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Large-Scale Numerical Modeling of Melt and 
Solution Crystal Growth 

Jeffrey J. Derby*, James R. Chelikowskyt, Talid Sinno**, Bing Dai*, 
Yong-Il Kwon*, Lisa Lun*, Aran Pandy* and Andrew Yeckel* 

'Department of Chemical Engineering & Materials Science and Minnesota Supercomputing 
Institute, University of Minnesota, Minneapolis, MN 55455, USA 

11nstitute for Computational Engineering and Science, University of Texas at Austin, Austin, TX 
78712, USA 

** Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, 
USA 

Abstract. We present an overview of mathematical models and their large-scale numerical solution 
for simulating different phenomena and scales in melt and solution crystal growth. Samples of both 
classical analyses and state-of-the-art computations are presented. It is argued that the fundamental 
multi-scale nature of crystal growth precludes any one approach for modeling, rather successful 
crystal growth modeling relies on an artful blend of rigor and practicality. 

Keywords: Continuum transport, heat transfer, fluid mechanics, atomistic models, defect dynam
ics, segregation, morphological instability, solidification 
PACS: 02.60.Cb, 81.10.-h, 81.10.Aj, 81.10.Dn, 81.10.Fq 

INTRODUCTION 

Processes developed to grow large, single crystals from liquid phases are among the most 
challenging and precise in engineering practice, and large-scale, numerical modeling has 
been vital to advance crystal growth production technology to current levels. However, 
there are other good reasons to model crystal growth. At a basic level of scientific 
inquiry, models make use of the most precise language ever invented by mankind, 
namely mathematics, to enable the disciplined application of reason and analysis toward 
the goal of understanding the fundamentals of crystal growth. Modeling also proves 
useful to unravel the simultaneous interaction of many nonlinear phenomena that occur 
during crystal growth toward the goal of process improvement and optimization. Finally, 
a mathematical model provides a solid framework to be employed toward the goal of 
improved design and control of crystal growth processes. 

The paradigm of modeling is to build an appropriate mathematical representation of 
a system, solve its underlying equations, typically by numerical methods, and creatively 
apply the model toward a set of well-defined questions. Toward the ultimate goal of 
using a model to answer questions, it is extremely important that the model be validated 
and verified [1]. Verification addresses the question of whether a computer code is 
accurately solving the mathematical equations posed by the model. Validation addresses 
the question of whether the mathematical model is faithfully representing the behavior 
of the system via the comparison of model predictions to experimental measurements. 
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FIGURE 1. Different modeling approaches are appropriate for various length and time scales. Typical 
sizes of features from bulk melt and solution growth span from nanometers to meters. 

However, validation should not be the overriding goal of modeling. Indeed, it has been 
stated that [2], "The purpose of models is not to fit the data but to sharpen the questions." 

The physics of crystal growth encompasses a wide variety of phenomena that occur 
over a vast spectrum of length and time scales, literally ranging from atoms to cubic 
centimeters of material. Consider the following: the unit cell of most inorganic crystals 
is on the order of 1-10 nanometers; growing interfaces may include surface features, 
such as terraces, which range in size from from 0.1-1 microns; defects in crystals can 
range from atomic dimensions for point defects to 10 microns or larger for second-
phase inclusions; step bunches in solution growth can be as large as 100 microns; and 
the dimensions of the desired bulk crystal can range from centimeters to meters in 
size. Unfortunately, one cannot pose and solve a mathematical model for crystal growth 
completely from first-principles due to these disparate scales. Instead, many different 
approaches and tools are applied to model different aspects of crystal growth, as depicted 
in Figure 1. 

At a microscopic scale of tens of nanometers or less, ab initio molecular dynamics 
methods can be employed to study atomic behavior. Unfortunately, while quite rigorous 
in their approach, even using today's fastest computers these methods are too compu
tationally expensive to be applied to systems of more than a few thousand atoms or 
for describing times scales of greater than hundreds of picoseconds. Molecular dynam
ics methods based on classical potentials can compute for much larger ensembles and 
longer time scales. To model atomistic behavior at even larger length scales and longer 
time scales, kinetic Monte Carlo methods have been developed. More details will be 
provided about these methods later in this paper. 

On a macroscopic scale, continuum methods are gainfully applied; examples of these 
models will also be discussed. Significantly, there are many important phenomena as
sociated with crystal growth that occur on a "meso-scale" comprising hundreds of 
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nanometer to tens of microns and occurring over long times scales (e.g., microseconds 
or longer). These phenomena are difficult to model by atomistic methods, due to the 
long time scales involved, and challenging for continuum methods, due to the very small 
length scales. Such phenomena require innovative, "multi-scale" approaches, which, de
spite much fanfare, are still at nascent stages of development. 

This challenge of scales motivates the need to formulate crystal growth models that 
include enough physics to make realistic, usable predictions, yet that are simple enough 
to remain tractable with today's computational capabilities. In the case of bulk crystal 
growth, the greatest purpose that modeling can serve is to directly connect processing 
conditions to final outcomes. Since bulk crystals usually are incorporated into electronic, 
optical, or optoelectronic devices, final outcome is most often measured in terms of the 
crystal properties relevant to these devices. These crystal properties are in turn deter
mined by the chemical composition and structure of the crystal, particularly the types 
and distributions of various crystalline defects. For the crystal growth modeler, the ulti
mate task is to connect processing conditions to the morphology, chemical composition, 
and defect structure of the crystal. 

CRYSTAL GROWTH MODELING 

Crystal growth modeling involves the construction of a mathematical description of a 
crystal growth system, the solution of the governing equations of the model, and the 
interpretation of the modeling results. Below, brief discussions of governing equations 
and solution techniques are presented for modeling crystal growth at different scales. 

Continuum transport 

Continuum transport modeling is the most highly developed aspect of crystal growth 
modeling and much has already been written on the subject. The seminal treatise on 
the general subject of continuum transport phenomena is the textbook of Bird, Stewart, 
and Lightfoot [3]. At least one book devoted to modeling of transport phenomena 
specific to crystal growth has been published [4], featuring chapters by different authors 
writing on various topics. A number of chapters on the subject can be found within 
other works, including a general introduction to the subject by Derby [5], an extensive 
review of convection in melt growth by Miiller and Ostrogorsky [6], and some more 
recent accounts of specific topics in crystal growth modeling [7-13]. Although fifteen 
years old now, the review article by Brown [14] remains remarkably current in many 
respects and is essential reading for anyone contemplating modeling. Of particular note 
are the proceedings of the series of International Workshops on Modeling in Crystal 
Growth [15-18]. These workshops have been immensely successful at bringing together 
leading crystal growth modelers from around the world, and their proceedings provide 
an indispensable resource for tracking the state of developments in modeling of bulk 
crystal growth. 

The transport of heat, mass, and momentum is especially important in bulk crystal 
growth processes. Governing equations are written to describe the conservation of these 
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quantities within the solid crystal and the accompanying fluid phase. A brief accounting 
of these phenomena and their governing equations is given below. 

Flow in the fluid phase is especially important for the transport of heat and mass via 
convection in bulk crystal growth systems. For liquids, such a the molten phase in melt 
growth or the solution phase in solution growth, flows are described by conservation 
equations written for momentum and continuity of an incompressible, Newtonian fluid 
with the application of the Boussinesq approximation to describe fluid density changes: 

P ^ + v - V v j = - V / 7 + JuV2v + p o g [ l - i 3 r ( r - r o ) - i 3 , ( c - c o ) ] + F ( v , x , 0 , (1) 

where p is the density of the fluid, v is the velocity field, t is time, V is the gradient 
operator, p is the pressure field, ji is the fluid viscosity, g is the gravitational vector, 
PT and ps are the thermal and solutal expansivities, respectively, T is temperature, c 
is concentration, the subscript zero denotes the reference state about which the linear 
dependence of the density is approximated, and F(v,x,f) is an additional body force, 
e.g., that which results from the application of a magnetic field to a conducting fluid. 
The requirement for continuity of the fluid phase takes on the following form: 

V-v = 0, (2) 

which states the divergence of the velocity field must be everywhere zero. Collectively, 
these two expressions constitute the celebrated Navier-Stokes equations. 

Flows driven by buoyancy, referred to as natural convection, are important in all bulk 
crystal growth systems due to thermal or solutal gradients. In addition, temperature or 
compositional gradients along a liquid-gas interface can drive very strong flows arising 
from the variation of surface tension along the surface. Often referred to as Marangoni 
flows, these are important in many meniscus-defined melt growth systems, such as the 
Czochralski and floating zone methods. Forced convection flows are driven by applied 
rotation of crystal or crucible or, in solution growth systems, by pumping or stirring 
mechanisms. Also of great importance in many bulk growth systems are time-dependent 
or turbulent flows, which arise naturally if the driving forces are strong enough. These 
flows dramatically affect the nature of continuum transport to the crystal interface. 
The application of strong stationary or rotating magnetic fields has been applied to 
electrically-conductive melts in attempts to control such flows. 

The transport of heat and mass can be determined from solution of the appropriate 
governing equations. The energy balance equation is given by the following expression: 

pCp^ + pCpv-VT = KV2T, (3) 

where Cp is the heat capacity and K is the thermal conductivity of the fluid. For media 
which possess some transparency to infrared radiation, the transport of energy via 
internal radiative transport may also be important in high-temperature crystal growth 
systems, and an extra term must be added to the above equation [19]. The exchange 
of thermal radiation among surfaces is also very important in many high-temperature 
growth systems. These radiative processes are described by terms which are strongly 
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nonlinear in temperature, thus posing significant modeling challenges. Heat transfer 
is also very strongly influenced by thermal boundary conditions, i.e., the conditions 
imposed on the crystal and fluid by the system design. The modeling of heat transfer 
in high-temperature melt growth furnaces is itself a significant technical challenge due 
to complicated geometries and radiation heat transfer. 

The conservation equation for a dilute species in a fluid is given by: 

^ - + v - V c = W 2 c , (4) 
at 

where @ is the diffusion coefficient of the species. Mass transfer in bulk crystal growth 
systems is largely determined by the interactions of diffusion and convection near the 
liquid-crystal interface. At a growing crystal surface, the equilibrium partitioning of a 
solute between solid and fluid phases coupled with diffusion and convection results in 
segregation, i.e., the inhomogeneous distribution of a solute in a grown crystal. These 
phenomena are discussed in more detail in ensuing sections. 

The crystal interface 

The manner in which the crystal interface is represented is a central feature of bulk 
crystal growth models. A self-consistent growth model requires that the interface geom
etry be computed as part of the solution to the transport problem, i.e., as a free or moving 
boundary. For the case of melt growth, a mathematical expression of the normal growth 
velocity of the interface, Vg is given by 

Vg = PAT, (5) 

where /3 denotes a kinetic coefficient and AT is the driving force for crystallization, 

Ar = 7 - - 7 m ( l - ^ ) (6) 

where Tt represents the interface temperature, Tm is the melting temperature of a planar 
interface , y is a capillary coefficient, L, is the latent heat of solidification, and Jtf 
depicts the local mean curvature of the interface. For an atomically rough interface, 
the kinetic coefficient becomes large enough so that the undercooling AT goes to zero 
and Ti = Tm(l — yJif/L). Here, the rate of interface movement is controlled by the flow 
of latent heat away from the interface. In many bulk melt-growth systems, the interface 
is flat enough so that capillarity is unimportant, and the interface is located along the 
melting point isotherm of the system, Ti = Tm. 

From an algorithmic point of view, two methods are primarily employed for comput
ing the location of the crystal interface. Front-tracking methods define a discrete moving 
surface to separate the interface between crystal and melt, and diffuse-interface methods 
treat the interface as a region of finite thickness across which physical properties vary 
rapidly but continuously from one bulk value to the other. Both methods have been used 
with great success to model different crystal growth problems. Front-tracking methods, 
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such as the isotherm method [20], have an advantage in accuracy and numerical effi
ciency, but their implementation becomes problematic when the shape of the interface 
becomes complicated, e.g., as in representing the shape of a dendrite. Diffuse-interface 
methods, such as the phase field method [21, 22], come to the fore in such situations; 
they are able to compute interface shapes of great complexity, albeit at a higher compu
tational cost for a given level of accuracy. 

Modeling the growth velocity of a crystalline surface in bulk solution growth is much 
more problematic than in melt growth systems, since interfacial kinetics are much more 
important. The simplest representation of interface velocity and growth is 

Vg = fact, (7) 

where ft denotes a kinetic coefficient and a is the supersaturation. The supersaturation 
is defined as a = Ajig/ksT = ln(C/Ce), where Afj,g is the change in the chemical 
potential between the crystal and liquid, kg is the Boltzmann constant, and C and Ce 

are the actual and equilibrium molar concentrations. The kinetic coefficient in this 
expression varies strongly as a function of the detailed nature of the surface, posing 
great challenges for realistic modeling. Indeed, predicting the shape of crystals growing 
from the solution phase is still a formidable undertaking [23-25]. 

Defect dynamics models 

Modeling has been gainfully employed to understand the origins of several types of 
defects in bulk crystals grown from the melt and to optimize growth conditions to reduce 
their numbers. During the growth of semiconductor crystals, a large number of disloca
tions can be produced via dislocation formation and multiplication processes driven by 
thermal stresses generated during growth and cooling. While the necking process de
veloped by Dash for Czochralski growth has allowed large elemental semiconductor 
crystals (e.g., silicon and germanium) to be grown dislocation-free, large compound 
semiconductor crystals, such as gallium arsenide and cadmium telluride, are plagued by 
high levels of dislocations. Modeling heat transfer in growth systems has been success
fully employed to minimize thermal stresses and dramatically reduce defect densities of 
bulk compound semiconductor crystals. Volkl [26] and Miyazaki [27] provide extensive 
reviews of this area. 

Intrinsic point defects also arise naturally during the growth of all bulk crystals, and 
their fate under growth conditions determines the properties of the resultant material. 
Such point defects arise from their entropic contribution to lowering the Gibbs energy of 
the crystal, which varies exponentially with temperature, and these defects also diffuse 
through the lattice via processes which are strongly thermally activated. There has been 
much recent progress in understanding how point defects arise, move, and interact in 
silicon to produce micro-defects, such as voids arising from the condensation of excess 
vacancies and networks of dislocation loops formed by excess interstitials. Accurate 
modeling is required to predict these effects and optimize growth conditions. Such 
efforts have been referred to as defect engineering. A brief overview is presented below 
based on the overview of Sinno et al. [28]. 
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Defect dynamics models aim to connect the dynamics of point defect dynamics 
and microstructural evolution with processing conditions present during crystal growth. 
These models have been extremely successful at describing the size distribution evolu
tion of defect aggregates in silicon crystal growth and wafer processing at a scale that 
allows for direct comparison to experimental measurements. For example, the industrial 
use of defect dynamics models for predicting the size distribution of voids formed by 
vacancy aggregation in single-crystal silicon is now widespread [28, 29]. More recently, 
these models have been extended to include multicomponent interactions between va
cancies and oxygen so that the formation of complex defects such as oxide precipitates 
can be predicted. The latter are a critical component of wafer engineering for advanced 
microelectronic device fabrication. 

Mathematical models for defect dynamics are developed in terms of microscopic 
transport theory involving equilibrium, diffusion, convection, and reaction of defect 
species created by combinations of vacancies, interstitials, and impurities. Consider 
either a single point defect species undergoing aggregation (e.g., a vacancy or interstitial) 
within a crystalline matrix. The conservation equation for this species can be written in 
terms of the molar concentration of that species, ci, as, 

-^- = V-l@l(T)Vcl]-1£kxclcx-j-J2 nf(n,r)dn, (8) 

where the substantial derivative, D/Dt = d/dt + Vd/dz, is defined as the rate of change 
of concentration at a point moving with the velocity, V, of the growing crystal (which is 
moving in the z-coordinate direction. The second term represents the reaction network 
coupling this species and others (denoted by the subscript x) in the system. The last term 
in eq. (8) represents the incorporation of monomers into clusters of all possible sizes. 
Here, is the concentration of clusters of point defect x, and size n at a given position, f, 
within the crystal. 

Balance equations for smaller clusters are developed using individual Master Equa
tions for each aggregate size and are written as, 

where /„ is the nucleation flux, given by 

Jn = g(n-l)cn-i-d(n)cn, (10) 

and c„ represents the concentration of clusters of size n. The functions g{ri) and d{ri) 
represent the growth and dissolution rates for clusters of size n, respectively, and are 
determined from from atomistic simulations, as will be discussed below. 

Large clusters contain a very large number of monomers and cannot be described 
feasibly with the Master Equations (9). A common approach is to use an approximation 
in which the majority of the Master Equation sequence is reduced into a single Fokker-
Planck equation by assuming that the cluster size can be represented continuously [30]; 
the Fokker-Planck equation is then matched to the Master equation sequence at some 
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given cluster size. The Fokker-Planck equation is generally given by, 

§f4(,<„,|), 
where 

A(n)=g(n)-d(n)-^-, (12) 
an 

and 
B{n)=l-[g{n)+d{n)\. (13) 

It is important to realize that the above equations cannot stand alone to produce 
meaningful results. The microscopic phenomenological parameters in eq. (8) and the 
functions g{ri) and d{ri) in eq. (10) are not known in general and are not measurable 
by any direct experimental means. Therefore, the only source for these functions is via 
atomistic simulations capable of realistic predictions. These simulations represent one 
of the multi-scale links needed for the defect dynamics analysis and are discussed in the 
section immediately following. Next, input is needed from a global heat transfer model 
to compute the temperature profile throughout the growing crystal. The accuracy of the 
heat transport model is also extremely important because of the Arrhenius temperature 
dependence of most of the thermodynamic and transport properties. Thus an accurate 
global model of the crystal growth process is another multi-scale input that is required 
to model defect dynamics. 

Atomistic simulation 

Modern atomistic simulation techniques, such as molecular dynamics and kinetic 
Monte Carlo methods, are being applied to model features of crystal growth systems. 
These techniques are showing great promise for a obtaining deeper understanding of 
crystal growth; however, they are typically restricted to describing systems characterized 
by very small length scales over very short time scales. Jackson [31, 32], Gilmer [33], 
Van der Eerden [34], and Sinno [35] provide good overviews. 

The heart of atomistic analyses is computing the motion of individual atoms in a sys
tem, a technique known as molecular dynamics. The trajectory of each atom is computed 
from an appropriate intial condition and by considering the interatomic forces among all 
entities. Methods which employ quantum mechanical forces (obtained by approximate 
solutions to the Schrodinger equation) are refereed to as ab intio simulations. Since they 
are derived from a rigorous representation of atomic interactions, they can be extremely 
accurate but are also very expensive to compute. Faster computation is achieved by re
placing the quantum forces by those computed from a relatively simple representation 
of the interatomic potential. Such methods are often refereed to as classical or empirical 
molecular dynamics simulations. While not as rigorous as ab initio methods, classical 
techniques have been used successfully to carry out very large-scale computations and 
yield realistic results. The fastest class of atomistic simulation substitute for the integra
tion of the equations of motion (as is done in molecular dynamics) with hops of atoms 
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on a pre-defined lattice, with each hop computed as a probabilistic event weighted by 
an associated transition energy and corresponding to specified time horizon. Due to the 
elements of chance involved with each step in time, such techniques are referred to as 
Kinetic Monte Carlo models. 

SAMPLES OF CRYSTAL GROWTH ANALYSIS 

As previously emphasized, bulk crystal growth is characterized by strongly interacting 
and often very nonlinear phenomena. Theory and modeling has allowed many of these 
behaviors to be analyzed and more completely understood; a few examples, some clas
sical, some state-of-the-art, are discussed below. 

Atomistic simulation of II-VI melts 

Compound II-VI semiconductors, such as cadmium telluride and its alloy cadmium 
zinc telluride, pose formidable challenges for melt crystal growth [36-38]. Some of 
these challenges arise from the behavior of the molten, or liquid, state of II-VI com
pounds, which is poorly understood. Indeed, the behavior of liquid II-VI materials is 
far different from more classical semiconductors. For example, Glazov et al. [39] ob
served that changes in various properties upon melting of CdTe were consistent with 
much less disassociation than other semiconductors and thus a significant amount of or
dered melt structure. From electrical conductivity measurements, they further postulated 
that the melting of CdTe is a solid semiconductor-liquid semiconductor transition rather 
than the semiconductor-metal transition associated with group IV and III-V materials. 
Glazov et al. [39] also hypothesized that atomic chains of Te are an essential feature 
of liquid CdTe. Cystal growth folklore is replete with references to the beneficial effect 
of superheating the melt on CdTe crystal growth [36, 40]. The notion is that superheat
ing the melt breaks up its structure, thereby more readily allowing the phase change 
from liquid to solid to occur. As a final piece of evidence consistent with this scenario, 
recently Feychuk et al. [41] observed temperature oscillations via differential thermal 
analysis while holding CdTe melt at certain temperatures. They claimed that such melt 
temperature oscillations coincide with endothermic effects that can only be caused by 
melt structural transformations. 

Ab initio molecular dynamics simulations by Chelikowsky and colleagues [42-A7] re
vealed a rich set of physical behaviors for II-VI liquids. A snap-shot showing a supercell 
with typical liquid microstructure at one of the time steps of a molecular dynamics simu
lation of CdTe just above its melting point is shown in Figure 2(a). Godlevsky et al. [42] 
showed conclusively that the CdTe does behave as a liquid semiconductor. This and 
subsequent studies also demonstrated the existence of tellurium chain structures in the 
melts of CdTe and ZnTe. This is illustrated in Figure 2(b), where atoms of Te are shown 
in the supercell geometry of a calculation of liquid CdTe near its melting point. There 
are Te filaments reaching the length of the supercell. Because of the imposed periodicity 
of the system, some of the Te chains terminating at the opposite sides of the supercell 
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(a) (b) 

FIGURE 2. (a) Typical liquid microstructure at one of the time steps of a molecular dynamics simula
tion of CdTe just above its melting point. Dark atoms correspond to Cd; light atoms correspond to Te. A 
charge density surface is shown for the value of half of the maximum, (b) Ab initio simulations predict 
long, helical chains of tellurium in liquid CdTe near the melting-point temperature. The computational 
supercell is shown here with only atoms of Te and bonds between them displayed. 
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FIGURE 3. The time dependence of the mean square displacement of atoms in liquid II-VI compounds. 
The simulation temperature is near that of the melting point. The mean squared displacements are in 
atomic units and the time is given in simulation steps. 

become "infinite." This is an important structural observation; on a longer time scale, 
such chains may interfere with the phase change at a liquid-solid interface. 

In addition to structural issues, these ab inito models can be applied to examine kinetic 
issues. By following the atomic positions in the liquid state as a function of time, we can 
calculate the self-diffusion of the constituent species in the melt [46]. The diffusion 
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constant can be determined from 

D = limt^
<[R^]2>. (14) 

6t 

One can plot the squared displacement, R2, averaged over the species of interest as a 
function of time; the slope of this curve will yield the diffusion constant. In Figure 3, we 
illustrate the displacement versus time for three different II-VI compounds. Although 
our ensemble only contains 64 atoms, the statistics are adequate to give reliable diffusion 
constants. An experimental value for the diffusion of Te in liquid CdTe is available 
[37], namely D(Te) = 5.0 x 10~5 cm2/sec. Our theoretical value is D(Te) = 5.2 x 
10~5 cm2/sec. This value corresponds to a temperature near the melting point. The 
computed values for the self-diffusion coefficient of the other atoms correlate with 
atomic wieght, with more massive species diffusing more slowly. We note that other 
methods such as tight binding molecular dynamics or classical molecular dynamics 
which have been performed for IV and III-V semiconductors typically underestimate 
the diffusion constant by a factor of two [46]. 

Step models for solution crystal growth 

Under typical situations in solution growth where the interface is at a temperature 
below the roughening transition, the surface morphology which minimizes the free en
ergy is an atomically smooth plane associated with the underlying crystalline structure, 
referred to as a singular face or facet. The rate of growth of the crystal is then deter
mined by how fast new layers can be added. However, if two-dimensional nucleation 
must occur to start a new layer on a singular surface, the rate of crystallization would be 
implausibly low compared to actual observations. Burton and Cabrera [48] postulated 
that a vicinal surface, i.e., an orientation in the vicinity of a facet plane, would contain 
enough steps to rectify this large discrepancy between theory and observation. Namely, 
the slow rate of step nucleation could be circumvented if the layers were already present 
on the surface. At the same time, Frank [49] noted that dislocations are present in nearly 
all crystals and that a screw dislocation intersecting a face would act as a continuous 
source of steps. Burton-Cabrera-Frank, or BCF, theory [50] describes the growth of 
singular crystal faces as a mechanism of step generation and movement. 

There is a vast literature devoted to modern experimental and theoretical studies of 
step growth mechanisms; see the reviews Jeong and Williams [54] and Krug [55, 56]. 
That steps even exist is a curious feature of the nature of crystals. Steps on a vicinal 
surface are atomic features, one unit cell in height, that separate individual lattice planes. 
These steps are separated by terraces, each of which is an atomically flat, singular 
surface. As explained by Krug [55], the cost in terms of free energy to form a new step 
segment is large enough to render these steps thermodynamically stable at sufficiently 
low temperatures. These long-lived surface features makes them suitable as a basis to 
construct mesoscopic models that describe the evolution of surface morphology via the 
representation of atomic-size steps embedded within in a continuum description of mass 
transport. 
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Direction of 
step motion 

FIGURE 4. (a) A depiction of the mechanisms responsible for the growth of a vicinal crystalline surface 
from a liquid solution, (b) Two step bunches are indicated by the closely spaced lines on the crystal 
surface; contours of bulk supersaturation are shown above the surface, with lowest supersaturation values 
immediately above the step bunches [65], 

The BCF mechanism of steps moving along a crystalline surface is firmly established, 
yet this picture is not enough to explain the growth of crystals from liquids. Since the 
diffusion of solute molecules through a liquid phase is quite slow, there are nearly always 
significant mass transfer effects on growth. A schematic depiction of the transport of 
species to the surface steps followed by their subsequent incorporation, causing step 
movement is shown in Figure 4(a). Such effects are known to slow the overall rate 
of growth of the crystal and, under certain circumstances, can lead to morphological 
instabilities during growth. Chernov [51], Gilmer, Ghez, and Cabrera [52],and Van der 
Eerden [53] put forth analytical models to account for additional incorporation and 
transport effects in significant advances to the basic BCF model. 

Of particular interest are step bunching instabilities which drive otherwise parallel, 
equidistant steps to form bunches, i.e., features where many closely spaced steps are 
separated by regions with relatively few, widely spaced steps. Chernov et al. [57-60] 
performed an impressive series of rigorous linear stability analyses of a vicinal surface 
with respect to harmonic perturbations of the step strain. Their analyses showed that the 
coupling of kinetic anisotropy, resulting from the variation of step distribution on the 
crystal surface, with convective solute transport above the steps lead to an instability for 
the case of strong fluid flows in the same direction as the step motion, in agreement with 
experimental observations [61]. 

We have developed a mesoscopic, step-growth model [62, 63] and have performed 
transient simulations of perturbed step trains under solution flow, confirming that and 
such flows can drive the formation of large step bunches [64, 65]. While the discrete 
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FIGURE 5. The solidification of a dilute binary alloy: (a) simplified phase diagram, (b) diffusion-
limited axial segregation, and (c) axial segregation as depicted by the BPS model. 

description of steps used in our step growth model is different from the continuum 
description in Chernov's linear stability analyses, good agreement was shown for steps in 
direct incorporation mode under a similar set of growth conditions. One of the bunched 
states computed by our model is shown in Figure 4(b), where two step bunches are 
shown as closely spaced lines that represent straight, parallel steps on the crystal surface 
.Bulk supersaturation contours above the steps show depletion regions around these step 
bunches. A sufficiently strong flow in the same direction as the step motion, both from 
left to right in the figure, causes the formation of step bunches. 

Segregation in directional solidifcation 

For a dilute species (often called a dopant) added to a pure material, the phase be
havior of the nearly-pure material can be described by a phase diagram of temperature 
plotted as a function of concentration (at constant pressure), as shown in Figure 5(a). 
The important behaviors, from the point of view of crystal growth, are that the solid in 
equilibrium with the liquid at a fixed temperature differ in composition and that the equi
librium melting (or freezing) temperature is a function of composition. The first of these 
phenomena gives rise to segregation, referring to the partitioning of a dopant between 
the solid and melt which results in a crystal of inhomogeneous composition, even when 
grown from an initially uniform-composition melt. The second phenomenon, when cou
pled with segregation during growth, is responsible for the morphological instability 
known as constitutional supercooling and will be discussed in the next section. 

Classic explanations of dopant segregation [66] involve directional solidification, 
where a crystal is growing into a melt in one direction and both phases initially have the 
same solute composition, CQ. For the case of no melt mixing and a partition coefficient, 
k, less than unity, dopant is rejected from the growing crystal and diffuses away from it. 
This flux causes the the melt dopant concentration at the interface to increase in time, 
until it is exactly co/fc, as depicted schematically in Figure 5(b). Under these conditions, 
axial segregation is said to be diffusion-limited and, barring initial and final transients, 
gives rise to a constant composition co along the length of the crystal. Tiller et al. [67,68] 
were the first to lay out the quantitative details of axial dopant segregation in a crystal 
growing under purely diffusive conditions. 

151 

Downloaded 10 May 2011 to 130.91.117.41. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



Convection in the melt disrupts this appealing diffusion-controlled scenario by alter
ing the form of the concentration profile in the melt. The BPS model of Burton, Prim, and 
Schlicter [69] postulates a stagnant film in front of the interface of thickness 8. Trans
port is assumed to occur only by diffusion within the film and by perfect convective 
mixing beyond the film, leading to the dopant concentration profile depicted in Figure 
5(c). Under this scenario, the axial distribution of a dopant in the crystal is given by 

- = Wl-/) (* e f f _ 1 ) , d5) 
co 

where cs is the concentration of dopant in the crystal, Co is the initial concentration of 
solute in the bulk, / is the fraction of melt solidified, and feeff is an "effective" distribution 
coefficient given by 

k 
feeff = fe+(l-fe)exp(-V,5/^)' ( 1 6 ) 

where k is the equilibrium distribution coefficient, Vg is the growth velocity of the crystal, 
and @ is the diffusion coefficient of the dopant in the melt. If 8 —> °°, the effective 
segregation coefficient approaches unity, and the constant axial concentration profile 
for diffusion-controlled growth is obtained. As 8 —> 0, complete mixing of the melt is 
implied, feeff —> k, and the Scheil equation [70] for axial segregation is recovered. The 
BPS model is often very effective for fitting experimental segregation data by suitable 
choice of the parameter 8. 

The simplicity and elegance of the BPS expression is perhaps a bit misleading, 
since it has virtually no predictive capabilities. The underlying idea for this model 
is too simple; there is no precise physical meaning of the parameter 8, since flows 
in real systems are never completely stagnant nor intense enough to produce perfect 
mixing. In addition, segregation across the face of the crystal can be more important 
than segregation along its length, and this effect is ignored in the one-dimensional 
solidification model discussed above. Shortcomings of the stagnant layer concept and 
similar boundary layer models have been discussed by Wilcox [71] and Rosenberger 
and Miiller [72]. Brown and Kim [73] provided an erudite discussion of the validity of 
the stagnant layer model by comparison with results from detailed numerical simulations 
of Bridgman growth. 

Morphological instability in directional solidification 

The one-dimensional directional solidification model presented above can be used to 
understand the morphological stability of a crystal interface during growth. The situation 
leading to instability is depicted in the top, right plot of Figure 6. An axial temperature 
gradient is applied to the system to maintain growth, with the interface at Tc and the 
temperature rising as it extends into the melt (shown by the dashed line). Typically, 
thermal diffusion processes are much faster than mass diffusion, so the temperature 
profile is linear over the length scale characteristic of the dopant diffusion layer in 
front of the solidification interface. Also shown in this plot is a curve that denotes 
the equilibrium freezing temperature of the melt, or the liquidus temperature, TL, in 
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FIGURE 6. Above: Unstable solidification of a binary allow can arise due to constitutional supercool
ing. Refer to text for expalanation. Below: Cellular growth instability is computed by Bi [76] using a 
two-dimensional, phase field model for directional solidification of a binary alloy. The light regions show 
a melt enriched with one component due to solute segregation. 

front of the interface. This changes with position due to the compositional profile in the 
melt set up by segregation and mass diffusion and the dependence of the equilibrium 
freezing temperature on composition, shown in the preceding plots along the top of 
Figure 6. Under the conditions depicted, the melt in front of the interface is below its 
freezing point, and a perturbation to the interface will grow rapidly into the supercooled 
region, resulting in a unstable growth interface. This situation is known as constitutional 
supercooling, and the criterion for it to arise is, 

dT mco(l—k)Vg 

~d~z< k® ' 
(17) 

where dT jdz denotes the axial temperature gradient of the melt at the interface and m 
is the slope of the liquidus curve on the binary phase diagram. The resultant behavior, 
which is often referred to as the Mullins-Sekerka instability [74, 75], is a wavy interface, 
which, under larger driving forces, becomes successively more unstable in the form of 
cells and, eventually, dendrites. A phase-field computation of such an unstable interface 
by Bi and Sekerka [76, 77] is also shown in Figure 6. 

Process-level modeling of melt growth 

Predicting the behavior of an industrial-scale melt crystal growth process requires a 
faithful depiction of furnace-scale heat transfer along with a detailed accounting for heat 
transfer, melt convection, and solid-liquid interface motion. Toward a flexible, rigorous 
realization of these challenges, we have developed a multi-scale, modular model to study 
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FIGURE 7. (a) Self-consistent model for the EDG growth of CZT, showing CrysVUn furnace model on 
left and Cats2D crystal growth model on right, (b) Temperature isotherms in the melt are shown by solid 
lines; isotherms in the crystal are dashed, (c) Melt streamlines: the flow consists of two, nested toroidal 
cells co-circulating in the counterclockwise direction, as viewed here. Adapted from [78], 

the growth of single crystals of cadmium zinc telluride in an industrial electrodynamic 
gradient freeze furnace [78]. The complete model for melt crystal growth is divided into 
two domains, one employing the CrysVUn code [79, 80] to solve for the furnace (the 
global model), and the other employing Cats2D [81] comprising the melt, crystal, and 
melt-crystal interface (the local model). A schematic diagram is shown in Figure 7(a), 
where meridional views are shown of the two-dimensional, axisymmetric domains. The 
global model includes all of the details of the furnace and ampoule assembly, while the 
local model consists only of the melt, interface, and a portion of the crystal. 

Sample results are shown in Figure 7 for a quasi-steady state snapshot of the sys
tem under typical operating parameters. The temperature field, depicted by isotherms 
in Figure 7(b), shows that the melt-crystal interface is strongly concave with respect to 
the solid. The dashed isotherms in the solid show a two-dimensional thermal field, with 
heat flowing downward and outward. Flattened isotherms in the melt with boundary 
layers near the ampoule wall arise due to strong convective mixing throughout most of 
the melt domain. Streamlines, shown in Figure 7(c), indicate flows rotating in an coun
terclockwise sense; the melt flow is everywhere tangent to the streamlines. Buoyant 
forces caused by radial thermal gradients in the bulk drive counterclockwise recirculat
ing flows, with warmer fluid rising along the centerline and flowing downward along the 
walls. This flow structure is reversed compared to most Bridgman systems; however, in 
this extremely low-gradient system, the effect of latent heat is large enough to reverse 
the direction of the radial temperature gradient throughout the bulk of the melt. Surface 
tension gradients caused by radial thermal gradients along the melt free surface at the 
top of the domain lead to Marangoni forces that reinforce these recirculating flows. 

While the CrysVUn-Cats2D model was able to compute a fully self-consistent so
lution for this multi-scale, coupled model, Pandy et al. [78] also demonstrated that the 
success of the computations depended strongly upon the details of how the two mod-
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els were coupled. Indeed, convergence was only attainable under select conditions. The 
source of this difficulty was explained using ideas from fixed-point iterations in [82, 83]. 
Recent work suggests that an Approximate Block Newton method [84] is far superior 
than the block Gauss-Seidel algorithm used by [78]. 

FINAL REMARKS 

We have presented an overview of many topics relevant to the modeling of crystal growth 
processes, and we hope that the interested reader will further his or her knowledge 
via the citations presented here and in the general literature. Continuing advances in 
computers and algorithms are enabling increasingly powerful models for crystal growth 
processes. It is incumbent for any serious crystal growth practitioner to understand and 
utilize such tools, especially since software packages are now available for nearly all 
ranges of expertise and computers. 

Future challenges for modeling must lead to more realistic representation of the 
multi-scale interactions important in crystal growth systems. Models must be capable 
of describing detailed system geometry and design (e.g., furnace heat transfer for melt 
growth systems), three-dimensional and transient continuum transport (flows, heat and 
mass transfer), phase-change phenomena (thermodynamics and kinetics), and atomistic 
events. Progress is being made on all of these fronts, but many challenges remain. 
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