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Analysis of the Performance of the Electrodes in a Natural Gas Assisted Steam 

Electrolysis Cell 

 

Wensheng Wang, Raymond J. Gorte, and John M. Vohs ∗ 

Department of Chemical and Biomolecular Engineering 

University of Pennsylvania 

Philadelphia, PA 19104 
 
Abstract 
 
 The performance of solid oxide electrolysis (SOE) cells while operating in the 

natural gas assisted steam electrolysis (NGASE) mode was evaluated.  The SOE cells 

used yttria-stabilized-zirconia (YSZ) as the oxygen ion conducting electrolyte, Co-CeO2-

YSZ as the H2-H2O electrode Pd-doped, CeO2-YSZ CH4-oxidation electrode. The cell 

electrochemical performance was evaluated as a function of the H2O/H2 ratio and the 

extent of conversion of CH4. The results of this study provide insight into the factors that 

control electrode performance and further demonstrate the viability of an NGASE cell for 

the production of H2. 
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 Introduction 

Solid oxide electrolyzers (SOE) have the potential to be efficient devices for the 

production of high purity hydrogen from water. The ability to produce hydrogen free 

from impurities other than water is particularly attractive for polymer exchange 

membrane (PEM) fuel cells where the electrodes are highly susceptible to poisoning by 

impurities such as CO and sulfur.  In a SOE water or a mixture of water and hydrogen is 

fed to the cathode where the water is dissociated to produce H2 and oxygen anions that 

are transported through an oxygen ion conducting ceramic electrolyte (typically yttria-

stabilized zirconia, YSZ) to the anode.  In conventional designs molecular oxygen is 

evolved into an air stream on the anode and, thus, the oxygen partial pressure on the 

anode is significantly higher than that on the cathode producing a large chemical 

potential barrier for the transport of oxygen through the electrolyte.  In order to overcome 

this barrier an external power supply must be used to “pump” the oxygen anions through 

the electrolyte. The chemical potential difference between the cathode and the anode and 

the external electrical power requirement can be reduced significantly by exposing the 

anode to a reducing gas such as methane that can react with the evolved oxygen.  This 

approach is called natural gas assisted steam electrolysis (NGASE) [Martinez-Frias et al., 

2003].  A schematic diagram of an NGASE cell is displayed in Figure 1.  Note that the 

overall reaction being performed in an NGASE cell is equivalent to the steam reforming 

of methane followed by water gas shift. This is accomplished, however, in a single 

membrane reactor that separates the CH4/CO2 stream from the H2/H2O stream, thereby 

eliminating the need for difficult gas phase separations in order to produce pure H2.  
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Another advantage of NGASE is that, at least for some operating conditions, the 

Nernst potential is positive and the electrolysis reaction will proceed without application 

of an external potential. Efficient operation in this mode requires, however, electrodes 

that have high activity for methane oxidation and are stable when exposed to 

hydrocarbons under reducing conditions.  This latter constraint rules out Ni/YSZ cermet 

electrodes that are commonly used in solid oxide fuel cells (SOFC) since they catalyze 

the formation of carbon deposits from methane which rapidly degrades performance. Our 

group has developed alternative electrode designs that circumvent this problem by either 

replacing Ni with Cu which is not prone to coking [Gorte et al., 2000; Kim et al,. 2001; 

Lu et al., 2003] or using all ceramic electrode formulations [Gross et al., 2007; Gross et 

al., 2007].  For example, we have shown that electrodes based on thin porous YSZ layers 

that are impregnated with high loadings of CeO2 (40 wt %) and dopant levels of a 

catalytically active metal such as Pd exhibit excellent performance on both H2 and CH4 in 

SOFCs [Gross et al., 2007; Gross et al., 2007].  One of the objectives of the work 

presented here was to evaluate the performance of electrodes of this design in an NGASE 

cell.  Since there have been very few studies of electrolysis cells operating in the NGASE 

mode a second objective was to evaluate how the performance of the anode and cathode 

in an NGASE cell vary as a function of the fuel utilization (i.e. anode and cathode gas 

composition).  This insight is needed to further evaluate the potential of the NGASE 

approach and to predict the overall performance and efficiency of this type of hydrogen 

production device.  

 

 3



 
Experimental 
 

Two identical solid oxide electrolysis cells were used in this investigation and 

were constructed using a three-layer YSZ (8 mole % yttria) disc which consisted of a 

dense YSZ electrolyte layer sandwiched between two porous electrode layers. The multi-

layer disc was fabricated by laminating three YSZ tapes. The center electrolyte tape 

contained only YSZ and organic binders, while sacrificial pore formers (graphite and/or 

polyethylene) were included in the tapes used for the anode and cathode.  The tapes were 

laminated under a pressure of ~6 MPa at 340 K and then sintered to 1773 K.  During 

firing the pore formers combusted resulting in a dense, 50 μm thick YSZ electrolyte disc, 

1.25 cm in diameter, sandwiched between 15 μm and 300 μm thick porous YSZ layers.  

The active components of both electrodes were added using wet impregnation as 

has been described in detail previously [Huang et al., 2004, 2004, 2005; Lee et al., 2004, 

2005; McIntosh et al., 2003; Costa-Nunes et al., 2005]. The 300-μm thick porous 

electrodes were loaded with 15 wt % CeO2 and 30 wt % Co by impregnation of aqueous 

solutions of Co(NO3)2 and Ce(NO3)3.  The 15-μm thick porous electrodes were loaded 

with 40 wt% CeO2 and 1 wt % Pd by impregnation of aqueous solutions of Ce(NO3)3 and 

(NH3)4Pd(NO3)2. The 15-μm electrode had an active area of 0.35 cm2.  The electrical 

conductivity in the thinner electrode was supplied by the ceria and the Pd dopant was 

used to enhance the catalytic activity for the oxidation of CH4.  We have previously 

shown that SOFC anodes of this design exhibit high performance for the direct oxidation 

of hydrocarbon-based fuels [Gross et al., 2007].  

Electrical contacts were made using Ag wire and Ag paste on both electrodes. The 

cells were sealed onto 1.0 cm diameter alumina tubes using a ceramic adhesive (Aremco, 
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Ultra-Temp 516) with the anode on the inside of the tube.  This tube was then placed into 

a second larger tube that was sealed at one end. This two-tube set-up allowed the 

composition and flow rates of the gasses exposed to both electrodes to be controlled. 

During electrolysis cell testing the Co-ceria-YSZ electrode was exposed to streams 

containing mixtures of H2O and H2.  In some experiments N2 was included as a diluent.  

While the flow rate of the carrier gas was maintained at 130 ml/min, the flow rate of the 

gas sent to the Co-ceria-YSZ electrode varied from 130 to 360 ml/min depending on 

steam content.  The feed gas to the Pd-ceria-YSZ electrode consisted of mixtures of CH4, 

H2O, and CO2. Since it was not possible to operate the button cells used in this study at 

high conversions, CO2 was added to the anode feed gas in order to simulate the gas 

composition at high conversions.  For example, a mixture of CH4 :H2O:CO2.=10:40:80 

was used to simulate 80% conversion. Because the flow of oxygen ions was negligible 

compared to the gas flow rates, conversion in each compartment was truly differential, so 

that analysis of exit-gas compositions was not useful. 

In addition to being an excellent hydrocarbon oxidation catalyst, Pd/CeO2 has 

high activity for steam reforming of methane [Wang and Gorte, 2001].  Thus, some 

reforming of the methane will occur on the anode.  Since the residence time for the gas in 

the button cell is short, the extent of reforming in the anode is likely to be relatively low. 

This would not be the case, however, in larger cells running at high conversions where 

the amount of steam reforming will be much higher. Therefore, in order to more 

accurately simulate the gas compositions that would be present under realistic operating 

conditions, the anode gas was passed through a small pre-reactor containing a Pd/CeO2 

catalyst prior to being sent to the electrolysis cell in order to allow the gas-phase 

 5



composition to come to equilibrium. The pre-reactor was maintained at the same 

temperature as the electrolysis cell. To calculate values of the OCV for each operating 

condition we assumed that the following reforming reactions came to equilibrium within 

the pre-reactor (only reaction 1 was used when the Pd-ceria-YSZ electrode was exposed 

to only CH4 and H2O):   

  242 3HCOCHOH +⇔+                    (1)   
 
  222 HCOCOOH +⇔+                       (2). 
 

V-i curves were measured over a potential range from 0.4 to -0.5 V. AC 

impedance data were recorded in the galvanostatic mode using a Gamry Instruments 

impedance spectrometer, with a frequency range from 0.01 Hz to 100 kHz and 

perturbation amplitude of 5 mV for various DC polarizations.  Throughout this study, the 

H2O/H2 ratio was maintained below 13. This set the upper limits for PO2 at the Co-ceria-

YSZ electrode to be 3×10-19, 6×10-18 and 9×10-17 atm at 973, 1023 and 1073 K, 

respectively.  These are one to two orders of magnitude lower than the equilibrium PO2 

required for cobalt oxidation [Gaskell, 2003] insuring that cobalt remained metallic in 

each experiment. N2 was used as a diluent for H2 in order to vary the H2O/H2 ratio and 

H2O partial pressure over a wide range.  

Because reference-electrode measurements tend to be unreliable [Adler, 2000], 

electrode performance was analyzed the V-i polarization curves and 2-probe impedance 

spectra. Electrolyte losses are certainly proportional to the current density and can be 

calculated from the tabulated resistivities of YSZ [Gross, et al, 2007]. It has also been 

previously shown that the Co-ceria-YSZ electrode exhibits an impedance that is 

independent of current density in H2-H2O mixtures under both SOE and SOFC conditions 
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[Wang, et al, 2006]. Therefore, the losses within each electrode be calculated from the 

data provided. 

While we did not perform detailed studies of electrode stability in this work, the 

performance of the cells remained stable for a period of at least several days at 973 K. At 

1073 K, there was a gradual loss in the performance of the Pd-ceria-YSZ electrode due to 

a loss of conductivity associated with sintering of the ceria, as discussed elsewhere in 

more detail [Gross, et al, 2000]. 

 
Results and Discussions 
 

The performance of the electrolysis cell was initially studied as a function of the 

H2O/H2 ratio and H2O partial pressure in the feed gas to the Co-ceria-YSZ electrode with 

the composition of the feed gas to the Pd-ceria-YSZ electrode held fixed at 97% CH4 and 

3% H2O. As noted in the experimental section, the CH4-H2O mixture was first contacted 

with a Pd/CeO2 catalyst in order to more accurately simulate the conditions expected in a 

larger area cell.  Figure 2 shows V-i curves obtained at 973 K for several H2O/H2 ratios. 

For each curve, from the OCV to 0 potential, the current flow and H2 generation is driven 

by the chemical potential difference between the two electrodes and no external power 

was supplied to the cell. At negative cell potentials, an external power source was used to 

supply the additional potential required to maintain current flow. For H2O/H2 =13 and 

PH2O = 0.57 atm, the measured OCV is 0.21 V and the short circuit current is 0.14 A/cm2. 

The measured OCV for this cell is 0.36 V less than the calculated value of 0.57 V.  Due 

to the low reactivity methane, it is likely that for high CH4 concentrations equilibrium is 

not established in Pd-ceria-YSZ electrode and this may be the cause of the lower than 

expected OCV.   
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As shown in Figure 2, decreasing the H2O/H2 ratio to 0.9 while maintaining the 

PH2O relatively constant at 0.53 atm resulted in an overall decrease in the cell 

performance.  The OCV for these operating conditions was 0.13 V which is 0.33 V less 

than the calculated value of 0.46 V.  This can again be attributed to the low reactivity of 

methane and equilibrium not being established on the Pd-ceria-YSZ electrode.  The short 

circuit current for this cell condition was 0.09 A/cm2.  Note that the primary effect of 

decreasing the H2O/H2 ratio from 13 to 0.9 while holding PH2O relatively constant was to 

decrease the OCV, which is expected based on the change in the PO2 with the change in 

the H2:H2O ratio.  Except at very low current densities, the slope of the V-i curve 

remained constant.  This indicates that the kinetics of the water dissociation reaction are 

essentially zero order with respect to the hydrogen partial pressure, since the equal slope 

implies that the impedance is unchanged.  

To study the dependence of PH2O on the kinetics of the H2O-H2 reaction, the cell 

was also operated with a PH2O of 0.1 atm and an H2O/H2 ratio of 1.  The OCV for this gas 

composition was 0.14 V and the short circuit current was 0.055 A/cm2.  Note that 

decreasing the PH2O by a factor of five from 0.53 to 0.1 atm while holding the H2O/H2 

ratio nearly constant caused the cell current at each voltage to decrease by roughly 50%.  

While data at additional PH2O values are needed to accurately determine the kinetic 

expression for the H2O-H2 reaction, this result suggests that the order of the reaction with 

respect to PH2O is less than one. This is an important result since it indicates that it may be 

possible to run solid oxide water electrolysis cells at relatively high water utilizations and 

still obtain reasonable performance.  
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Figure 3 displays data on the effect of the gas composition for the CH4 side on the 

cell performance at an operating temperature of 973 K. The goal of this series of 

experiments was to evaluate how the performance of the electrode varies as a function of 

the CH4 conversion.  As described in the experimental section, the gas composition for 

high conversions was simulated by adding H2O and CO2 to the CH4 feed. For example, a 

mixture of CH4:CO2:H2O = 1:1:2 was used to simulate 50% conversion.  This gas stream 

was passed over a Pd/CeO2 catalyst at the cell operating temperature in order to allow it 

to equilibrate and to obtain a composition that would be more representative of that 

present in a large area cell.  The gas composition at the opposite electrode was held fixed 

with an H2O/H2 ratio of 13 and PH2O = 0.57 atm.  For comparison purposes, data is also 

included for gases consisting of humidified CH4 (3% H2O) and humidified H2 (3% H2O) 

at the Pd-ceria-YSZ electrode. These gases were also passed over the Pd/CeO2 catalyst 

bed. 

For simulated CH4 conversions of 10, 50, and 80%, the measured OCVs were 

0.22, 0.12, and 0.07 V respectively. These values are all within 0.1 V of those calculated 

using the method described above with the overall difference between the experimental 

and calculated values decreasing with increasing conversion. The short circuit currents 

for CH4 conversions of 10, 50, and 80% were 0.33, 0.17, and 0.09 A/cm2 respectively. It 

is noteworthy that the OCV is still positive even with CH4 conversions as high as 80%. 

This indicates that the benefits of using methane as a reducing gas on the anode are 

maintained for relatively high CH4 conversions and further demonstrates the viability of 

the NGASE approach.  
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Note that the slopes of the V-i curves for the 10, 50 and 80% CH4 conversion data 

are nearly the same.  This demonstrates that while increasing the CH4 conversion lowers 

the OCV, it has little effect on the kinetics of the electrode reaction. This is further 

confirmed by the impedance data presented in Figure 4 which shows that the total area-

specific resistance (ASR) of the electrodes is ~0.35 Ω cm2 for the 10, 50, and 80% CH4 

conversions. In contrast to these results, the V-i curve for humidified CH4 has a much 

higher slope corresponding to an ASR of 1.1 Ω cm2.  The origin of this difference in the 

electrode ASR when using humidified CH4 compared to CH4 streams with simulated 

conversion of 10% or greater becomes apparent when one examines the results obtained 

when exposing the Pd-ceria-YSZ electrode to humidified H2 with 3% H2O.  Note that the 

V-i curves for humidified H2 and 10% CH4 conversion in Figure 3 are almost the same.  

The impedance data in Figure 4 also show that the total electrode ASR for both gasses is 

~0.35 Ω cm2.  The most likely explanation for this similarity in the electrode performance 

for these two different gas compositions is that steam reforming over the Pd/CeO2 

catalyst results in a high concentration of H2 in the 10% CH4 conversion gas stream.  The 

kinetics of the electrode reaction and the performance of the Pd-ceria-YSZ electrode are 

thus more representative of the operation on H2 rather than that for the direct oxidation of 

CH4.  Since the electrode ASR was the same for the 50 and 80% CH4 conversions, the 

electrode performance for these conditions also appears to be dominated by the H2 

oxidation reaction.    

Finally, in addition to 973 K, we also investigated the performance of the NGASE 

cell at both 1023 and 1073 K.  As expected, increasing the temperature resulted in slight 

increases in the OCV values and decreases in the ASR.  It is useful to compare the 
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current obtained under short circuit conditions (0 V) as a function of temperature and 

CH4 conversion, since this represents the transition point from where the cell runs 

spontaneously to where an external potential must be supplied to pump oxygen through 

the electrolyte. The short circuit current densities as a function of CH4 conversion and 

temperature are listed in Table 1.  These data were again obtained using a H2O/H2 ratio of 

13 and PH2O = 0.57 atm at the opposite electrode. For all three conversions studied the 

short circuit current density roughly doubled upon heating from 973 to 1073 K.  Also 

note that for a CH4 conversion of 10% a short circuit current, which corresponds to one-

half the H2 production rate of 0.49 A/cm2, was obtained at 1073 K and decreased to 0.09 

A/cm2 for 80% CH4 conversion.  In large area NGASE cells operated at high CH4 

utilization, the CH4 conversion will vary across the cell and therefore the hydrogen 

production rate would be expected to be intermediate between these two values.  The 

performance results obtained from the button cells used in this study suggest, however, 

that reasonable H2 production rates could be obtained in a NGASE system without the 

need to provide additional electrical power to pump oxygen across the electrolyte.   

 
Conclusions 
 
 In this study we have investigated the effect of the electrode gas compositions on 

the performance of an NGASE cell with a YSZ electrolyte, a Co/CeO2/YSZ composite as 

the H2-H2O electrode and a Pd-doped CeO2/YSZ composite as the CH4 electrode.  

Studies of the cell performance as a function of the H2O/H2 ratio in the gas fed to the 

cathode indicate that the kinetics of the cathode reaction are nearly zero order in H2 and 

less than 1st order in H2O.  Studies of the NGASE cell performance for simulated CH4 

conversions between 10 and 80 % showed that the kinetics of the oxidation reactions on 
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the Pd-doped CeO2/YSZ composite anode were not a strong function of conversion.  This 

result along with comparison to the performance when operating on humidified H2 

indicates that for these conditions the oxidation of H2 produced by steam reforming of the 

CH4 determines the performance of the anode.  At low CH4 conversions, however, direct 

oxidation of methane dominates and resulting in a higher ASR.  Finally, the results of this 

study further demonstrate the viability of an NGASE cell for the production of H2 and 

indicate that it may be possible to obtain high H2 production rates without the need for 

applying an external potential to the cell.  
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Figure captions 
 
Figure 1.   Schematic of a natural gas assisted steam electrolysis cell. 

 

Figure 2.    V-i curve as a function of composition of the cathode gas at 973 K. (○) 

H2O/H2=13, PH2O = 0.57 atm, (◊) H2O/H2=0.9, PH2O = 0.53, and (∆) 

H2O/H2=1, PH2O = 0.1. The anode gas consisted of CH4+3%H2O. 

 

Figure 3.   V-i curve as a function of anode gas composition at 973 K. Anode gas 

composition: (+) H2+3%H2O, (◊) CH4, 10% conversion, (○) CH4+3%H2O, (∆) 

CH4, 50% conversion, and (X) CH4, 80% conversion 80%. The cathode gas 

consisted had H2O/H2=13 and PH2O = 0.57 atm. 

 

Figure 4.   AC impedance spectra as a function CH4 conversion at 973 K. Steam 

electrode: H2O/H2=13, = 0.57 atm. OHp
2
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Figure 4.  AC impedance spectra as a function CH4 conversion at 973 K. Steam 

electrode: H2O/H2=13, = 0.57 atm. OHp
2
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Table 1. The short circuit current densities as a function of CH4 conversion and 
temperature 
  
                                             Short circuit current density (A/cm2) 
 T (K)    10% CH4 conversion    50% CH4 conversion   80% CH4 conversion
  
 973             0.25                  0.1                       0.05 
1023            0.26                  0.14                       0.085 
1073            0.49                  0.19                       0.09 
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