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Recent Progress in SOFC Anodes for Direct Utilization of Hydrocarbons

Abstract
There would be significant advantages to having anodes for solid oxide fuel cells (SOFC) that were capable of
directly utilizing hydrocarbon fuels. Because conventional Ni-based anodes catalyze the formation of carbon
fibers, new anode compositions are required for this application, but most of the materials that have been
proposed exhibit either limited thermal stability or poor electrochemical activity. In this paper, we will
describe two strategies for the development of new anodes with improved performance. The first strategy
involves the use of bimetallic compositions with layered microstructures. In the bimetallic anodes, one metal
is used for thermal stability while the other provides the required carbon tolerance. The second strategy
involves separating the anode into two layers: a thin functional layer for electrocatalysis and a thicker
conduction layer for current collection. With this approach, the functional layer can be optimized for catalytic
activity and, if it is thin enough, requires minimal conductivity. Examples are shown for each of these
approaches and possible future directions are outlined.
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Recent Progress in SOFC Anodes for Direct Utilization of Hydrocarbons 

M. D. Gross, J. M. Vohs, and R. J. Gorte 

Department of Chemical & Biomolecular Engineering,  

University of Pennsylvania,  

Philadelphia, PA 19104 USA 

 

Abstract 

There would be significant advantages to having anodes for solid oxide fuel cells (SOFC) 

that were capable of directly utilizing hydrocarbon fuels. Because conventional Ni-based anodes 

catalyze the formation of carbon fibers, new anode compositions are required for this 

application, but most of the materials that have been proposed exhibit either limited thermal 

stability or poor electrochemical activity. In this paper, we will describe two strategies for the 

development of new anodes with improved performance. The first strategy involves the use of 

bimetallic compositions with layered microstructures. In the bimetallic anodes, one metal is used 

for thermal stability while the other provides the required carbon tolerance. The second strategy 

involves separating the anode into two layers: a thin functional layer for electrocatalysis and a 

thicker conduction layer for current collection. With this approach, the functional layer can be 

optimized for catalytic activity and, if it is thin enough, requires minimal conductivity. Examples 

are shown for each of these approaches and possible future directions are outlined. 

*Corresponding author: gorte@seas.upenn.edu; FAX: 215/573-2093. 

Key Words: solid-oxide fuel cell, direct oxidation, hydrocarbons, Cu, yttria-stabilized zirconia, 

ceria, SrTiO3
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Introduction 

 Solid oxide fuel cells (SOFC) have received a great deal of attention in recent years 

because they offer the promise of very high efficiency with relatively low sensitivity to 

impurities in the fuel [1]. Both of these properties result from the high operating temperatures, 

which, depending on the system design and the materials used, range from roughly 873 to 1273 

K. In this temperature range, the electrode reactions are relatively fast, so that high cathode over-

potentials found with low-temperature proton-exchange-membrane (PEM) fuel cells can be 

much lower [2]. Furthermore, the waste heat in an SOFC is produced at a temperature the heat 

can be used [3]. Regarding impurities, CO, a severe poison for low-temperature fuel cells, is a 

fuel for SOFC. While SOFC are sensitive to sulfur, they are much less sensitive than PEM fuel 

cells. There is even a recent claim of a high-performance SOFC that can tolerate 50 ppm H2S 

when operating on H2 [4].  

 The operating principles behind SOFC involve reduction of molecular O2 at the cathode, 

diffusion of the oxygen anions through a ceramic electrolyte (usually yttria-stabilized zirconia, 

YSZ), and oxidation of the fuel by the oxygen anions at the anode. The primary reasons for 

requiring high operating temperatures are to achieve sufficient oxygen-anion mobility in the 

electrolyte and to decrease impedance losses in the electrodes. When operating YSZ-based cells 

on humidified H2, the open-circuit voltage (OCV) is usually very close to the Nernst Potential, 

the thermodynamic limit; but cell potentials drop as current is drawn. In many cases, the cell 

potential drops linearly with the current density, so that the losses in the cell can be described by 

a sum of the individual impedances for the cathode, electrolyte, and anode. While it is difficult to 

separate the impedances of the two electrodes, the resistance of the electrolyte can be easily 

separated from the electrode losses by impedance spectroscopy [5]. 
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When using hydrocarbons as the source of energy, it is usually assumed that SOFC must 

operate on syngas, a mixture of CO and H2 produced by reforming; however, the relatively high 

operating temperatures of SOFC make it feasible to feed hydrocarbons directly to the anode 

without external reforming [6]. Direct utilization of hydrocarbons could simplify the use of fuel 

cells operating on hydrocarbons and significantly improve efficiency by avoiding the losses 

associated with external reformers [7]. The primary factor preventing direct hydrocarbon 

utilization in state-of-the-art fuel cells is that the Ni-based anodes are unstable in the presence of 

hydrocarbons unless large amounts of steam are also present.  

Ni-based anodes are unstable in hydrocarbons because Ni is a catalyst for the formation 

of carbon fibers [7-9]. The mechanism for carbon fiber formation on Ni involves deposition of 

carbon on the Ni surface, dissolution of the carbon into the bulk of the Ni, and the precipitation 

of carbon as a fiber [9]. Because these reactions involve more than the Ni surface, carbon-fiber 

formation can lead to loss of Ni by "metal dusting" [10], a process that occurs when Ni is 

physically lifted from the sample by its attachment to the growing carbon fiber. Fiber growth can 

also cause fuel cells to fracture because of the mechanical stresses induced by the growth of the 

fibers [11].  

Carbon fiber formation on Ni can be avoided if there is sufficient steam so as to remove 

carbon faster than it deposits. While it is often assumed that thermodynamics can be used to 

predict the H2O:C ratios required to avoid carbon [12], fibers can and do form at H2O:C ratios 

that are much higher than would be predicted from equilibrium calculations [8], demonstrating 

that it is the relative rates of carbon deposition and carbon removal that determine stability of Ni 

anodes. Because the rate of carbon deposition with CH4 is relatively low, the required H2O:C 

ratio for avoiding carbon is approximately one, making direct utilization of CH4 with added 
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steam (i.e. internal reforming) feasible. Because carbon deposition rates on Ni are much higher 

with hydrocarbons larger than methane [13], higher H2O:C ratios are required for preventing 

carbon fibers. While stable operation with higher hydrocarbons has been demonstrated on Ni-

based anodes in the laboratory under special conditions, the intrinsic instability of the system and 

the catastrophic consequences of fiber formation (i.e. cell fracture and loss of Ni) make 

application of this approach impractical. 

 An alternative approach for direct utilization in SOFC is to prepare anodes from 

materials that do not catalyze the formation of carbon fibers the way Ni does. For example, 

conductive ceramics and metals like Cu, Ag, and Au do not form carbon fibers because they do 

not dissolve large amounts of carbon in the way that Ni, Fe, Co and Ru do [9,14]. Carbon 

deposits can still form at the surface of any material due to condensation of polyaromatic species 

formed by gas-phase pyrolysis [8]; but these deposits are not destructive in the way that fiber 

formation is because the carbon remains at the electrode surface. Furthermore, avoiding these 

deposits is relatively easy through catalytic coatings, such as ceria, which will catalyze the 

oxidation of these deposits in the presence of moderate amounts of steam [8]. The problem with 

most alternative anode materials is that their performance has not usually matched that of the 

best Ni anodes. For example, with Cu-based anodes, the key issue is the relatively poor thermal 

stability caused by metal sintering [15,16]. The main problems confronting ceramic anodes are 

low conductivity and poor catalytic activity [17].  

In this paper, we will discuss strategies that have been used to develop alternative anodes 

for the direct utilization of hydrocarbons. This is a progress report and it will be obvious that 

there is still much work to do. 
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Electrode Fabrication by Impregnation 

 The most commonly used SOFC electrode materials are Ni-YSZ composites for the 

anode and Sr-doped LaMnO3 (LSM)-YSZ composites for the cathode [18]. The YSZ in the 

composite electrodes plays a number of important roles, the most important being that it provides 

a good ion-conducting interface with the YSZ electrolyte, transporting oxygen ions into the 

electrodes and increasing the length of the three-phase boundary (TPB). Because the reactivity of 

YSZ with both NiO and LSM is relatively low, Ni-YSZ and LSM-YSZ electrodes can be 

fabricated by simply mixing YSZ powder with either NiO or LSM, followed by high-

temperature sintering. NiO-YSZ composites are easily reduced to form Ni-YSZ electrodes with 

good conductivity and porosity.  

However, the development of new electrode compositions has required new fabrication 

methods. For example, Cu-YSZ, ceramic-metallic (cermet) composites cannot be prepared by 

co-firing of CuO and YSZ due to the low melting temperature of CuO and the tendency of CuO 

to react with YSZ at YSZ sintering temperatures. The method developed to produce Cu-YSZ 

composites involved synthesizing a porous YSZ layer on the dense YSZ electrolyte, with Cu 

being added to the sintered porous YSZ by infiltration with soluble salts and subsequent 

reduction of those salts [19-21]. By sintering the porous YSZ together with the dense YSZ 

electrolyte, prior to the addition of Cu, the treatment temperatures for the metal and YSZ 

components of the cermet can be different, thus avoiding the problems associated with CuO 

melting and solid-state reactions. A schematic of composite fabrication by impregnation is 

shown in Fig. 1. 

The impregnation method for electrode fabrication has been shown to be very flexible, 

allowing the synthesis of anode and cathode composites with a wide range of compositions 
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[12,22-26]. In addition to avoiding solid-state reactions, composites formed by impregnation 

have the additional advantage of forming a non-random structure. Because the impregnated 

phases coat the walls of the YSZ, the composites have a thermal expansion match close to that of 

the YSZ backbone [22]. The non-random structure also leads to good conductivity at relatively 

low metal loadings [27]. For random composites, there is essentially no conductivity below the 

30-vol% percolation threshold [28]. Finally, composites formed by infiltration allow much 

greater flexibility in preparing electrodes with more complex microstructures, including layered 

structures having one metal coating another [16,29,30]. 

Stabilization of Cu-Based Anodes 

 Cu does not catalyze the formation of carbon fibers in the way that Ni does, making it 

possible to utilize hydrocarbons directly on Cu-based anodes without adding steam. Cu-ceria-

YSZ composite anodes were found to exhibit stable performance in a wide variety of 

hydrocarbon fuels at 973 K, including ones that are liquids at room temperature [31]. Although 

Cu catalysts are active for the water-gas-shift and methanol-reforming reactions, the primary role 

of Cu in the anode composites appears to be that of an electronic conductor. Indeed, it is 

necessary to add a catalytic phase, such as ceria or mixed oxides of ceria [32], to the Cu-YSZ 

cermet in order to achieve reasonable power densities.  

A major limitation of Cu-based anodes is that they tend to be unstable at high 

temperatures. Compared to Ni, Cu has a relatively low melting temperature and a low surface 

energy, resulting in rapid sintering of the Cu and loss of electrode conductivity at temperatures 

above 1073 K [15,16]. This sintering is shown in the Scanning Electron Micrographs of Fig. 2. 

Following reduction at 973 K, the Cu within the porous YSZ forms a well-connected network for 

electronic conduction. After briefly heating to 1173 K, the Cu phase has sintered into 
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unconnected particles. The resulting loss in conductivity leads to large increases in the ohmic 

resistances in the fuel-cell impedance spectra and a significant decrease in fuel-cell performance. 

Since the ideal metal-based electrode would exhibit the carbon tolerance of Cu with the 

thermal stability of a more refractory metal, mixed-metal electrodes were investigated. 

Bimetallic electrodes can be made from metals that form alloys, like Cu and Ni [11,25,29] which 

are completely soluble, or from metals that remain as separate phases, such as Cu with either Cr 

[30] or Co [16]. Both types of electrodes were examined in our laboratory. The most promising 

of the mixed-metal electrodes that we examined were those composed of Cu and Co [16,33]. In 

many ways, Co has similar properties to that of Ni: Co has a slightly higher melting temperature 

than Ni, remains reduced under similar conditions as that of Ni, and forms carbon fibers in the 

presence of dry methane. Unlike Ni, Co has limited solubility with Cu at SOFC operating 

temperatures. Finally, free-energy considerations indicate that Cu will segregate to the surface of 

Co [34].  

Anodes based on Cu-Co mixtures can be prepared by co-impregnation of porous YSZ 

with Cu and Co salts, followed by reduction of salts to the metals [33]; but the metal phase of 

composites formed in this manner will likely be random mixtures of Cu and Co crystallites. If 

the Cu phase sinters, the entire composite is likely to lose conductivity unless the Co phase itself 

forms a conductive network in the electrode. To ensure that a conductive network is established 

within the Co phase, we added the metals separately, using electrodeposition to add the second 

metal as a coating on the first. The initial intent was to prepare Co cermets, then electroplate the 

Co with Cu. However, Cu plating into a porous substrate is much more difficult than Co plating. 

Furthermore, X-ray Photoelectron Spectra (XPS) of a 250-nm Co film on a Cu plate showed that 

Cu migrates through the Co film above 873 K to form a Cu overlayer. Therefore, we were able to 
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achieve a layered structure like that shown in Fig. 3 by plating Co onto the Cu cermet and then 

heating the structure to 873 K in H2 [16]. 

Fig. 4 shows a plot of the ohmic resistances of two fuel cells, one with only Cu in the 

anode and the other plated with Co, as a function of time at 1173 K. Both cells contained 18-

vol% metal, with the Co-plated electrode having 13-vol% Cu and 5-vol% Co. The cells in this 

study used an electrolyte thickness of 300 µ m, which, together with the leads, contributed 0.5 

Ω.cm2 to the ohmic resistance. While the ohmic resistance of the Cu-only cell increased rapidly 

with time due to sintering of the Cu phase, the Cu-Co cell exhibited no change in performance 

over a period of 40 h, even though this is a much higher temperature than that targeted for 

operation of these cells. 

The Cu-Co system also exhibited high tolerance towards carbon fiber formation. A Co 

cermet formed large amounts of carbon when exposed to dry methane at 1073 K for 3 h, but the 

Co-plated Cu electrode showed no observable carbon formation under the same conditions, as 

shown in the photographs in Fig. 5. While it is unclear whether the Cu-Co electrode would 

continue to show stability against carbon formation for long periods of time, a 50:50 Cu-Co 

electrode formed by co-impregnation was shown to exhibit stable performance in humidified 

CH4 (3% H2O) for at least 500 h at 1073 K and low fuel utilization [33]. This suggests that the 

free energy associated with Cu overlayers on the Co is sufficient to form a very effective barrier 

that prevents carbon formation.  

Ceramic Anodes 

 Because oxides cannot dissolve carbon and therefore cannot form carbon fibers, anodes 

based on conductive ceramics offer another approach to direct-utilization fuel cells. Many oxides 

have high melting temperatures, so that the thermal stability problem associated with Cu could 
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be solved by the appropriate choice of oxides. An additional advantage to using ceramic anodes 

is that they should be redox stable, avoiding the potentially catastrophic problems associated 

with oxidation of metal electrodes during start-up and shut-down cycles. Finally, the most 

commonly used SOFC cathode material is an oxide, Sr-doped LaMnO3 (LSM), demonstrating 

that oxides can in principle be good electrodes.  

 While many oxide properties would appear to be ideal, good electrochemical 

performance has been difficult to achieve with ceramic anodes. First, it has been argued that a 

minimum electronic conductivity of 1 S/cm [17] is required in the electrode and few oxides are 

capable of providing this at anode P(O2), the oxygen pressure defined by equilibrium between H2 

and H2O in the anode compartment. In addition to this problem, oxide conductivities are usually 

a strong function of P(O2). While the P(O2) remains essentially 0.2 atm at an SOFC cathode, the 

P(O2) can vary by many orders of magnitude at the anode, depending on the temperature and 

H2:H2O ratio. (At the anode, P(O2) can easily vary from 10-15 to 10-25 atm.) Another challenge 

with ceramic anodes is that few oxides exhibit reasonable catalytic activity for oxidation. 

Therefore, obtaining good electronic conductivity and good catalytic activity, in the same 

ceramic material, has proven to be difficult.  

 There has been an intense effort to identify perovskites suitable for anode materials [35-

40]. Most of these studies have focused on double perovskites containing a mixture of cations at 

the B site, with the objective being to obtain complementary functionality from the cations. 

Despite this effort to develop new ceramic materials [17], the only oxide that has been reported 

to have both good conductivity and catalytic activity is the double perovskite, Sr2MgMoO6-δ 

[40]. However, because all of the testing with this material has been performed with current 

collectors of Pt, a highly active oxidation catalyst, it is still uncertain whether this material truly 
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is a good electrocatalyst. Certainly, it would be very exciting if Sr2MgMoO6-δ is found to be a 

highly active catalyst, since none of the individual oxides making up this material exhibit high 

catalytic activity for hydrocarbon oxidation. 

 Rather than looking for new materials with novel properties, we have been working to 

separate the problems of electronic conduction and catalytic activity by preparing anodes with 

two distinct layers: a thin functional layer optimized for catalytic activity near the electrolyte and 

a thicker conduction layer on top of the functional layer, as shown diagrammatically in Fig. 6 

[41]. We chose to make the thickness of the functional layer to be approximately 10 μm, since 

the electrochemical reactions in a high-performance electrode occur primarily within this 

distance from the electrolyte. Using a reasonable target of 0.6 W/cm2 for the maximum power 

density (0.6 W/cm2 corresponds to a total cell impedance of approximately 0.5 Ω.cm2), the ohmic 

losses in the functional layer must be less than 0.1 Ω.cm2. For a layer 10-μm thick, this goal is 

met so long as the material has a conductivity greater than 0.01 S/cm, a value that is relatively 

easy to reach. Since the conduction layer is only required for carrying electrons away from the 

functional layer, we postulated that any porous material with sufficient conductivity could be 

used. 

 In our initial tests of the concept, we prepared the functional layer by impregnating 1 

wt% Pd and 40 wt% ceria into a 65% porous YSZ [41]. Earlier measurements of ceria 

impregnated into porous YSZ at a loading of 15-vol% had indicated that this composite would 

have a conductivity of 0.019 S/cm at 973 K in flowing H2 [15], demonstrating that ceria/YSZ 

should have sufficient conductivity for a thin functional layer, without requiring the addition of a 

metal. Pd was added in dopant quantities because Pd/ceria is one of the most active oxidation 

catalysts known, exhibiting the lowest light-off temperature for CH4 among heterogeneous 
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catalysts. For the conduction layer, we used either Ag paste, a good conductor with poor activity 

for oxidation catalysis, or a porous layer of La0.3Sr0.7TiO3 (LST), a ceramic material that does 

not undergo solid-state reactions with YSZ [42,43] and has good electronic conductivity under 

reducing conditions. 

 Fig. 7 shows V-i polarization curves and impedance spectra in humidified H2 (3% H2O) 

for a cell having the functional layer described above with Ag paste as the conduction layer. The 

cell had a 50-μm YSZ electrolyte and 300-μm cathode made by impregnating 40-wt% 

Sr0.2La0.8FeO3 (LSF) into porous YSZ [23]. While the V-i curves in Fig. 7a) exhibit a dramatic 

drop in the voltage for current densities above 1.2 A/cm2, probably due to diffusion limitations 

for H2 in the Ag paste, the performance characteristics are otherwise very good. For example, the 

data indicate maximum power densities of 350 mW/cm2 at 923 K and 520 mW/cm2 at 973 K. In 

good agreement with the V-i curves, the open-circuit impedance data at 973 K indicate that the 

total Area Specific Resistance (ASR) of the cell was 0.57 Ω.cm2. Since the resistance of the 50-

μm electrolyte can be calculated to be 0.27 Ω.cm2 at 973 K and the impedance of the LSF-YSZ 

cathode has been estimated to be 0.1 Ω.cm2 at this temperature, the anode losses are only 0.2 

Ω.cm2. Obviously, an anode that uses Ag paste as the conduction layer is not entirely ceramic; 

but cell performance was not significantly affected by replacing the Ag with a porous layer of 

LST [41]. 

 The presence of a catalytic metal is essential for obtaining high performance levels in the 

functional layer, as shown in Fig. 8. The figure compares results in humidified H2 at 973 K for 

three essentially identical cells with 12-µm functional layers, except that one cell contained only 

40-wt% ceria and the other two had either 1-wt% Pd or 1-wt% Ni in addition to the ceria. The 

maximum power density of the cell with the ceria-only anode was 110 mW/cm2 and the 
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impedance data demonstrate that most of the cell losses are associated with electrode 

polarization. The cell performance improved dramatically upon the addition of Pd and Ni, to 

maximum power densities of 520 mW/cm2 and 420 mW/cm2, respectively. Essentially all of the 

improvement is associated with a decrease in the electrode impedances, from more than 1.2 

Ω.cm2 when no metal was added to 0.25 Ω.cm2 upon the addition of Pd and 0.35 Ω.cm2 upon the 

addition of Ni. While there was a slight decrease in the ohmic resistance upon the addition of the 

catalytic metals, the primary change that occurred upon the addition of Pd or Ni was the loss of a 

large arc at 0.2 Hz in the Cole-Cole plots. 

 The presence of a catalyst is especially important when operating the cells in dry CH4 at 

973 K. Fig. 9 shows V-i polarization curves for 12-μm anodes with 40 wt% ceria, with and 

without 1% Pd. The Pd-containing cell achieved a maximum power density of 335 mW/cm2, 

while the maximum power density in the ceria-only cell was 9 mW/cm2. There are several 

remarkable features to the performance of the Pd-containing anode. In addition to the fact that its 

anode impedance in CH4 approaches its impedance in H2, the open-circuit voltage of this cell, 

1.25 V, is higher than we could achieve operating on reformate. Furthermore, the Pd/ceria cell 

was stable in dry methane, even at open circuit where no steam is generated.   

Future Directions 

 While the traditional Ni-YSZ composites exhibit excellent performance characteristics 

for SOFC operation in H2 and syngas, there could be significant advantages to choosing 

alternative anode materials for achieving sulfur and carbon tolerance, as well as redox stability. 

In this review, we have tried to demonstrate that possibilities still remain for developing novel 

anode compositions and microstructures, especially for application with direct utilization of 

hydrocarbons.  
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In the first part of this paper, we have shown that it is possible to use layered structures 

within metal-based composites, with each layer playing a different role in achieving the desired 

electrode properties. Our studies focused on stabilizing Cu-based anodes, with the goal of 

achieving improved thermal stability, while retaining the chemical stability of Cu. There are 

obviously many other metal combinations that could be considered, beyond what we have 

examined. Furthermore, depending on the application, the targeted properties may be different 

from those discussed here.  

The second part of this paper focused on separating the electrodes into two layers, a 

functional layer for optimal electrocatalysis and a thicker conduction layer for current collection. 

While the concept of a functional layer is certainly not new [44], it is not typical to use a 

completely different set of materials in each layer. By considering the required properties for 

each layer separately, it is possible to maximize the desired properties of the electrode. We 

would again like to emphasize that the results reported here were simply a demonstration of the 

concepts. Significant improvements are certainly possible, especially if the porous YSZ in the 

functional layer can be replaced with a mixed conducting material, so as to allow more flexibility 

in choosing oxidation catalysts. 

Acknowledgements 

 This work was funded by the U.S. Department of Energy’s Hydrogen Fuel Initiative 

(Grant DE-FG02-05ER15721). 



 14

References 

1) EG&G Technical Services, Inc. Fuel Cell Handbook 7th Edition, DOE-NETL, U.S. 

Department of Energy, Office of Fossil Energy, National Energy Technology 

Laboratory, Morgantown, WV, 2004, sec. 1, pp. 12-14. 

2) J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd edn., 2003, ch. 3, pp. 51-

52. 

3) N. Q. Minh, Solid State Ionics, 2004, 174, 271. 

4) J. R. Rostrup-Nielsen, J. B. Hansen, S. Helveg, N. Christiansen, and A.-K. Jannasch, 

Appl. Phys. A, 2006, 85, 427. 

5) S. McIntosh, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., 2003, 150, A1305. 

6) S. Park, J. M. Vohs, and R. J. Gorte, Nature, 2000, 404, 265. 

7) S. McIntosh and R. J. Gorte, Chem. Rev., 2004, 104, 4845. 

8) T. Kim, G. Liu, M. Boaro, S.-I. Lee, J. M. Vohs, R. J. Gorte, O. H. Al-Madhi, and B. 

O. Dabbousi, J. Power Sources, 2006, 155, 231. 

9) M. L. Toebes, J. H. Bitter, A. J. van Dillen, and K. P. de Jong, Catal. Today, 2002, 

76, 33. 

10) C. H. Toh, P. R. Munroe, D. J. Young, and K. Foger, Mater. High Temp., 2003, 20, 

129. 

11) H. Kim, C. Lu, W. L. Worrell, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., 

2002, 149, A247. 

12) EG&G Technical Services, Inc. Fuel Cell Handbook 7th Edition, DOE-NETL, U.S. 

Department of Energy, Office of Fossil Energy, National Energy Technology 

Laboratory, Morgantown, WV, 2004, sec. 8, p. 24. 



 15

13) R. J. Farrauto and C.H. Bartholomew, Fundamentals of Industrial Catalytic 

Processes, Blackie Academic and Professional, London, 1st ed., 1997, pp. 341-357. 

14) R. T. K. Baker and J. J. Chuldzinski, Jr., J. Phys. Chem., 1986, 90, 4734. 

15) S. Jung, C. Lu, H. He, K. Ahn, R.J. Gorte, and J.M. Vohs, J. Power Sources, 2006, 

154, 42. 

16) M. D. Gross, J. M. Vohs, and R. J. Gorte, Electrochimica Acta, 2007, 52, 1951. 

17) A. Atkinson, S Barnett, R. J. Gorte, J.T.S. Irvine, A.J. McEvoy, M.B. Mogensen, S. 

Singhal, and J. Vohs, Nature Materials, 2004, 3, 17. 

18) Minh, N.Q. J. Am. Ceram. Soc., 1993, 76, 563. 

19) R. Craciun, R.J. Gorte, J.M. Vohs, C. Wang, and W.L. Worrell, J. Electrochem. Soc., 

1999, 146, 4019. 

20) R. J. Gorte, S. Park, J. M. Vohs, and C. Wang, Advanced Materials, 2000, 12, 1465. 

21) S. Park, R. J. Gorte, and J. M. Vohs, J. Electrochem. Soc., 2001, 148, A443. 

22) Y. Huang, K. Ahn, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., 2004, 151, 

A1592. 

23) Y. Huang, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., 2004, 151, A646. 

24) Y. Huang, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., 2006, 153, A951. 

25) S.-I. Lee, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., 2004, 151, A1319. 

26) S. McIntosh, J. M. Vohs, and R. J. Gorte, Electrochimica Acta, 2002, 47, 3815. 

27) H. He, Y. Huang, J. Regal, M. Boaro, J. M. Vohs, and R. J. Gorte, J. Am. Cer. Soc., 

2004, 87, 331. 

28) D.W. Dees, T.D. Claar, T.E. Easler, D.C. Fee, F. C. Mrazek, J. Electrochem. Soc., 1987, 134, 

2141. 



 16

29) S. Jung, M. D. Gross, R. J. Gorte, and J. M. Vohs, J. Electrochem. Soc., 2006, 153, 

A1539. 

30) M. D. Gross, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., 2006, 153, A1386. 

31) H. Kim, S. Park, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., 2001, 148, A693. 

32)  K. Ahn, H. He, J. M. Vohs, and R. J. Gorte, Electrochem. Solid-State Lett., 2005, 8, 

A414. 

33) S.-I. Lee, K. Ahn, J. M. Vohs, and R. J. Gorte, Electrochem. Solid-State Lett., 2005, 

8, A48. 

34) S. -K. Kim, J. -S. Kim, J. Y. Han, J. M. Seo, C. K. Lee, and S. C. Hong, Surf. Sci., 

2000, 453, 47. 

35) S. Tao, and J. T. S. Irvine, Chem. Rec., 2004, 4, 83. 

36) J. Liu, B. D. Madsen, A. Ji, and S. A. Barnett, Electrochem. Solid-State Lett., 2002, 5, 

A122. 

37) O. A. Marina, N. L. Canfield, and J. W. Stevenson, Solid State Ionics, 2002, 149, 21. 

38) J. Sfeir, P. A. Buffat, P. Mockli, N. Xanthopoulos, R. Vasquez, H. J.  Mathieu, J. Van 

herle, and K. R. Thampi, J. Catal., 2001, 202, 229. 

39) Y. H. Huang, R. I. Dass, J. C. Denyszyn, and J. B. Goodenough, J. Electrochem. Soc., 

2006, 153, A1266.. 

40) R. Mukundan, E. L. Brosha, and F. H. Garzon, Electrochem. Solid-State Lett., 2004, 

7, A5. 

41) M. D. Gross, J. M. Vohs, and R. J. Gorte, Electrochem. Solid-State Lett., 2007, 10, 

B65. 

42) H. He, Y. Huang, J. M. Vohs, and R. J. Gorte, Solid State Ionics, 2004, 175, 171. 



 17

43) Kipyung Ahn, Sukwon Jung, John M. Vohs, Raymond J. Gorte, Ceram. Int., in press. 

44) F. Zhao and A. V. Virkar, J. Power Sources, 2004, 141, 79. 



 18

Figure captions 

Fig. 1 Schematic of composite fabrication by impregnation. 

Fig. 2 Scanning Electron Micrographs of a Cu-CeO2-YSZ composite (18 vol% Cu, 9 

vol% ceria) following reduction in humidified H2 (3% H2O) at (a) 973 K for 2h 

and (b) 1173 K for 5h. 

Fig. 3 Schematic of Cu-Co-Cu layered structure fabrication by electrodeposition. 

Fig. 4 Ohmic resistance measurements at 1173 K in humidified (3% H2O) H2 as a 

function of time for ( ) Cu-CeO2-YSZ (18 vol% Cu) and (●) Co-Cu-CeO2-YSZ 

(5 vol% electrodeposited Co and 13 vol% Cu). The electrolyte was 300 μm thick 

YSZ. 

Fig. 5 Photographs of (a) Cu-Co-CeO2-YSZ (5 vol% electrodeposited Co, 13 vol% Cu) 

and (b) Co-CeO2-YSZ (18 vol% Co) after reduction in dry H2 at 1073 K and 

exposure to dry CH4 for 3 h at 1073 K. 

Fig. 6 Schematic of a proposal for ceramic anodes using a catalytically active functional 

layer. 

Fig. 7 (a) V-i polarization curves and (b) impedance spectra on a 12 µm thick CeO2-Pd-

YSZ anode (40 wt% CeO2 and 1 wt% Pd) in humidified H2 (3% H2O), using Ag 

paste for current collection. Data are shown for the following temperatures: (○) 

923 K, (◊) 973 K, (Δ) 1023 K, (□) 1073 K. The electrolyte was 50 μm thick YSZ 

and the cathode was impregnated LSF in 300 μm thick YSZ. 

Fig. 8 (a) V-i polarization curves and (b) impedance spectra on 12 µm thick CeO2-M-

YSZ anodes with 40 wt% CeO2 in humidified H2 (3% H2O). Data are shown for 

the following metal dopants (M): (○) no metal, (◊) 1 wt% Ni, and (Δ) 1 wt% Pd. 
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The electrolyte was 50 μm thick YSZ and the cathode was impregnated LSF in 

300 μm thick YSZ. Ag paste was used for current collection. 

Fig. 9 V-i polarization curves on 12 µm thick CeO2-M-YSZ anodes with 40 wt% CeO2 

in dry CH4. Data are shown for the following metal dopants: (○) no metal and (◊) 

1 wt% Pd. The electrolyte was 50 μm thick YSZ and the cathode was 

impregnated LSF in 300 μm thick YSZ. Ag paste was used for current collection. 
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