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Carbon-Mediated Aggregation of Self-Interstitials in Silicon

Abstract
The carbon-mediated aggregation of silicon self-interstitials is investigated with a novel approach based on
large-scale parallel molecular dynamics. The presence of carbon in the silicon matrix is shown to lead to
concentration-dependent self-interstitial cluster pinning, dramatically reducing cluster coalescence and
thereby inhibiting the nucleation process. The extent of cluster pinning increases with cluster size for the range
of cluster sizes observed in the simulation. The effect of carbon on single self-interstitials is shown to be of
secondary importance, and the concentration of single self-interstitials as a function of time is essentially
unchanged in the presence of carbon. A quasi-single component mean-field interpretation of the atomistic
simulation results further confirms these conclusions and suggests that the experimentally observed effect of
carbon on transient-enhanced diffusion (TED) could be due to carbon-cluster interactions.
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Carbon-Mediated Aggregation of Self-Interstitials in Silicon 

 

Sumeet Kapur, Manish Prasad, and Talid Sinno1 

Department of Chemical and Biomolecular Engineering 

University of Pennsylvania 

Philadelphia, PA 19104 

 

The carbon-mediated aggregation of silicon self-interstitials is investigated with a 

novel approach based on large-scale parallel molecular dynamics. The presence of carbon 

in the silicon matrix is shown to lead to concentration-dependent self-interstitial cluster 

pinning, dramatically reducing cluster coalescence and thereby inhibiting the nucleation 

process. The extent of cluster pinning increases with cluster size for the range of cluster 

sizes observed in the simulation. The effect of carbon on single self-interstitials is shown 

to be of secondary importance, and the concentration of single self-interstitials as a 

function of time is essentially unchanged in the presence of carbon. A quasi-single 

component mean-field interpretation of the atomistic simulation results further confirms 

these conclusions and suggests that the experimentally observed effect of carbon on 

transient-enhanced diffusion (TED) could be due to carbon-cluster interactions. 
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I. Introduction 

 

The growth and dissolution of silicon self-interstitial clusters in the presence of carbon 

have attracted much attention recently because of the role of self-interstitials in the transient-

enhanced diffusion (TED) of boron during post-implantation annealing and activation [1,2]. The 

occurrence of TED has been unambiguously attributed to the presence of supersaturated self-

interstitials, which are formed during ion-implantation of dopants such as boron. The 

supersaturated self-interstitials are stored in clusters, which can possess a variety of 

morphologies, depending on the processing conditions. The most commonly observed structures 

are typically {311} defects [3] and dislocation-loop networks [4], but three-dimensional clusters 

are also possible, especially if clustering occurs at high temperatures, such as during crystal 

growth from the melt [].  

 

Once formed, these clusters become unstable during thermal annealing, which is required 

to anneal the damage produced by boron ion-implantation and also to activate the boron atoms 

(i.e. allow them to occupy substitutional sites within the lattice). Cluster dissolution then leads to 

the observed temporary boron diffusion enhancement via the kick-out reaction IBB si +↔  

[5,6], where  and  represent interstitial and substitutional boron atoms, respectively, and I 

is a silicon self-interstitial. This TED effect leads to broadening of implanted boron profiles and 

poses a challenge for future CMOS device scaling goals. 

iB sB

 

The presence of high carbon atom concentrations (> 1019 cm3) in the region of the self-

interstitial supersaturation has been shown to greatly inhibit TED in several experimental studies, 
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either using highly C-doped layers grown by molecular beam epitaxy (MBE) [7] or carbon co-

implantation with the boron [8]. While the use of carbon to inhibit TED continues to be plagued 

by technological difficulties [7], promising new approaches currently are being evaluated that 

make a fundamental understanding of carbon-mediated TED of immediate importance [9]. A 

recent example is to implant carbon atoms and create an embedded layer that does not interact 

with the surface device-active region, alleviating the previously reported detrimental effects of 

carbon on the electrical properties of microelectronic devices.  

 

Numerous computational TED-related studies have been reported in the literature. These 

studies have employed approaches ranging from macroscopic rate equation simulations [7], to 

kinetic Monte Carlo calculations (KMC) [10], to detailed atomistic studies of the energetics and 

structure of various carbon-silicon complexes [11]. The former two approaches typically have 

focused on the role of single self-interstitial (I), trapping by carbon (C), via the reactions 

 

                                                            C IS CI ↔+ ,                                                                    (1) 

                                                        C ISIS CCC ↔+ .                                                                 (2) 

 

where, C , and , denote substitutional and interstitial carbon atoms, respectively. The validity 

of rate equation and KMC models for carbon-mediated self-interstitial diffusion has been tested 

against experiments that measure the effective self-interstitial diffusivity using doped marker 

layers [12] or metal tracer diffusion [13]. In general, good agreement between the models and 

experimental data is obtained but it has not been possible to assess the robustness or 

completeness of the assumed mechanisms. 

S IC
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Recently it has been speculated that additional pathways involving the formation of 

clusters of self-interstitials and carbon atoms may be important [14]. However, the co-

precipitation of carbon and silicon interstitials requires, in principle, the consideration of a two-

dimensional cluster array of the form C . An atomistic characterization of every cluster 

species and reaction pathway, e.g. 

mn I

CI 222 IIC ↔+ , rapidly becomes computationally intractable 

because of the large number of species and possible configurations that must be considered.  

 

In this paper, an alternative approach based on parallel molecular dynamics (PMD) is 

presented that allows for a detailed analysis of the effect of carbon on self-interstitial aggregation 

without the need to consider every cluster composition or configuration individually. In essence, 

the averaging over composition and configuration space is automatically performed within the 

MD simulation if a sufficient number of atoms are considered. At the same time, full atomic 

resolution is provided throughout the entire simulation, and no assumptions, other than the 

validity of the interatomic potential, are needed. The remainder of the paper is organized as 

follows. The details of the MD simulations and basic results are described first in Section II. 

Also discussed in this section are the major assumptions of the approach, with emphasis on the 

choice of interatomic potential. The results of the aggregation simulations are presented and 

discussed in Section III. In Section IV, the parallel MD results and additional atomistic 

simulations of cluster mobility are interpreted in the context of a mean-field model which 

suggests that it might be possible to treat the carbon-in-silicon system as a quasi-single 

component system where the carbon atoms are considered implicitly through their effects on the 

properties of the self-interstitial clusters. Finally, conclusions are presented in Section IV. 
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II. MD Simulation of Carbon and Self-Interstitial Aggregation 

 

Two large-scale parallel MD (PMD) simulations were carried out using systems of 

216,000 silicon atoms, each containing an additional 1,000 self-interstitials initially placed in 

uniformly spaced (and isolated) tetrahedral sites. In the second simulation cell, 2,000 randomly 

selected silicon lattice atoms were replaced with substitutional carbon atoms, corresponding to a 

0.9% carbon concentration or  cm20104× -3. These large concentrations of self-interstitials and 

carbon atoms were chosen to allow the systems to exhibit sufficient aggregation in the short MD 

time scale (nanoseconds). While the high concentrations do affect the overall rate of aggregation, 

it should be noted that there is no reason to expect that the fundamental micro-processes 

predicted by the interatomic potential should be altered in a qualitative way. This issue is 

addressed further in a later section. 

 

A. Simulation Conditions 

 

In both NVT simulations, the temperature and pressure were fixed at 2650 K and zero, 

respectively. The Tersoff set of empirical potentials for silicon are well-known to greatly 

overestimate the melting temperature, and 2650 K was found to be about 600-800 K below the 

mechanical melting point. A direct comparison of this temperature to experimental annealing 

temperatures (typically around 900 ºC) is not possible, but a consistent estimate can be made 

based on the self-interstitial diffusion coefficient. A very good estimate for the self-interstitial 

diffusivity recently has been provided by model regression to several experimental observations 

including the diffusion of zinc into Si wafers at various temperatures and the formation of the so-
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called interstitial-vacancy boundary during Czochralski crystal growth [15]. Comparison of this 

value to the Tersoff prediction indicates that 2650 K is approximately equivalent to an actual 

temperature of 1000 ºC, which is in the neighborhood of typical annealing temperatures in TED 

experiments. Note that this is not a unique assignment of the simulation temperature, but is a 

relevant one for a study of self-interstitial diffusion and aggregation phenomena. 

 

B. Validity of the Tersoff Multicomponent Empirical Potential 

 

The multicomponent Tersoff potential [16] was used for all simulations, along with the 

potential parameters specified by Tang and Yip [17]. This potential is one of very few available 

for multicomponent Group IV systems, and, given the relatively small number of studies of 

multicomponent systems (relative to pure silicon, for example), it is somewhat more difficult to 

estimate the uncertainties in the following simulations. However, several previous studies 

employing this empirical potential have shown that it is surprisingly accurate at predicting 

structure and properties of silicon-carbon complexes.  

 

In an excellent study of carbon-silicon defect complex formation, Mattoni et al. [] used a 

combination of empirical potential MD and DFT (in the local density approximation) 

calculations to investigate energetics and reaction pathways. Steps of the reaction sequence 

 were analyzed in detail by computing system energies 

as each pair of species were brought together. In each case, the energy profile for the reaction 

path obtained with LDA-DFT and the empirical Tersoff potential were qualitatively similar, and 

in some cases almost identical. Local energy minima in the first and third reactions shown above 

IIISSIS CCICCCCIC →+→+→+
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predicted by the DFT calculations also were captured by the Tersoff potential. These results 

indicate that this empirical potential should be suitable for use in the current study. Additional 

evidence supporting the qualitative accuracy of the multicomponent Tersoff potential was 

suggested by the calculations of Tersoff, in which the formation energies and diffusivity of 

carbon complexes in silicon were found to be in good agreement with experimental solubility 

data []. These results were later supported by LDA-DFT calculations [].  

 

III. Characterization of Interstitial Aggregation 

 

A. Identification of Interstitial Clusters 

 

Aggregation during the two PMD simulations was monitored periodically using 

snapshots of the entire configuration of each system. For each snapshot, the configurations were 

first quenched using conjugate gradient energy minimization in order to make identification of 

the defect clusters easier. The quenched coordinates were then used to identify individual 

clusters and generate a size distribution at each time point. A substantial difficulty in the 

identification of interstitial clusters arises because of the extent of lattice distortion in the vicinity 

of interstitial atoms. In fact, up to several atoms can be substantially displaced from their 

equilibrium positions in the presence of a single silicon self-interstitial [] and, for the compact 

structures that were generated in our simulations, the displacements do not follow a regular 

pattern. Furthermore, it was readily apparent that these displacements were equal in magnitude to 

the distance of a self-interstitial from the nearest lattice site – i.e. in a cluster of self-interstitials, 
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it is not possible to uniquely identify which atoms are interstitials and which ones are simply 

displaced atoms. 

 

This issue was addressed by the identification of Defective Atoms (DAs), defined as Si or 

C atoms that are at least θ % of a bond length (2.35 Å) from the nearest lattice position. For a 

given value of the parameterθ , DAs were identified by comparison of the quenched simulation 

coordinates to a perfect lattice at the same density. Subsequently, the DAs were assigned to 

individual clusters using a recursive algorithm []. The assignment of atoms to individual clusters 

requires that an interaction distance, β , be defined. Thus, sets of atoms that are connected by β  

belong to the same cluster. For given values of θ  and β , a cluster size distribution based on 

defective atoms can be defined – note that this is not equivalent to the interstitial cluster size 

distribution. The latter was computed in the following manner. Each defective atom cluster was 

isolated and the atomic coordinates within the cluster compared to a reference lattice. The 

number of excess atoms in the cluster gives the number of interstitials contained within the 

cluster. This number is then used to recompute the interstitial cluster size distribution. Finally 

note that no distinction is made between carbon and silicon interstitials in the carbon-doped case 

(XXX – HOW DOES THIS AFFECT THE SIZE DIST???). 

 

Previous atomistic investigations [] have suggested that the interaction distance between 

two silicon self-interstitials extends to the 3rd-nearest neighbor (3NN) distance. In the present 

case, however, this interaction distance is not directly applicable because of the ambiguity in 

defining interstitial atoms. Note that once the DA interaction distance, β , is specified and a 

cluster identified, the interstitial interaction distance is no longer relevant because all the 
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interstitials in that cluster are automatically assumed to be connected.  We have performed a 

detailed sensitivity analysis of the effect of β  and θ  on the resulting size distribution that will 

be presented in Section IV. Here, we simply note that the resulting distribution is only weakly 

dependent on the choice of these parameters, at least within physically reasonable bounds.  

 

B. Structure of Interstitial Clusters 

 

The quenched configurations at 3.46 ns for the pure silicon and 0.9 % carbon-in-silicon 

simulations are shown in Figures 1(a) and 1(b), respectively. Shown are Defective Atoms (DAs), 

as defined by %XXX=θ  and 82.4=β  Å , corresponding to the 3NN distance. The pure silicon 

case shows substantially greater cluster size evolution with fewer, but much larger, clusters as 

compared to the 0.9% C-doped case. This result is consistent with the notion that carbon reduces 

the effective diffusivity of self-interstitials and therefore inhibits the cluster ripening (or 

dissolution) process. This effect also has been observed in the float-zone growth of silicon 

crystals, where carbon doping was observed to increase the density, but decrease the size, of 

interstitial-type aggregates [18]. 

 

The structure of the DA clusters in Figure 1 appears to be different in the two 

simulations, with the clusters in the pure Si case appearing to be more spherical. This 

observation was tested in more detail by computing moments of inertia for each cluster in both 

cases, which can be used to quantitatively estimate the aspect ratio of each cluster. In Figure 2, 

the averaged moment of inertia ratios are shown for both simulations and it is clearly seen that 

the pure Si clusters are indeed more spherical than in the carbon-doped case. A possible 
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explanation, which will be verified later in this paper, is that the carbon atoms locally pin the 

cluster and prevent it from rearranging to minimize its surface area, at least in the timescales 

accessible to MD simulation. (HOW ABOUT C-C INTERACTION WITHIN THE 

CLUSTERS???XXX) 

 

The number of DAs in each simulation is not a conserved quantity and can evolve in 

time. The number of DAs per cluster, n , is shown in Figure 3 as a function of interstitial 

cluster size, , for both carbon concentrations. In both cases,  is well represented by a 

power-law evolution across the entire interstitial cluster size range (1 ) but 

interestingly, has an exponent larger than one: approximately 1.17 for the pure Si case, and 1.07 

for the carbon-doped case. The slightly lower exponent for larger clusters in the carbon-doped 

case is likely due to the compressive strain relief that carbon atoms provide because of their 

smaller size. The non-linear increase of  with cluster size implies that as the size distribution 

coarsens, the total number of DAs increases and therefore should provide a driving force against 

coarsening, which could lead to self-limiting of the coarsening process at later times. It is 

possible that this process might provide a driving force for the hypothesized morphological 

transformation of compact clusters to dislocation loop networks – the latter are the only observed 

structures in interstitial-rich silicon grown from the melt [] 

DA

DAn

In DAn

130<< In

 

IV. Size Distribution Evolution and Mean-Field Modeling 

  

The time evolution of the average interstitial cluster size for the pure silicon and carbon-

doped MD simulations are shown in Figure 4. The average cluster size is defined here as 
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12 / MM , where and  is the number of clusters of size s. Both evolutions show 

an initial lag followed by the establishment of power-law scaling, , with the pure silicon 

case clearly exhibiting much faster evolution than the C-doped system (exponents are 0.81 and 

0.37, respectively).  

∑=
s

s
n

n XsM sX

zt~

 

The distributions of small clusters ( 4≤n ) for both cases are plotted in Figure 5. 

Interestingly, the single self-interstitial profiles are essentially identical throughout the 

simulation, indicating that the presence of carbon does not substantially affect the transport of 

single self-interstitials. However, for dimers and tetramers, substantial divergence between the 

pure Si and C-doped simulations can be observed after 200 ps of simulation time. The extent of 

the divergence appears to increase with cluster size – in fact, for the duration of the simulation, 

the tetramer concentration in the carbon-doped case is essentially constant and only begins to 

drop at the end of the simulation after reaching a maximum at 100 ps. In contrast the tetramer 

profile in the pure Si case rapidly decreases, indicating growth to larger sizes.  

 

A. Mean-Field Scaling Approximation for Aggregation 

 

The power-law scaling of the average cluster sizes in Figure 4 suggest that a mean-field 

scaling analysis might be appropriate for compactly describing the carbon effect at the 

continuum scale. As discussed earlier, the co-existence of carbon and silicon atoms generally 

implies that a two-dimensional cluster representation is necessary to describe the evolution 

profiles. However, here we show that an effective medium formulation is appropriate, in which 

the carbon atoms simply modify the properties of self-interstitial clusters. The successful 
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application of mean-field scaling theory to (single-component) defect aggregation has already 

been demonstrated by us in previous  work []. A transformation proposed by Family et al. [19], 

and later by Sorensen et al. [20], leads to the collapse of the Smoluchowski equation for a one-

dimensional (single component) cluster system, 

 

              [ ] [∑∑
∞

=
+

=+
+ −−−=

1
),(),(),(),(

2
1

j
jkjk

kji
jiji

k XjkFXXjkKXjiFXXjiK
dt

dX ],              (3) 

 

into a single ordinary differential equation for the scaled average size, s*:  

 

                                                                )2(**
*

*
+−= αλ ss

dt
ds .                                                      (4) 

 

In eq. (3), K(i,j) is the coagulation rate between two clusters of size i and j, and F(i,j) is the rate 

of dissociation of a cluster of size i+j into two clusters of size i and j. Implicit in the derivation of 

eq. (4) is that the coagulation and fragmentation kernels, K(i,j) and F(i,j), are homogeneous, i.e. 

 and .  ),(),( jiKaajaiK λ= ),(),( jiFaajaiF α=

 

In eq. (4), s*=s(t)/s0 and t*=t/t0, where s0 and t0 are the equilibrium average cluster size, 

and the characteristic time to reach this equilibrium, respectively. For very small times, i.e. when 

s*<<1, and assuming that fragmentation is not important at this stage of the evolution, the 

solution of eq. (4) is given by  
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λ

−
+−= ,                                                    (5) 

 

where  is the scaled initial value of the mean cluster size, and 0
* /)0( stssi == )1/(1 λ−=z . 

Equation (5) implies that the average size should evolve as , once the first term becomes 

sufficiently large [21]. Now, assuming that the entire aggregation process is diffusion-limited, 

the coagulation kernel, K(i,j), is proportional to 

zts ~*

 

                                                        ,                                               (6) 2))((~),( jiji rrDDjiK ++

 

where rx and Dx (x=i,j) are the capture radius and diffusivity, respectively, of a cluster of size x. 

Requiring that this kernel be homogenous is equivalent to requiring that both the capture radius 

and diffusivities also be homogenous in the cluster size.  

 

B. Capture Radius Model for Interstitial Clusters and Scaling Predictions 

 

The capture radius of a cluster is usually closely related to its size assuming that there are 

no long-range effects transmitted through the lattice. Here, we assume that the capture zone of an 

interstitial cluster is given approximately by number of DAs contained within the cluster. The 

data in Figure 3 gives  and  for the pure silicon and carbon-doped 

cases, respectively, where n is the number of interstitials in a spherical cluster. Note that the 

actual capture radius of the cluster is not required and only the scaling behavior is needed for the 

39.0~)( nnrcap
36.0~)( nnrcap
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mean-field analysis. Further assuming that , and using eq. (6), the homogeneity 

condition for each case can be written as, 

i
p

i DD γγ =

),,(78.0+ jiK

(),,( CjiK

 

                                                                   (7) ),0(),( == CjiK pγγγ

                      (8) %).9.0),( 72.0 == +jiK pγγγ

 

The exponents for M  from Figure 2 can now be used to determine p, which 

represents the decay rate of the effective cluster diffusion coefficient as a function of size as 

predicted by the mean-field scaling approximation:  and 

. Thus, the mean-field model indicates that power-law evolution of the 

average cluster size with exponents 0.81 and 0.37, requires that cluster diffusivity must decay 

with cluster size as stated above. In other words, the observed carbon effect can be explained 

purely on the basis of cluster diffusion inhibition. Note that the mean-field scaling analysis does 

not require that single interstitial diffusion be altered, a result that is consistent with the profiles 

shown in Figure 4. 

12 / M

01.1~)0( −= nCDn

42.2~%)9.0( −= nCD eff
n

 

C. Atomistic Studies of Interstitial Cluster Diffusion 

 

In order to test the hypothesis that carbon acts via cluster pinning as well as the overall 

validity of the scaling analysis in the previous section, a sequence of cluster diffusion 

measurements was performed using lengthy (7-20 million time steps) MD simulations. One to 

six self-interstitials were placed in a host lattice containing up to 1,000 lattice atoms, depending 
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on the size of the cluster and the desired carbon concentration. For each case, zero to four silicon 

lattice atoms were replaced by carbon atoms. Between 5 and 8 simulations were performed for 

every situation in order to increase the statistical accuracy of the results.  The mean-square 

displacement (MSD) of each cluster center-of-mass was computed by periodically quenching the 

simulation cell and locating DAs.  

 

Interstitial cluster diffusivity in the presence of carbon needs to be carefully defined. Our 

approach in the mean-field modeling was to consider the carbon implicitly via its effect on the 

cluster properties. In other words, the carbon atoms were considered as part of an effective 

medium that changes as the carbon concentration is varied. Therefore, in the diffusion runs, we 

do not make a distinction between the various cluster configurations and compositions, but 

rather, are interested only in the overall diffusivity of the cluster averaged over all possible 

configurations. In order to ensure that all important carbon-interstitial cluster configurations were 

adequately sampled, several diffusion runs were performed for each interstitial cluster, in which 

the total system size was varied but the carbon concentration was fixed. The diffusion 

measurement simulation conditions are summarized in Table 1. In all cases, intervals in which 

the cluster was observed to fragment into two or more sub-clusters were discarded from the 

overall MSD calculation. 

 

Diffusion coefficients for clusters containing up to six self-interstitials in varying 

background carbon concentrations are shown in Figure 6, along with power-law fits. It is 

immediately apparent that the power-law fit is appropriate for all carbon concentrations for the 

cluster sizes considered here. Furthermore, the decay exponent becomes dramatically more 
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negative with increasing carbon concentration, as predicted by the mean-field scaling analysis in 

the previous section. Interestingly, we find once again that the effect of carbon on the diffusivity 

of a single self-interstitial is quite small compared to the large reduction observed in the case of 

the larger clusters, once again this finding is consistent with the monomer evolution profile in 

Figure 5 and further confirms the fact that carbon-inhibition of interstitial aggregation (and 

dissolution) arises from the pinning of interstitial clusters, rather than single self-interstitials! 

 

The exponents of the power-law fits for the diffusion coefficients as a function of cluster 

size are shown in Figure 7 as a function of background carbon concentrations. First, note that 

simulations performed in different simulation cell sizes but at equal carbon concentration lead to 

the same effective diffusion coefficients, strongly indicating that our quasi-single component 

analysis is appropriate. The fitted curve gives a diffusivity decay exponent of –2.XX at 0.9% 

carbon doping and –1.06 for the pure Si case. Both of these values are in excellent quantitative 

agreement with the mean-field scaling predictions and indicate that the analysis is appropriate, at 

least for the range of cluster sizes encountered in the PMD simulations. Note that even though 

only small clusters containing up to six interstitials were considered in the diffusion runs, the fact 

that the PMD simulations predict a single power-law exponent until 4 ns of simulation time is 

evidence that the diffusion of larger clusters will continue to exhibit the behavior shown in 

Figure 6. After 4 ns of evolution, clusters containing up to XXX interstitials were observed. 
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V. Sensitivity Analysis of Cluster Identification 

 

A. Sensitivity to Empirical Potential Model 

 

The analysis presented in the  previous sections depends on the validity of several 

assumptions. The aim of this section is to address some of these and determine the sensitivity of 

our conclusions to various uncertainties. The most fundamental of these is the choice of the 

Tersoff multicomponent potential. As mentioned previously, few empirical potentials exist for 

the carbon-silicon system []. We believe that the evidence cited in Section XXX is sufficient to 

give us reasonable confidence in the applicability of the multicomponent potential , assuming 

that the overall interstitial aggregation picture is at least qualitatively captured by the potential. 

In order to test this assumption, we used another empirical potential for pure silicon (EDIP) to 

simulate the aggregation of an identical system as the pure silicon case described earlier. The 

temperature of the EDIP simulation was chosen to be XXX K, which is the temperature at which 

the single self-interstitial diffusivity matched the Tersoff value at 2650 K. The predicted 

evolutions of the average cluster size (M2/M1), the total cluster number (M0), and the number of 

tetramers (X4) are shown in Figure 8, along with the Tersoff predictions. In all cases, the 

evolutions are qualitatively similar and only deviate at later times. The EDIP potential appears to 

predict slightly more rapid evolution, with the largest difference appearing in M0. This 

difference is due to a more rapid consumption of single interstitials in the EDIP case. The 

differences can be attributed to differences in the relative energies of each cluster size as well as 

the cluster diffusivities, most likely indicating that EDIP cluster diffuse slightly faster than 

Tersoff ones. 
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B. Sensitivity to Defective Atom Identification  

  

The threshold displacement for identifying a defective atom in the previous results was 

set to XXX=θ . Here we demonstrate that while the number of DAs per cluster, , is quite 

sensitive to changes in 

DAn

θ , the resulting interstitial cluster size distribution is only weakly 

affected. The number of DAs per cluster for different displacement thresholds is shown in Figure 

9, and demonstrates the sensitivity of the presumed cluster size to this parameter. Note however, 

that the power-law scaling of  is unchanged, which implies that the mean-field analysis in 

Section XXX would, in any case, be unaffected by this sensitivity. In order to predict the full size 

distribution at the continuum level, an absolute capture radius would be required and this issue is 

discussed in detail in a future publication. Another important point to note is that for all thetas 

considered in Figure 9, all 1,000 of the excess atoms were located at each time snapshot. 

Obviously, for very large values of 

DAn

θ , some of the interstitial atoms would be missed, and this 

sets a (weak) upper bound on θ . Values of θ  lower than XXX led to most of the atoms in the 

simulation cell being tagged as defective. Physically, this percolation observation is not 

consistent with the mean-field interpretation and therefore XXX=θ  can be taken as a strict 

lower bound. 

 

The question of how the choice of θ  affects the predicted interstitial  cluster size 

distribution was addressed next. The sensitivity of the average cluster size and total cluster 

number with respect to θ  is shown in Figure 10. The predicted cluster size distribution is seen to 

depend only weakly on the choice of θ , and even then, only for small times. In fact, the 
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exponent of the power-law evolution of M2/M1 varies from the base value by only 2-3% when 

XXX=θ  and the mean-field scaling analysis is therefore unaffected by the uncertainty in the 

value of θ . 

 

VI. Conclusions 

 

The results in this paper provide a new view into the technologically and scientifically 

interesting TED inhibition effect of carbon doping. No assumptions are made other than the 

validity of the multicomponent Tersoff potential which has been tested extensively for this 

system [12]. Carbon is conclusively demonstrated to inhibit cluster diffusion rather than single 

self-interstitial transport and the overall effect on aggregation can be described well by a simple 

one-component mean-field representation. The results should be useful for constructing robust, 

but simple, rate equation models for carbon mediated self-interstitial aggregation/dissolution. 
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FIG. 1. Distribution of Defective Atoms (DAs) at 46.3=t  ns. (a) pure Si (4337 DAs), 

and (b) 0.9% C-doped Si (3164 DAs). Note that the number of DAs is much greater than 

the number of interstitials (1000) because of lattice strain effects. 

 

FIG.  2. Moments of Inertia. 

 

FIG. 3. Number of defective atoms ( ) as a function of number of interstitials in a 

cluster ( n ): pure Si (circles with thick solid line), 0.9% carbon-doped (squares with dash 

line). The thin solid line shows linear evolution for reference. 

DAn

I

 

FIG. 4. Evolution of the average interstitial cluster size, , for pure Si (solid 

squares) and 0.9% C-doped Si (open squares). Exponents of the power-law fits are 0.81 

for pure Si (solid line) and 0.38 for 0.9% C-doped Si (dashed line). 

12 /MM

 

FIG. 5. Evolution profiles for interstitial clusters of size 1,2 and 4. Pure Si - filled 

symbols, 0.9% C-doped Si - open symbols. Tetramer profile is based on the right-hand 

side axis for clarity. 

 

FIG. 6. Self-interstitial diffusivities as a function of size with varying carbon 

concentrations. (a) 0% C, (b) 0.2 % C, (c) 0.4 % C, and (d) 0.8 % C. 

 

FIG. 7. Exponents for the power-law fits of cluster diffusion decay as a function of 

cluster size. 



 

FIG. 8. Evolution of the average cluster size (squares), total cluster number (diamonds), 

and dimers (triangles) using the Tersoff (solid symbols), and EDIP (open symbols) 

potentials. 

 

FIG. 9. Number of defective atoms ( ) as a function of cluster size for different values 

of the threshold parameter, 

DAn

θ : XXX=θ  (squares), (b) XXX=θ  (circles), (c) XXX=θ  

(triangles). 

 

FIG. 10. Sensitivity of the computed size distribution to the threshold parameter, θ . 

XXX=θ  (squares), (b) XXX=θ  (circles), (c) XXX=θ  (triangles). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1(a): Kapur, Prasad, and Sinno 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1(b): Kapur, Prasad, and Sinno 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Kapur, Prasad, and Sinno 
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Figure 3: Kapur, Prasad, and Sinno 
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Figure 4: Kapur, Prasad, and Sinno 
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Figure 5: Kapur, Prasad, and Sinno 
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Figure 6: Kapur, Prasad, and Sinno 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Kapur, Prasad, and Sinno 
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Figure XXX: Kapur, Prasad, and Sinno 
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Figure XXX: Kapur, Prasad, and Sinno 
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Figure XXX: Kapur, Prasad, and Sinno 
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