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which are the result of rapid cluster shape fluctuations, are shown to be larger than would be expected from
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ABSTRACT 

 

A detailed continuum (mean-field) model is presented that captures quantitatively the evolution of a 

vacancy cluster size distribution in crystalline silicon simulated directly by large-scale parallel molecular 

dynamics. The continuum model is parameterized entirely using the results of atomistic simulations based 

on the same empirical potential used to perform the atomistic aggregation simulation, leading to an 

internally consistent comparison across the two scales. It is found that an excellent representation of all 

measured components of the cluster size distribution can be obtained with consistent parameters only if 

the assumed physical mechanisms are captured correctly. In particular, the inclusion of vacancy cluster 

diffusion and a model to capture the dynamic nature of cluster morphology at high temperature are 

necessary to reproduce the results of the large-scale atomistic simulation. Dynamic clusters with large 

capture volumes at high temperature, which are the result of rapid cluster shape fluctuations, are shown to 

be larger than would be expected from static analyses, leading to substantial enhancement of the 

nucleation rate. Based on these results, it is shown that a parametrically consistent atomistic-continuum 

comparison can be used as a sensitive framework for formulating accurate continuum models of complex 

phenomena such as defect aggregation in solids.  

 

PACS #: 61.72Ji 
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I. INTRODUCTION 

 

An important challenge in the formulation of continuum rate equation-based models for 

inherently atomistic processes is verification of the physics and chemistry embodied within the 

model1,2,3,4,5,6. Typically in such models, both the assumed mechanisms and the model 

parameters are uncertain. The latter are often fitted to experimental data but are reliable only if 

the model used to perform the data regression is mechanistically accurate7,8,9. As a result, an 

increase in the number of fitting parameters usually is associated with an increase in the 

uncertainty of the assumed physical and chemical mechanisms.  

 

An alternative approach to model parameterization with experimental data is to use 

atomistic simulation to compute independently the required thermophysical property 

information10,11,12,13,14. However, in the case of microstructural evolution in crystalline 

semiconductors, it has been shown that even the state-of-the-art ab initio methods15,16,17,18 are not 

yet able to compute sufficiently accurately properties such as intrinsic point defect diffusivities 

and equilibrium concentrations for use in continuum process models19. Other approaches such as 

Kinetic Monte Carlo (KMC)20,21 also require substantial physical property and mechanistic 

description input; see ref. 22 for a brief review of previous studies based on these approaches. 

 

The goal of the work described here and in ref. 22 (heretofore referred to as Paper 1) is to 

use atomistic simulation to characterize the important mechanistic processes, rather than 

thermophysical properties during vacancy aggregation in crystalline silicon. The central element 

is a parametrically consistent comparison between two representations (atomistic and continuum) 
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of a single process in order to develop a mechanistically accurate continuum model as discussed 

in Paper 1. Parametric consistency is ensured by requiring that all thermophysical property 

information needed for the continuum model is generated by atomistic simulations employing 

the same interatomic potential used to directly model the process atomistically. In the present 

work, the focus is on the aggregation of vacancies in crystalline silicon. The quantitative 

understanding of void (large octahedral vacancy clusters)23 formation during silicon crystal 

growth and wafer processing remains technologically important and the detrimental effects of 

voids on the performance of DRAM memory devices are well documented24. Finally, a plethora 

of quantitative experimental data is available for model parameterization and testing. 

 

A comprehensive atomistic analysis was presented in Paper 1 that led to compact 

representations of vacancy cluster thermodynamics and transport, particularly equilibrium cluster 

structures, free energies and diffusion coefficients as a function of temperature. The Environment 

Dependent Interatomic Potential (EDIP)25,26 was used for all simulations. A single large-scale 

molecular dynamics simulation was then performed in which 1000 vacancies were placed in a 

silicon host lattice containing 216,000 sites. The system was allowed to evolve in the NVT 

ensemble at 1600 K and zero pressure and the size distribution of vacancy clusters monitored as 

a function of time. It was found that essential features, namely the evolution in time of the 

average cluster size, of the vacancy aggregation profile could be captured with a simple mean-

field scaling analysis27,28. However, certain unjustified approximations, such as irreversible, 

homogeneous aggregation rates, were necessary to generate the analytic mean-field result, and 

the goal of the current paper is to remove these in order to formulate a predictive process model. 
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In this article, a detailed continuum model suitable for use in process scale simulation of 

crystal growth and wafer processing is developed and investigated by comparing the predicted 

cluster size evolution to the results of the atomistic simulation. The paper is structured as 

follows. The overall description of the model is presented in Section II, where the rate equations 

and the thermodynamics associated with cluster formation and dissolution are discussed in detail. 

In Section III, kinetic models for these processes are developed based on extensions of previous 

work. In Section IV, molecular statics simulations are presented, which are aimed at computing 

quantitative estimates for the interaction distances between clusters as a function of cluster size. 

These predictions are then used to compute mean-field estimates for the cluster size distribution 

and are compared to the atomistic simulation results. In section V, a  cluster capture radius model 

that accounts for the effect of high temperature on cluster morphology, mobility and mutual 

interaction is developed based on the results of further atomic simulations and this model is used 

to refine the continuum representation. A sensitivity analysis is presented in Section VI, which 

demonstrates the contribution of each part of the overall continuum model as well as the 

robustness of the overall approach. Finally, conclusions are presented in Section VII. 

 

II. CONTINUUM MODEL OF VACANCY AGGREGATION 

 

In this section, a general theoretical framework for continuum modeling of vacancy 

aggregation based on coupled rate equations is developed. Such models are necessary for 

extending the scope of atomistic simulations to realistic processing environments such as crystal 

growth and wafer annealing1,2,3,29. The model is first developed using a single reaction pathway 

in which only monomers are assumed to be mobile and then is extended to the general case of 
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cluster diffusion and reaction. The continuum model described here is based on a system of 

coupled Master equations due to Schmolukowski30: 

 

                [ ] [∑∑
∞

=
+

=+
+ −−−=

1
),(),(),(),(

2
1

j
jkjk

kji
jiji

k XjkFXXjkKXjiFXXjiK
dt

dX ],          (2.1) 

 

where Xk is the number of clusters of size k, K(i,j) is the coagulation kernel (i.e the set of forward 

reaction rates) between two clusters of size i and j, respectively, and F(i,j) is the fragmentation 

kernel, which describes the rate of dissociation of a cluster of size i+j into clusters of size i and j.  

 

A. General Thermodynamic Considerations 

 

The bi-molecular reaction  proceeds at the net forward flux, J1

)1,(

)1,(1 +↔+ i

iK

iFi XXX i, which is 

given by3,31,32 

       )exp()1,()exp()1,( 1)1(
1

)1(1
1 kT

G
XiF

kT
G

XXiKJ
B

ii
i

B
ii

ii
+→+

+
+→+ ∆

−⋅⋅−
∆

−⋅⋅⋅= ,             (2.2) 

 

where,  is the free energy barrier for the growth of a cluster of size i into one of size 

i+1 by the incorporation of a monomer. The rate, or Master
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3,33, equation for the temporal 

evolution of species i can be written as 
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where Nmax is the largest cluster considered in the continuum model. The rate equations 

appropriate at the size-space boundaries, N=1 and N=Nmax, respectively, are given by 
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Equation (2.5) represents a no-flux boundary condition at the largest cluster size, and does not 

affect the resulting size distribution if Nmax is chosen to be sufficiently large.  

 

The free energy of a system containing vacancies and vacancy clusters is written as34 
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is the total number of possible ways of distributing { clusters in a lattice containing N sites}iX 35. 

The  term represents the configurational entropy. The total free energy barrier 

associated with the forward component K(i,1) in eq. (2.2) is then given by

)ln(Ω− kT

32 
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i , i.e. the free energy of the system is higher after the 

aggregation step, i+1 (i+1), has taken place. The subscripts, 1 and 2, on the  terms represent 

the initial state {X

Ω

1 , …, Xi, Xi+1, …} and the final state {X1-1, …, Xi-1, Xi+1+1, …} of the 

reaction, respectively. The total free energy barrier is simply  
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if , implying that the total free energy has been reduced 

following the aggregation step. Here, 
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f
i

BE∆  is an enthalpic barrier that may or may not be 

present, depending on any structural rearrangements that need to be made during the 

incorporation of the monomer. The two cases represented by eqs. (2.8) and (2.9) are shown 

schematically in Figure 1. Similar arguments can be made for the reverse reaction, in which a 

monomer is emitted and a cluster of size i+1 shrinks to a cluster of size i. In other words, if the 
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net free energy change following any reaction is negative, the barrier is BE∆  and the free energy 

difference does not affect the reaction rate. 

1))1 =

0

 

At equilibrium, the rate of change in the concentration of each cluster size is zero as is the 

free energy change associated with any cluster growth or dissolution process, and therefore, for 

all i, the forward and backward reaction rates are equal34: 

 

                             exp(
)1,(

)1,( (1

1

1 ∆
−⋅

⋅
⋅⋅

=
⋅
⋅ +→+

+ kT
G

XiF
XXiK

RateBackward
RateForward eq

ii
eq
i

eqeq
i                      (2.10) 

 

where  is the equilibrium number of clusters of size i and  eq
iX
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Note that eqs. (2.10) and (2.11) are thermodynamic requirements for equilibrium and always are 

valid irrespective of the reaction under consideration. Equation (2.10) also determines the 

backward reaction rate in terms of the forward one and the equilibrium concentrations of the 

relevant species34, so that 
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The large-scale atomistic simulation system described in Paper 1 is a thermodynamically 

closed system in which the total number of vacancies and Si atoms are conserved. Thus, a mean-
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field model must be based on consistent thermodynamics. Therefore, the equilibrium distribution 

of vacancy clusters {Xi
eq} in eq. (2.12) should correspond to the constrained equilibrium 

conditions in a closed system with a fixed number of vacancies, and not the unconstrained (open 

system) equilibrium distribution. In the remainder of this paper, it is implied that all equilibrium 

concentrations are computed self-consistently by minimizing the total free energy of the closed 

system; see Paper 1 for details. It also is worthwhile noting here that the actual values of the 

equilibrium concentrations are expected to be important only for longer times, and are found not 

to affect the cluster size distribution significantly over O(10-9-10-8) seconds. 

 

B. Cluster Diffusion 

 

The inclusion of cluster diffusion into the continuum model represented by eqs. (2.1)-

(2.12) requires that additional reaction pathways for cluster growth (and dissolution) be 

considered. Extending the above reaction framework to include cluster diffusion is 

straightforward. Almost all of the above equations (i.e. eqs. (2.2) - (2.11)) can be modified to 

include j-mer diffusion simply by replacing the index “1” by “j”. The reaction pathway for 

cluster growth by cluster-cluster reaction is now given by 
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The net forward flux for this reaction is36,37 
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where  is the total free energy barrier associated with the coalescence of a cluster of 

size i and a cluster of size j. Equation (2.7) remains the same as before, but the configurational 

free energy change due to the coalescence of two clusters is now given by 
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The appropriate coupled rate equations are now given by the following system of 

equations: 
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In eqs. (2.16), Nd is the number of diffusing clusters, and  is defined as the net forward flux at 

size i due to the reaction enabled by a diffusor of size j. The results of Section IV in Paper 1 

demonstrated that cluster diffusion rates decay as , and therefore all clusters are, in 

principle, mobile. However, because of the finite size and small time of the atomistic simulation 

and therefore few large clusters, N

j
iJ

25.1−j

d is taken to be ten as determined by sensitivity analysis.  

 

III. REACTION MODELING 

 

The final component needed to specify completely the continuum model for vacancy 

aggregation is a set of forward reaction rate constants, , noting once again that the 

fragmentation rates, F(i,j), can be computed from these if the constrained equilibrium 

concentrations are known. The overall coalescence rate between two clusters is determined by 

two series mass transfer resistances: diffusion within the lattice until the two species are within a 

capture distance, r

),( jiK

cap(i,j), of each other, followed by reaction at the cluster surfaces. The capture 

distance is defined as the point-to-point distance between the clusters’ centers-of-mass at which 

the interaction energy is non-zero. We use a model that was previously developed to describe the 

attachment of a single vacancy to a cluster3,31, which is readily generalized to include reaction 

between two diffusing clusters.  

 

Lifshitz and Slyozov38 have treated the kinetics of this problem by considering a 

reference stationary reactant, i, which is surrounded by a distribution of j’s. The diffusive flux of 

j species at the interaction distance, , of the reference particle i is matched by the 

incorporation rate of j’s into i, so that

),( jircap

3 
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The number of clusters of species j and its spatial gradient at rcap(i,j) is obtained via the 

steady state solution of the spherically symmetric diffusion equation about the reference particle 

i. The equilibrium number of clusters of species j at rcap(i,j), Xj
eq(rcap), is taken to be equal to its 

bulk value Xj
eq. Using this result and rearranging eq. (3.1), the concentration of j at the surface of 

the reference i particle is given by 
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π 30,39,40. The expression for  differs from previous 

expressions for diffusion limited reaction rate given in refs. [30,39,40] by a factor of V

d
jik +

-1, where V 

is the system volume (see section IV.B), because of use of cluster numbers rather than 

concentrations as our basis for formulating equations (2.2-2.5) and (2.16). Equation (3.2) is 

generally valid in the sense that it does not assume that the aggregation process is either diffusion 

or reaction limited. An expression for K(i,j) is derived by using jump rate theory41 and assuming 

that the final step for cluster-cluster reaction corresponds to a single vacancy jump over a 

distance δ , which is taken here to correspond to the lattice parameter, i.e. 235.0=δ  nm. The 

jump rate is given by41 , where  is the energy barrier for diffusion  

across the interface between clusters i and j.  

)/exp( , kTE d
ji−0

,, jiji =νν d
jiE ,
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The volume over a thickness of δ , surrounding the reference cluster, i, is given by 

, and therefore the number of j-clusters that can attempt to attach to i is 

, where . The forward reaction rate for i+j (i+j)  is therefore 

given by

24 iRπδ ⋅

4 2Riπδ ⋅ ),( irC capj VXC jj /=

33 
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In general, both ji,ν  and  may vary with i and j, particularly for small clusters. However, 

these effects are expected to be quite small and difficult to quantify, hence both quantities are 

assumed to be constant, i.e. 

d
jiE ,

νν =ji, and dd
ji EE =,

41,42. Equation (3.3) can be combined with the 

general jump rate theory expression for diffusion41, 
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For the general case of agglomeration of two diffusing clusters, eq. (3.5) is written as 
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Now, all the essential ingredients, except rcap(i,j) for a general continuum model have 

been specified. In principle, once all the required thermophysical properties are computed, a 

quantitatively accurate representation of the atomic scale evolution profile should be obtained if 

the model is a good representation of the atomic process. The remainder of this paper compares 

the predictions of the continuum model described in the previous three sections with the 

atomistic results shown in Figure 14 in Paper 1.  

 

IV. COMPACT CLUSTER MODEL 

 

In this section, it is assumed that the structures and free energies of the actual vacancy 

clusters observed during the atomistic simulation are well described by the Hexagonal-Ring 

Cluster (HRC) model43,44. Given this assumption, only the cluster capture radii need to be 

computed before a numerical solution of the model described above can be obtained. The 

effective capture radius around an individual cluster depends on several factors, such as the 

cluster size, morphology, and resulting strain on the surrounding lattice. The total capture radius 

is defined here as the sum of the characteristic radius of the actual cluster and the distance at 

which sufficient lattice distortion occurs to make the cluster’s presence “felt” by another entity.  

 

A. Vacancy-Vacancy Interactions 

 

The capture distance between vacancy clusters first was investigated by considering two 

single vacancies. The results in Paper 1 indicate that the vacancy dimer binding energy 

approaches zero at the 4th-nearest neighbor distance measured along the (110) direction (4NN-
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110). These results are fully consistent with the Stillinger-Weber results of Bongiorno et al.45 

who found that two vacancies with initial separation less than or equal to 4NN-110 bind 

immediately in low-temperature molecular dynamics simulations, while those at more than 4NN-

110 separation will diffuse randomly. The vacancy-vacancy capture radius based on these 

analyses therefore can be taken as 7.67 Å, which corresponds to the 4NN-110 distance in the 

perfect crystal at zero pressure. This conclusion also is in good agreement with previous 

estimates based on the analysis of positron annihilation data46. Note that the capture distance is 

lower than this value when the two vacancies are connected along a non-(110) direction, but it is  

assumed here that the largest capture distance determines the overall kinetics.  

 

Static relaxations of various vacancy-vacancy configurations were performed using the 

EDIP potential. Based on these calculations, details of which will be provided elsewhere, a 

critical atomic displacement is estimated at about 0.07 Å. This value represents the local atomic 

displacement required for a vacancy (or vacancy cluster) to “detect” the presence of another 

vacancy entity leading to binding if the thermodynamics are favorable.  

 

B. Cluster-cluster interactions 

 

The dependence of the cluster capture radius on cluster size was investigated using static 

relaxations of systems containing octahedral voids of different sizes44. Two void sizes were 

considered in these calculations - 165 and 455 vacancies – both sizes correspond to “perfect 

clusters” with regular octahedral geometry. The spatial evolution of the displacement field from 

the cluster surface in several directions is shown in Figure 2. Shown are the atomic 
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displacements along the (100), (110), and (111) directions, which correspond to normal vectors 

to the cluster base corner, base edge, and pyramidal plane, respectively. The displacement is 

largest normal to the (111) plane, indicating a contraction of the lattice into the void. Conversely, 

the displacement field is smallest along the (100) direction. Also notable is the fact that the 

displacement field goes down most rapidly along the (111) direction while the decay along (100) 

is slowest. Nevertheless, displacements along all three directions are observed to decay rapidly 

below the critical 0.07 Å value at a distance of about 3-4 Å from the cluster surface. Similar 

results are found for the smaller 165-vacancy cluster as expected. These findings are entirely 

consistent with the observation that octahedral vacancy clusters found in commercial CZ silicon 

appear to induce a negligible strain field when observed by TEM47,48.  

 

The total capture radius for a cluster containing j vacancies therefore can be expressed as  

 

                                                                                                                           (4.1) strj
tot
j rRR +=

 

where , which is one-half of the 4NN-110 distance, represents the lattice strain field 

contribution to the capture radius and is a constant for all cluster sizes, and R
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based on the actual cluster size. Note that the capture distance for two clusters, i and j, is then 

given by . Total capture radii for HRC clusters were computed as follows. 

For each vacancy in each HRC cluster, all atoms within a 2NN distance were recorded. The 

resulting object represents both the cluster and its capture zone. We assume here that these 

volumes are approximately spherical and therefore , where V  is defined as 

total cluster capture volume, i.e. the volume of the cluster containing j vacancies and its 

),( jircap≡

3/1)4/3( πtot
j

tot
j VR = tot

j
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associated capture zone. A plot of  as a power-law function of cluster size is shown in 

Figure 3 (Compact Cluster Model), along with the sizes predicted by other models. Large cluster 

capture volumes can greatly reduce the free volume in a finite system. Excluded volume was 

computed as V  giving the available free volume as V . This volume 

V was used in the mean field simulation instead of the actual system volume V . 

)( jRtot
j

∑
=

=
max

1

N

j

tot
jj

ex VX exsystem VV −=

system

BE∆

i

 

C. Results for the Compact Cluster Model 

 

The vacancy aggregation-fragmentation model described in the preceding three sections 

was solved numerically by time integration using the explicit Euler method with an adaptive time 

stepping algorithm49. In all the following, the enthalpic barrier, , was set to zero. This 

assumption is based on the observation that no significant barrier beyond the activation energy 

for migration has been found for vacancy-vacancy reaction or vacancy-self-interstitial 

recombination45. A summary of all thermophysical properties is given in Table 1. 

Figure 4 shows the comparison between the atomistic data and the predictions of the 

continuum model with all parameters taken from Paper 1 and also from the previous sections in 

this article. A total of four components of the size distribution are used for comparison; two 

individual components (monomer (X1) and dimer (X2) concentrations) and two moment-based 

quantities (total cluster number (M0) and average cluster size (M2/M1)). The small size of the 

system and short simulation times preclude the quantitative use of higher-order moments. The 

average cluster size is defined here as the ratio of the second and first moments of the size 

distribution, M2/M1, where  and X∑=
s

si XsM s is the number of clusters of size s.  
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While the agreement between the atomistic data and the predictions of the continuum 

model is qualitatively reasonable, at least for shorter times, some of the details of the vacancy 

cluster evolution are not captured well by the continuum model. At longer times, the power-law 

evolution of the total cluster number and average size are not well captured. The continuum 

model in fact predicts substantially faster evolution during the later stages of the simulation. 

Similar conclusions are drawn for the evolution of the monomer and dimer concentrations. In the 

following section, an explanation for the discrepancy is given and an enhanced model is 

proposed. The enhanced model is then used to discuss the sensitivity of our results to the various 

physical components described in Sections II and III. 

 

V. DYNAMIC CLUSTER MODELS 

 

In order to investigate the possible reasons for the observed discrepancy between the 

predictions of the continuum and atomistic model in Figure 4, the actual cluster geometries 

predicted during the atomistic simulation were analyzed in detail. It is important to note that if 

the HRC model is accepted as an accurate representation of cluster geometries at high 

temperature, then there are no remaining fitting parameters in the model.  

 

Several examples of 6-vacancy and 14-vacancy clusters are shown in Figure 5. Clearly, 

these species do not correspond to the predictions of the equilibrium HRC model and exhibit 

branches rather than fully closed  rings and cages44. Furthermore, many of the cluster species are 

not completely connected by NN bonds, but rather by 2NN and even 3NN distances. In fact, one 

 18



of the 6-vacancy clusters is composed entirely of 2NN interactions. Similar observations can be 

made regarding other cluster sizes. While the HRC structure is the lowest energy configuration, 

cluster diffusion at high temperature necessarily implies that diffusing clusters spend a 

substantial fraction of time in other, higher energy, and more extended configurations. The 

driving force for larger clusters to assume non-HRC shapes at high temperature is likely to be a 

result of the importance of entropy. The latter point is analogous to the original high-temperature 

extended point defect picture proposed by Seeger and Chik50.  

 

A. Models for Effective Cluster Size 

 

The non-equilibrium cluster structures found during the atomistic simulation imply that 

both the geometrical (i.e size) and free energy models used in the continuum model must be 

modified to account for thermal excitation. Cluster geometry was investigated using our 

previously introduced separation function: 

 

                                                              ∑
>

=
iji

ij
n

sep rr
,

2  .                                                             (5.1) 

 

This function represents the total of the inter-vacancy distances within a cluster. The 

complete set of cluster data generated by the large-scale atomistic simulation was used to 

determine the distribution of  for clusters in the size range 2≤N≤16. While larger clusters 

were observed during the simulation, the statistics for these sizes are poor because of the limited 

number of samples, and the relatively short observation times. 

n
sepr
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The distributions of r  for certain clusters are plotted in Figure 6. Larger values of 

for a given cluster indicate more branching and a higher number of 2NN and 3NN vacancy 

interactions. Also shown in Figure 6 are Maxwell-Boltzmann fits to the observed distribution of 

 for each cluster. The good agreement between the data and the fits demonstrates that, for a 

given cluster size, configurations are distributed in equilibrium according to their energies, 

analogously to the distribution of (say) atomic velocities in a solid at finite temperature. This 

observation suggests that the configuration-sampling rate is rapid compared to the overall 

simulation timescale. The  corresponding to the HRC structure for each cluster appears at the 

extreme left of each distribution curve (i.e. the smallest  value) and is rarely observed.  

n
sep

n
sepr

n
sepr

n
sepr

n
sepr

 

While the data in Figure 6 shows that clusters assume a distribution of shapes and 

effective sizes, it does not lead to a clear approach for determining a single effective cluster size 

for use in the continuum representation. The fact that the distributions appear to be near-

equilibrium, indicates that each cluster samples its possible configuration states often. This 

notion is supported by the diffusion analysis for dimers and trimers discussed in Paper 1, which 

showed the rapid exchange between the different configurations. Considered next are three 

models for effective cluster size as a function of the number of vacancies. Each of these models 

subsequently is tested in the continuum model. 
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1. Model 1 - Average Sphere Model 

 

In this model, the effective radius for a cluster of N vacancies is computed by assuming 

that each configuration found in the actual simulation coordinates is approximately spherical. 

The capture volume of each configuration is computed by tagging every atom within the 2NN 

interaction distance of any of the vacancies in a given cluster. In this way, the lattice strain 

interaction between any two clusters, 4NN-110, (see Section IV) is divided equally amongst the 

two clusters and both Rj and rstr in eq. (4.1) are included in the cluster radius. This assignment of 

total cluster radius is valid because as shown in Section IV, the extent of the lattice distortion 

component, rstr, is independent of cluster size. The effective volume for a cluster containing N 

vacancies is then given by an average over all configurations observed in the MD simulation. 

 

2. Model 2 - Average Dynamic Cluster Model 

 

In this model, clusters are assumed to be aspherical in shape and also to be dynamically 

evolving objects. Each cluster is assumed to sample its available configuration states rapidly 

relative to the overall aggregation timescale. The net effect is rapid cluster wobble (or 

equivalently, rotation) in which a spherical volume equal to the average of the maximum cluster 

radius of each observed configuration is incorporated into the cluster capture zone. Here, the 

maximum radius for each cluster configuration is computed by finding the position of the atom 

farthest from the cluster center-of-mass. Once again, all atoms within the 2NN interaction 

distance of any vacancy in the cluster are included in the total capture volume. A schematic 

representation of the model is shown in Figure 7 using a single configuration as an example. 
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The Average Dynamic Cluster Model can be justified based on an order-of-magnitude 

analysis of the relevant timescales. The necessary condition for rapid configuration sampling is 

, where t  is the configuration sampling timescale of a cluster containing i vacancies 

and is the diffusion timescale associated with the approach of a cluster of size 

j towards the reference cluster of size i. The length scale, l, can be taken as the diameter of the 

reference cluster, i. Configuration sampling is based primarily on the diffusion of single 

vacancies within the cluster, and for larger clusters, more vacancies are available for 

configuration changes. Thus, , assuming that every vacancy hop (

Dcs tt <<

Dt =

cs

D+ )/(2
jiDl

1
2 /~ iDtcs δ δ  is a bond 

length) corresponds to a configuration change. Therefore, the “wobbling” cluster model requires 

that 1 , where it was assumed that l . Clearly, this condition is met 

for most cases of cluster-cluster coalescence, except possibly in the case of monomer diffusion 

towards a small cluster, because single vacancies diffuse rapidly relative to clusters. Note that the 

case of monomer-monomer reaction does not need to fulfill the above requirement, because no 

cluster wobble is possible for monomers. 

)jD/(D/ 1D 3/5
ii +<< 3/1~ i

 

3. Model 3 - Maximal Dynamic Cluster Model 

 

The third model for cluster capture volume assumes that configuration sampling is 

essentially infinitely fast compared to the diffusion timescale. As a result, the maximum cluster 

radius (as defined in Model 2) associated with the largest configuration appears sufficiently 

often to incorporate a spherical volume around the cluster. The assumption embodied in this 

model is more difficult to justify because it is not possible to determine how often the largest 
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configuration is visited. While the analysis for dimer and trimer diffusion presented in Paper 1 

demonstrated that many configurations are sampled frequently, it is quite unlikely that this effect 

is as pronounced for larger clusters.  

 

Cluster radii (including the 2NN capture shell around each cluster) as a function of 

number of vacancies in each cluster are shown in Figure 8 for each of the three models. Several 

features are worth mentioning. First, as expected, the monomer radius is equal for all three 

models (and corresponds to the 2NN distance) because of the spherical nature of the single 

vacancy capture volume. Also as expected, Model 1 leads to the smallest cluster capture 

volumes, while Model 3 predicts the largest ones. The lines shown in Figure 8 represent power 

law fits of each model.  The Maximal Dynamic Cluster Model shows the most scatter for larger 

clusters because of less statistical sampling time for these sizes. 

 

B. Results for the Non-Compact Cluster Model 

 

The final inputs required to completely specify quantitatively any of the Dynamic Cluster 

models are free energies for each cluster size. An appropriate function for the dynamic cluster 

free energies is much harder to determine a priori, requiring knowledge of the free energy of 

every conformer. Instead, it is assumed that the effective free energy will continue to scale as a 

power law in size, as demonstrated for the equilibrium HRC structures in ref. [22,44], but with 

slightly different parameters, which are treated here as fitting parameters. The parametric free 

energy model therefore is given by 
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                                                               .                                                              (5.2) γαnnG f =)(

 

where α  and γ  are the adjustable parameters. Given that most of the configurations lead to 

spheroidal capture volumes, we will assume further that the free energy exponent, γ , is 

approximately 0.66, as would be appropriate for spheres. Based on results in ref. 44 (i.e. 

63.0=γ  for HRC clusters), this value is likely to be a good representation. The pre-exponent, 

α , is then adjusted by optimization based on Simulated Annealing (SA)49,51,52. Convergence to a 

global minimum is not guaranteed with most practical implementations of SA49, therefore all 

optimization results presented below were confirmed by several runs in which the initial guesses 

were varied. 

 

The results obtained with each of the three models presented in Section A are shown 

below in Figure 9. Clearly, Model 3 is able to represent the atomistic data better than Models 1 

or 2. Both of the latter predict substantially slower evolution that is found in the atomistic 

simulation. In each case, the deviation at very early time (t<0.05 ns) is due to the boundary 

conditions imposed in the atomistic simulation, in which single vacancies were placed in a 

uniform grid at equal spacing. Thus, a short lag in the evolution profile is observed, followed by 

a slight increase in the aggregation rate once the vacancies have diffused across their initial 

separation distance. Note that the results shown in Figures 9 (a)-(c) represent the best fit with 

respect to the parameter α . The corresponding best-fit free energy curves for each of the three 

models are shown in Figure 10, along with the free energy curve predicted for HRC clusters44. 

Only a very limited number of α  values lead to a reasonable fit to the atomistic data and it is not 

possible to use α  to compensate for the different assumptions embodied in each of the three 
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capture radius models. In other words, lowering α  for Model 1 would likely increase the 

predicted nucleation rate, but the resulting slopes would change dramatically leading to a poorer 

fit of the data. 

 

The fitted value of α  for Model 3 leads to a free energy curve that is almost identical 

with the HRC free energy model, at least in the cluster size range shown (larger sizes are not 

relevant in the current simulation timescale). This reflects the fact that the free energy of the 

different conformers at each size are not very different from that of the HRC configuration at 

high temperature, which is consistent with the high configuration sampling rate that is observed 

in Figure 6. The slightly lower free energy curves obtained with the other 2 models demonstrates 

an attempt by the optimizer to increase the aggregation rate by compensating for the 

underestimate in the cluster capture volumes. It is also worthwhile noting that the fitted free 

energy for Model 3 is the only one that is higher than the HRC curve. Given that the HRC 

structure is known to be the lowest energy configurations43, 44, the free energy curves fitted with 

Models 1 and 2 can be discarded as being unphysical.  

 

At long times (i.e. t>3 ns) Model 3 predicts a somewhat higher nucleation rate than that 

observed in the atomistic simulation, as shown by the slightly steeper slopes for the average 

cluster size (M2/M1) and the total cluster number (M0). This indicates that Model 3, while the best 

of the 3 models, is a slight overestimate for the cluster capture radii. The best possible capture 

model was determined empirically using the SA optimization scheme, in which the cluster 

capture radii were allowed to fluctuate along with the free energy pre-exponent. The resulting 

capture radius evolution as a function of cluster size is shown in Figure 8 (open squares). For 
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small cluster sizes, i.e. n<5, the fitted capture model is essentially identical to Model 3, but 

clearly Model 3 is an overestimate for larger cluster sizes. The resulting size distribution for the 

optimized capture radius model is shown in Figure 11, and is very similar to the prediction of 

Model 3 but corrects the overestimate of the aggregation rate at larger times, leading to excellent 

agreement between the continuum and atomistic data across the entire simulation time. 

 

C. Discussion and Analysis 

 

The notion that vacancy clusters at high temperature exhibit center of mass diffusion and 

internal configurational motion has been demonstrated conclusively. Based on the discussion in 

Section V.A.1 and results in Figure 6, it is clear that configurational sampling occurs rapidly on 

the time scale of center of mass diffusion in all cases except for possibly monomer-cluster 

reaction. However, it is unlikely that the maximum-size configuration is visited sufficiently often 

to justify the use of Model 3. 

 

An explanation for the observed results is proposed as follows. Consider a reference 

cluster, i, centered about the origin. At certain time intervals, a second cluster, j, is placed 

randomly (i.e. with a uniformly distributed separation) somewhere in between the surface of the 

most compact configuration and the surface mapped out by the largest configuration (i.e. by the 

size predicted by Model 3). As the reference cluster, i, samples its different configurations, it will 

coalesce with cluster j after a time interval, )),(,( jirrt capij∆ , which is a function of the sampled 

sizes and the initial separation distance, rij. For small separations, the incoming cluster will be 

captured rapidly by any of the sampled configurations, while for larger separations, only the 
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larger configurations will lead to aggregation.  In this picture, Model 2 is clearly the most 

appropriate interpretation of the effective cluster capture volume, because the entire size 

distribution of cluster configurations is sampled uniformly. 

 

However, in practice this is not the case. As the incoming cluster diffuses towards the 

reference cluster, the tails of the distributions (right hand sides) shown in Figure 6 are sampled 

first. Only if capture does not occur at this point is the rest of the distribution sampled! In fact, it 

is extremely unlikely that configurations smaller than the average will contribute to the effective 

cluster size. For rapid “internal diffusion” and configuration sampling, the largest few 

configurations will almost always lead to aggregation. This interpretation explains why Model 3 

is the best description, and why it is only a slight overestimate of the cluster capture volume.  

 

VI. SENSITIVITY ANALYSIS 

 

The ability of the continuum/atomistic comparison to distinguish between different 

mechanistic assumptions depends critically on the sensitivity of the continuum model predictions 

to the various model elements, i.e. reaction/dissolution model, capture radius, cluster mobility, 

and the free energy description. The ability of our framework to require that the correct physics 

be used was tested by intentionally adjusting some of the physics embodied within the model, 

and then attempting to maintain the agreement with respect to the atomistic data by readjusting 

any fitting parameters. Once again, it is worthwhile noting that the only adjustable parameter in 

the continuum model is the free energy prefactor – all other parameters were derived from 

atomistic simulations. In each of the following studies, the  optimized capture radius model 
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(Figure 11) was used first to test the effect of different model components, without any 

additional parameter fitting.  

 

A. Cluster dissociation  and Entropic  Effects 

 

The effect of cluster dissociation was probed first by restricting cluster dissolution. As 

shown in Figure 12, the evolution profile is not affected at early times because the forward 

driving force is very high due to the large initial supersaturation of single vacancies, and the 

backward rate barrier prevents any dissolution. Furthermore, only a few clusters have formed 

that are available to contribute to the overall dissolution rate. However, at longer times (i.e. t>1 

ns) the “aggregation only” model clearly overestimates the rate of monomer consumption and 

the concentration of single vacancies is observed to decay to zero before the end of the 

simulation. Note that the moments of the overall distribution (M0 and M2/M1) are not affected 

significantly, highlighting the necessity for considering multiple metrics in order to test a given 

mean-field theory27,28,53. 

 

Similar effects are observed if dissolution is included in the usual manner but the 

configurational entropy term is neglected in eq. (2.11); see Figure 13. Once again, an 

overestimate of the rate of single vacancy depletion is observed. The configurational entropic 

effect in fact can be seen clearly in the atomistic data in the form of a kink in the single vacancy 

profile at about approximately 0.1 ns, which is now absent. Note that the onset of dissolution 

kinetics (which are driven by the configurational entropy term) is predicted correctly in the full 

model (Figure 11). The depletion of single vacancies represents the largest loss of 
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configurational entropy in the system and therefore these species are affect most severely if this 

mechanism is neglected. In both of the above cases, it is not possible to “compensate” for these 

mechanistic omissions by seeking a different value of the fitting parameter, α . 

 

B. Cluster diffusion 

 

As discussed in Paper 1, many previous efforts [1,2,3,29,31,32] aimed at predicting the 

distribution of vacancy (and self-interstitial) aggregates during the growth and processing of Si 

crystals and wafers have neglected the effect of cluster diffusion. Figure 14 demonstrates the 

effect on the nucleation rate if this mechanism is omitted. In particular, the overall nucleation 

rate is greatly underestimated and all components of the cluster evolution are affected. The 

reason for the dramatic difference in the predicted nucleation rate is readily explained by 

considering that cluster diffusion not only enhances the rate of monomer-cluster reaction, but 

also provides additional, parallel reaction pathways for nucleation to proceed. It is important to 

note that this effect might be less significant during coarsening at lower temperatures, and this 

issue will be addressed further in a future publication. However, it is readily apparent that an 

increase in the nucleation rate is likely to have some impact on any subsequent cluster growth. 

Specifically, the extension of the nucleation phase beyond the point at which single vacancies are 

exhausted should lead to larger, more stable nuclei. 

 

C. Parametric Consistency 
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The inclusion of dynamic cluster capture radii was not immediately obvious during the 

development of the final model. Using Model 1 (static capture radii), a detailed parametric 

search analysis was performed to determine the conditions under which it was possible to 

reproduce the atomistic size evolution data. Figure 15 shows the predictions using Model 1 if the 

cluster diffusion coefficients are raised by a factor of four. Clearly, the predictions are very good, 

with the possible exception of the slope of the monomer curve at later times. This experiment 

demonstrates that it is indeed possible to get good fits with other assumptions, but not without 

compromising parametric consistency. The success of this particular model variant led to several 

checks of the cluster diffusion calculations, but no increase could be justified, indicating that 

another aspect of the model was incorrect, leading to the development of Models 2 and 3. 

 

VII. CONCLUSIONS 

 

A highly detailed analysis of vacancy cluster aggregation in Si was used to demonstrate 

the application of internally consistent comparisons between atomistic and continuum 

representations of the same process to determine systematically and quantitatively the 

mechanistic components required for developing accurate mean-filed models of atomic-scale 

events. In order to generate sufficient atomistic data to capture the size distribution evolution of 

clusters, a state-of-the-art parallel molecular dynamics simulation code was developed which 

allowed the simulation of large numbers of particles and time steps. By ensuring as far as 

possible parametric consistency between the atomistic and continuum approaches, it was 

possible to obtain a sensitive and quantitative probe into the quality of each model component. 

The final mean-field model demonstrates new features of vacancy cluster nucleation at high 
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temperature that potentially will have a significant impact on crystal growth and wafer thermal 

annealing process simulator quality. 

 

It was shown that the description of cluster capture volumes is difficult to estimate a 

priori and appears to be larger than would be expected based purely on static geometric analyses. 

This effect appears to enhance significantly the nucleation rate at the timescale investigated here, 

leading to fewer but bigger clusters. The effect of enhanced capture radii for larger length and 

time scales, where cluster coarsening is the primary process still needs to be investigated in order 

to determine whether this model is able to rectify some existing problems in void formation 

process models. Furthermore, the effect of cluster diffusion, which is often neglected in 

continuum process models, was shown to further increase the nucleation rate.  

 

The sensitivity analysis in Section VI demonstrated clearly that every element of the 

continuum model described in Sections II and III is required to produce the correct size evolution 

with consistent parameters. While, in principle, several variations of the mean-field description 

can lead to acceptable representations of the atomic data, a very tight constraint was placed on 

the allowable models once parametric consistency was imposed as demonstrated in Section VI. 

Many different variations of the final model were tested but none were found to reproduce the 

atomic data with acceptable parameters until the notion of dynamic capture radius enhancement 

was investigated in detail. 

 

The overall approach demonstrated here and in Paper 1 is, in principle, applicable to any 

system and process that can be investigated directly with molecular dynamics (or continuous 
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Monte Carlo). The ability to simulate atomistically larger systems for longer times will further 

increase the resolution to which a particular model can be unambiguously specified. As shown in 

this work, it is necessary to consider as many distribution components as possible when 

evaluating the success of a given model. Larger simulations will allow for the consideration of 

higher-order moments, which are even more sensitive to inaccurate assumptions. 
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Figure 1: Total system free energy as a function of reaction coordinate during an 

aggregation event: (a) total free energy increases (G1 – G2), and (b) total free energy 

decreases (G1 – G*
2) following aggregation.   

 

Figure 2: Spatial propagation of the displacement field along: a. (100) – solid line, b. 

(110) – dashed line, and c. (111) – long-dashed lines. 

 

Figure 3: Evolution of total radius, , as a function of cluster size for HRC 

clusters. The total radius includes 50 % of the vacancy-vacancy interaction distance due 

to lattice distortion. Solid line is a power-law fit. 

)( jRtotj

 

Figure 4: Comparison between direct atomistic and Compact Cluster model predictions 

for the evolution of several components of the vacancy cluster size evolution in a closed 

system. 

 

Figure 5: Non-equilibrium cluster configurations for thermally excited clusters as 

observed during atomistic simulation: (a) V6, (b) V14. 

 

Figure 6: Distribution of  for clusters of sizes n=4, 6, and 10, calculated directly from 

instantaneous cluster size distribution snapshots taken throughout the entire atomistic 

simulation. 

n
sepr

 



Figure 7: Schematic representation of capture volume enhancement due to cluster shape 

fluctuations. Rsph and Rdyn represent different capture radii (volumes) for two 

configurations of the same (dynamic) cluster.  

 

Figure 8: Evolution of cluster radius as a function of size as predicted by: (a) Average 

Sphere Model, (b) Average Dynamic Cluster Model, and (c) Maximal Dynamic Cluster 

Model. Lines are power-law fits. Open squares represent an optimized capture model. 

 

Figure 9: Evolution profiles for each of the dynamic cluster models. (a) Model 1, (b) 

Model 2, and (c) Model 3. 

 

Figure 10: Cluster free energies as a function of cluster size for: (a) HRC Model 

(squares), (b) Model 1 (diamonds), (c) Model 2 (triangles), and (d) Model 3 (circles). 

 

Figure 11: Size distribution evolution for optimized capture radius model. 

 

Figure 12: Cluster size evolution in the absence of dissolution. 

 

Figure 13: Cluster size evolution in the absence of configurational entropy. 

 

Figure 14: Cluster size evolution in the absence of cluster mobility. 

 



Figure 15: Cluster size distribution predicted with the Average Sphere Model (Model 1 

in Figure 9) but with cluster diffusion increased by a factor of four. 

 

Table 1: Thermophysical property information used in the Compact Cluster continuum 

model for vacancy cluster nucleation and growth. 
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FIG 1: Prasad and Sinno 
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FIG 2: Prasad and Sinno 
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FIG 3: Prasad and Sinno 
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FIG 4: Prasad and Sinno 
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FIG 5: Prasad and Sinno 
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FIG 6: Prasad and Sinno 
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FIG 7: Prasad and Sinno 
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FIG 8: Prasad and Sinno 
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FIG 9 (a): Prasad and Sinno 
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FIG 9 (b): Prasad and Sinno 
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FIG 9 (c): Prasad and Sinno  



Cluster Size (VN)

Fr
ee
E
ne
rg
y
(e
V
)

10 20 30

5

10

15

20

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG 10: Prasad and Sinno  
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FIG 11: Prasad and Sinno 
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FIG 12: Prasad and Sinno 
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FIG 13: Prasad and Sinno 
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FIG 14: Prasad and Sinno 
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Property 
 

Value 

BE∆  0  eV 

1D  51037.3 −×  cm2/s 

ND  25.140.9 −N  cm2/s 

F
NG  )1034.4(23.3 67.0464.0 NTN −×−  eV 

tot
NR  2.033.4 N  A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: Prasad and Sinno 
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