints during the amino acid profile calculation and the determination of the 

site-specific amino acid probabilities. 

1.1. Energy functions 
In this statistical formalism, two energies--conformational energy Ec and environmental 

energy Eenv--are considered and used as constraints in maximizing a conformational 

entropy Sc.  The conformational energy Ec is calculated using an atomic based potential, 

the AMBER force field(Weiner et al., 1984). Ec includes van der Waals interactions, 

electrostatic interactions with a distant dependent dielectric (4ε rij), and a modified 

hydrogen bond term (Kono & Doi, 1996).  For a particular sequence (α1,…,αN) where the 

conformational states of these amino acids are (r1(α1),…,rN(αN)), Ec is: 
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In the context of protein energy functions, the one-body term ))(,( ααε ki r  includes the 

interaction energies between backbone atoms and those of the amino acid side chains, as 

well as a reference energy (discussed below) of amino acid.  The two-body term 

))'(,');(,( ', ααααε kkji rr  is a sum over the inter-atomic interaction energies between two 

rotamers at two different sites in the structure. Fluctuations in Ec about its mean value 

due to variation of sequence is assumed to small for large numbers of sequences sharing 

common energetic properties. We may then write the conformational energy as a function 

of the site-specific probabilities wi(α,rk(α)). 
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Note that this equation results from the same implicit factorization assumption involving 

the site probabilities used to arrive at the expression for the entropy Sc (see Eq. 1).  Other 

higher order approximations are also possible using more complex expressions for Sc and 

Ec  that would yield the pair probabilities wij(α,rk(α),α′,rk(α′)). 

As another constraint, an environmental energy Eenv is introduced to account for 

the hydrophobic effect in a way that is compatible with the statistical theory (Kono & 

Saven, 2001).  This potential takes into account the surface exposure preferences of the 

amino acids.  As for Ec, we can write Eenv using amino acid probabilities as   
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where εenv is a local environmental energy defined below. Note that this energy contains 

no two-body interactions and is dependent only upon the amino acid and rotamer state at 

each position.  Since this effective energy is an approximate quantity derived from 

structures in the protein databank (PDB), it is usually implemented as a separate 

constraint rather than combined with the atom-based conformational energy Ec. 

6.2. Solvation and hydrophobic energy 
An important input to any protein design method is some means of quantifying the 

hydrophobic effect and other solvation properties.  The hydrophobic effect in proteins is 

manifested in the tendency of apolar (uncharged, aprotic) amino acid side chains to be 

preferentially located within the interior of globular, soluble proteins.   Explicit 

representation of solvent is impractical for calculations that examine a large number of 

sequences, and calculating solvent accessible surface areas alone---which often correlate 

well with hydrophobic tendencies---can be computationally prohibitive when many 

sequences must be considered.  In considering solvation effects in a practical manner 

consistent with the formalism, we introduced an environmental energy that is a function 

of the density (ρ) of Cβ atoms in the vicinity of each side chain(Kono & Saven, 2001).  

The position of the Cβ  atoms are determined by the backbone coordinates and hence 

invariant in the calculation. As hydrophobic residues tend to be located in buried interior 

regions of proteins, they are likely to have a higher Cβ density than hydrophilic residues 

which tend to be located at the surface, exposed to solvent. Using 500 different globular 

proteins of known structure (training set), we derived effective potentials for the amino 
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acids using a standard equation for “statistical” potentials (Durbin, 1998; Miyazawa & 

Jernigan, 1985; Saven, 2003)  
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where p(α,ρ) is the fraction of times a local Cβ density of ρ is observed for amino acid α; 

p(α) is the fraction of times amino acid α is observed in the training set; and p(ρ) is the 

fraction of times a local density of ρ is observed, regardless of amino acid type (Kono & 

Saven, 2001). βe is an effective inverse temperature. The density ρ is defined as the 

density of Cβ  atoms within the “free volume” within a sphere centered about a particular 

orientation of the side chain.  We note that the local density is dependent upon the 

rotamer state of the amino acid, so ))(,()))((,( ααεαραε kenvkenv rr ≡ .  This Cβ density 

based potential exhibits good correlation with other amino acid hydrophobicity 

scales(Kono & Saven, 2001).  For the sequence probability calculations, Eenv is 

constrained to a value calculated using a known sequence consistent with the structure (if 

one is known), or a value representative of proteins of that particular size or chain length. 

 

6.3. Reference energy 
In computational protein design, the goal is to identify sequences whose energy when in 

the target structure is sufficiently below that of the ensemble of unfolded states.  To 

address this issue about unfolded states, a reference energy γref (α) for each amino acid is 

introduced into the energy Ec to mimic the effects of the denatured state (Raha et al., 
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2000; Wernisch et al., 2000). The reference energy is calculated as a “free energy” of 

each amino acid, averaged over multiple rotamer configurations as well as backbone 

conformation (φ and ψ angles).  The reference energies of an amino acid α may then be 

estimated using   
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where εref is the conformational energy of the model compound N-acetyl-N’-

methylamide amino acid α, and the sum is over both rotamer and backbone degrees of 

freedom. Here βref=1/kBT, where kB is Boltzmann’s constant and T is a temperature 

appropriate for the conformation sampling of side chain and backbone conformations 

(e.g.,  T = 300K).  Finally, reference energies are calibrated with respect to that of glycine 

(G), which has no side chain and therefore is assumed to have zero reference energy.  The 

energy constraint on the sequences involving inter-atomic interactions is then modified to  
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6.4. Rotamer and identity probabilities 
The theory maximizes the total conformational entropy Sc, yielding a probability 

wi(α,r(α)) that a particular amino acid is present at site i with side chain conformation k.  

The conformational and environmental energies are constrained to take on particular 

values Ec
0 and Eenv

0, while the probabilities are constrained to ensure normalization. As 

desired, additional constraints involving the patterning of amino acid residue identities 

may also be incorporated.  The constrained values of Ec and Eenv may be systematically 

varied so as to map out the sequence landscape as functions of these energies.  Once the 

wi(α,r(α)) have been determined, the amino acid probability wi(α)  can be easily obtained 

by summing over the rotamer state probabilities of amino acid α.  
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Using an analogy to statistical thermodynamics, the Lagrange multiplier that arises due to 

constraining the conformational energy, βc, may be considered an effective inverse 

temperature 1/βc = Tc. Similarly, the “heat capacity” Cv of the system can be computed 

as : 
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where iε  is so called a local mean field energy which denotes the average local field 

about a particular amino acid side i.  The effective heat capacity Cv provides a 

quantitative measure of the fluctuations in the sequence-rotamer identities in response to 

changes in the constraint conditions during a calculation. 
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7. Figure captions 

Fig. 1 (Top) Sequence-conformational entropy Sc of the SH3 domain of c-Crk (PDB code: 

1CKA), plotted against effective temperature Tc, shows that entropy decreases 

monotonically as temperature is lowered.  (Bottom) Effective heat capacities per residue 

Cv for all, buried and exposed residues are plotted against effective temperature.  

Temperatures are in arbitrary units determined by the molecular potential used, here in 

units of kcal/mol.  

 

Fig. 2 A few representative amino acid probabilities from the buried region of the SH3 

domain.  Calculated (filled) and sequene alignment-based (open) profiles.  F10, L18, F20 

and L26 all have fractional solvent accessible surface areas less than 20 %. 

 

Fig. 3  Probability distributions of amino acids (upper) and nucleotides (lower) for site 54 

of a SH3 domain (PDB:1CKA). For the amino acid probabilities, the desired probability 

distribution is shown by open bars and that encoded by calculated gene library by filled 

bars.  An oligonucleotide library with the frequencies of the nucleotides specified in the 

lower panel encodes for the site-specific amino acid probabilities in the upper panel. 

 

Fig. 4 ESI mass spectroscopy of degenerate oligonucleotide ACX1X2X3GT.  “Expected” 

(black, triangles) are combined probabilities of all sequences resulting in the indicated 

molecular weight.  “Observed” (gray, squares) are measured intensities normalized to one 

for all fifteen observed peaks.  The error bars are based on assumed 1% uncertainty 

during synthesis.    
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Fig. 5 Input (filled) and designed (open) amino acid profiles.  The input profile is 

computed from the original nucleotide probabilities at positions 1, 2 and 3.  The designed 

profile is computed from the nucleotide probabilities calculated by fitting the mass 

spectroscopy peaks (see text for discussion).  The amino acids are shown in the single 

letter notation.  Asterisk (*) represents a stop codon.   
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