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Abstract
Surface probe measurements of the elasticity of thin-film matrices as well as biological samples prove generally
important to understanding cell attachment across such systems. To illustrate this, sectioned arteries were
probed by Atomic Force Microscopy (AFM) within the smooth muscle cell (SMC)-rich medial layer, yielding
an apparent Young’s modulus Emedia ~ 5-8 kPa. Polyacrylamide gels with Egel spanning several-fold above and
below this range were then cast 5-70 μm thick and coated with collagen: SMC spreading shows a hyperbolic
dependence in projected cell area versus Egel. The modulus that gives half-max spreading is E1/2-spread ~ 8-10
kPa, proving remarkably close to Emedia. More complex, layer-by-layer micro-films of poly(L-
lysine)/hyaluronic acid were also tested and show equivalent trends of increased SMC spreading with
increased stiffness. Adhesive spreading of cells thus seems to correlate broadly with the effective stiffness of
synthetic materials and tissues.
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Abstract 
Surface probe measurements of the elasticity of thin-film matrices as well as biological 

samples prove generally important to understanding cell attachment across such systems.  

To illustrate this, sectioned arteries were probed by Atomic Force Microscopy (AFM) 

within the smooth muscle cell (SMC)-rich medial layer, yielding an apparent Young’s 

modulus Emedia ~  5-8 kPa.  Polyacrylamide gels with Egel spanning several-fold above and 

below this range were then cast 5-70 µm thick and coated with collagen:  SMC spreading 

shows a hyperbolic dependence in projected cell area versus Egel.  The modulus that gives 

half-max spreading is E1/2-spread ~  8-10 kPa, proving remarkably close to Emedia.  More 

complex, layer-by-layer micro-films of poly(L-lysine)/hyaluronic acid were also tested 

and show equivalent trends of increased SMC spreading with increased stiffness.  

Adhesive spreading of cells thus seems to correlate broadly with the effective stiffness of 

synthetic materials and tissues.  

 
Running Title: Film Elasticity vs. Cell Response 
Abbreviations: PA, polyacrylamide; AFM, atomic force microscopy; PLL, Poly(L-lysine); HA, Hyaluronic Acid; 
SMC, smooth muscle cell; DMEM, Dulbeco's Modified Eagle Medium 
Keywords: Substrate Compliance, Adhesion, Polyelectrolyte Multilayers, Atomic Force Microscopy 
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1. Introduction 

As a surface probe method for local elasticity measurements, Atomic Force 

Microscopy (AFM) has been widely used on many materials, both synthetic and natural.   

In growing need of such characterizations are thin and soft gels that are now increasingly 

used in cell culture.  Motivation for probing matrix mechanical properties by AFM 

derives from the relatively recent idea that the elastic or viscoelastic resistance of a 

substrate to cell-generated forces is intrinsic to a cell’s in vitro response, from adhesive 

spreading to differentiation (1-4).  In other words, a cell is tactile in attaching and 

responding to a ligand-coated surface – it is not simply a droplet that spreads on a 

favorable surface. ‘Rheobiology’ aptly describes the phenomena while suggesting tissue-

level mechanisms.  Accurate and arguably highly local measurements of matrix and 

substrate mechanical properties are thus increasingly needed for understanding cell 

responses on surfaces that might or might not mimic a particular tissue’s elasticity.  

Pelham and Wang (3) were the first to grow cells on collagen-coated 

polyacrylamide (PA) gel substrates of varied elasticity.  Adjusting the gel’s crosslinker, 

bis-acrylamide, permits systematic observation of elasticity-dependent differences in cell 

behavior.  Cell spreading, cell crawling, and focal adhesion assembly are a few of many 

cell responses found to be influenced by such elasticity manipulations (1-6).  It has 

become clear, however, that various elastic moduli for ~100 µm thick PA gels reported in 

Pelham and Wang (3) and Lo et al. (2) are incorrect by up to orders of magnitude when 

compared to more recent reports on PA gel elasticity (1; 4; 7).  Accurate measurements of 

PA gel elasticity, particularly as measured here by AFM, allow comparisons with tissue 

properties and highlight the need for systematic assessments of cell response together 
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with matrix elasticity, where length scale effects normal to the substrate are also 

considered together with lateral accuracy.   

AFM is a useful surface probe method not only for probing cell culture substrates 

but also for probing the elasticity of cells and perhaps even tissues that previously have 

been studied only by macroscopic methods (8).  Cells in vitro have been reported to have 

effective Young’s moduli, Ecell, in the range of 1–100 kPa (8-12).  Relevant here, this 

range encompasses measurements of elasticity found for vascular smooth muscle cells 

(SMC) in culture, motivating questions of arterial media elasticity.  Blood vessels, 

particularly arteries with complex structure and function, provide good examples of the 

possible insight to be gained from probing vascular cross-sections with three distinct 

annular layers of very different composition (Fig. 1).  The medial layer typically consists 

of ~30 – 60% SMCs and is also rich in collagen (~10 – 40%) as well as elastin, which is 

why the media is often associated with vessel wall elasticity.  However, even with the 

complexity of the mechanical environment for these cells, a single composite modulus 

(eg. axial stress / vessel’s extensional strain) of pressurized vessels in high strain regimes 

is typically all that is reported or known (8) to represent both static and dynamic elastic 

loading situations.  The arterial media is predominantly smooth muscle cell (SMC) tissue, 

with a Young’s modulus Emedia  that can presently only be estimated.  For example, dog 

ureter muscle, when relaxed, has a modulus in the range of 5–20 kPa at moderate strains 

of 10–30% (8; 9).  Within this seemingly narrow range of stiffness, adhesive spreading of 

vascular SMC is known to vary greatly in vitro (1). 

If understood well enough, the layered geometry of arterial vessel walls or 

perhaps just the elastin layering within the media might be effectively mimicked with 
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multilayer films of alternating polyelectrolytes.  Polyelectrolyte multilayer films made by 

the layer-by-layer method of alternately dipping a substrate in cationic and anionic 

polyelectrolyte solutions (13; 14) create a highly controllable system dominated by 

electrostatic interaction between layers (analogous to the coupling between layers of 

SMCs in the arterial vessel wall).  While serum deposition is known to promote cell 

adhesion in nanometer thin and dense films, such deposition has little effect on swollen 

films (15; 16).  However, very little is yet known about the elasticity of multilayer films, 

including effects of layer number, thickness, and type of polyelectrolyte, as well as the 

influence of film elasticity on cell adhesion. 

As a representative study in surface probe measurements from in vivo to in vitro, 

a specific goal here is to clarify the mechanical environment seen by SMC in vivo and to 

begin correlating this with SMC responses on collagen-coated polymer matrices. Here, 

length scale effects relevant to SMC sensing of matrix stiffness are partially addressed by 

attention to thickness h of gels and multilayers as well as AFM indentation depth.  Lateral 

sensitivity and accuracy, at least in AFM, are also partly addressed by probing with 

pyramidal nano-tips versus micro-bead tips and by studying lateral gradients of elasticity.  

Beyond these technical issues, a key question is whether model matrix materials other 

than PA gels show similar trends in cell response versus elasticity.  To this end, the 

effective elasticity of layer-by-layer polyelectrolyte films – both with and without 

covalent crosslinking – are reported together with spreading of SMC on these thin films.   

Ultimately, it is found that cells spread increasingly on stiffer substrates regardless of 

height (>µm) and composition, with half maximum spreading coincident with tissue 

elasticity.  
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2. Experimental Procedures 

2.1 Gel Substrates. 

PA gel substrates were polymerized as homogenous or gradient thin films on rigid glass 

supports.  Gels with homogenous bis-acrylamide crosslinker concentration were prepared 

per Wang and Pelham (17), with the addition of glass spacer beads of desired diameter.  

To induce crosslinking, 1/200 volume of 10% ammonium persulfate and 1/2000 volume 

of N, N, N', N'-tetramethylethylenediamine were added to PA gel solutions, composed of 

5% acrylamide monomer, 0.03-0.3% bis-acrylamide crosslinker, and 1% bead spacers 

(5 – 10 µm; Duke Scientific; Palo Alto, CA).  25 µL drops of polymerizing gel solution 

were placed on glutaraldehyde-treated aminosilanized coverslips, which covalently 

bound the PA.  Chlorosilanized coverslips were placed on top of the PA, and weights 

were added to ensure that the gel thickness was defined by the spacer bead diameter.  The 

droplet volume was also used to control gel height.  Gel heights were visually confirmed 

by calibrated through focusing in light microscopy, and AFM was employed to determine 

the gel stiffness (detailed below).  Rat-tail collagen type 1 (BD Biosciences; Bedford, 

MA) was chemically crosslinked using a heterobifunctional photoactivating crosslinker, 

sulfo-SANPAH (Pierce, Rockford, IL) per Wang and Pelham (17).  Substrate attachment 

of collagen was measured with 10:1 collagen/FITC-collagen mixture and compared to 

standard slides of known fluorescent collagen (1, 4) in order to calibrate the amount of 

surface-bond collagen. Attachment and accessibility to cells was also assessed using a 

polyclonal anti-collagen antibody that only binds native collagen (Chemicon; Temecula, 

CA) and quantum dots (Quantum Dot; Hayward, CA) labeled with secondary antibodies. 
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To create elasticity gradients within PA gels, a microfluidic method was used (N. 

Zaari, P. Rajagopalan, S.K. Kim, A. Engler, and J.Y. Wong, in preparation).  Briefly, 

polyacrylamide was photopolymerized in mixing channels patterned in 

polydimethylsiloxane (PDMS) with two crosslinker inputs (0.048% and 0.48% bis-

acrylamide) that combined with 8% acrylamide solutions in the microfluidic channels to 

create the gradient.  The PA gradient gels were ~90 µm thick, as confirmed by light 

microscopy, and were prepared on aminosilanized coverslips.  

2.2 Polyelectrolyte Multilayer Preparation. 

Poly(L-lysine)/Hyaluronic Acid (PLL/HA)i multilayer films, where i is the 

number of layer pairs, were previously shown to be micrometer thick films (18) that 

could be used as cell substrate for cell adhesion (15; 19). They were prepared here by 

sequential layering on 24 mm x 24 mm coverglass cleaned with 10 mM sodium dodecyl 

sulfate (SDS) and 0.1 N HCl (10 min) and then rinsed with deionized water. PLL (30 

kDa), PLL-fluorescein (0.003:0.01 mol fluorescein per mol lysine monomer), and HA 

(400 kDa; Bioiberica, Spain) were prepared by direct dissolution in filtered 0.15 M NaCl 

solution (pH 6) at 1 mg/ml final concentration.  Films were prepared by an automatic 

dipping machine (Dipping Robot DR3, Kirstein GmbH, Germany) in which the glass 

slides were arranged vertically in a homemade holder and immersed for 10 min in a first 

polyelectrolyte solution (PLL). The slides were subsequently rinsed successively in three 

different solution volumes of 0.15 M NaCl (pH 6), 350 mL, 200 mL and 200 mL for 1 

min, 2.5 min, and 2.5 min respectively.  Samples were dipped in oppositely charged 

polyelectrolyte solution, rinsed using the same procedure, and the process was repeated.  

Rinsing solutions were changed after the deposition of every twentieth layer. Films were 
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stored in 0.15 M NaCl at 4°C.  The thickness of the films was determined by confocal 

microscopy by measuring the green band in z-sections corresponding to the diffuse band 

of PLL-fluorescein within the (PLL/HA) films (18). 

To covalently crosslink carboxylate and primary amine groups within the film, 

400 mM 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide (EDC) and 100 mM N-

hydrosulfo-succinimide (Sulfo-NHS) were mixed (v/v) in 0.15 M NaCl solution (pH 5) 

(20). The (PLL/HA)20 films and EDC/sulfo-NHS solution were incubated for 12 hours, 

and rinsing was performed three times with a 0.15 M NaCl solution for one hour (19).   

Collagen was adsorbed to the HA surface of multilayers, whether the PLL/HA 

film was crosslinked or not, overnight at 37oC.  Excess collagen was rinsed away with 

0.15 M NaCl and substrate attachment was measured using 10:1 collagen/FITC-collagen 

mixture and comparison to fluorescent collagen standards as above (1, 4).  Z-section 

confocal microscopy was performed to confirm surface localization of collagen on the 

native and crosslinked PLL/HA multilayers, and fluorescence recovery after 

photobleaching (FRAP) was used to assess collagen mobility. 

2.3 Tissue Sample Preparation 

Whole carotid arteries were excised from 6 mo. old pigs and studied within 8 hrs.  

An artery was cut into thin cross-sections with razor blades.  The vessel sections were 

mounted on a coverglass so that the middle-layer – the media where smooth muscle cells 

(SMCs) are located (see Fig.1) – was exposed for probing by AFM.  Tissue samples were 

kept in Dulbeco's Modified Eagle Medium (DMEM) supplemented with antibiotics.  

Tissue section thickness was confirmed by light microscopy to be ~100 µm.  Samples 

were placed in the AFM and indented by a sphere-tipped probe (detailed below).   
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2.4 Cell Culture.  

A7r5 SMCs (aorta-derived cell line) were maintained in polystyrene flasks 

between passages 2 and 15, and cultured in media containing DMEM, supplemented with 

10% of fetal bovine serum and antibiotics.  Cells were passed every 3 days, when 

reaching ~ 80% confluency, and plated on various substrates at ~1x104 cells/dish for 

experiments.  Substrates were either glass-bottom 35 mm dishes (Mattek Corporation; 

Ashland, MA) or coverslips coated with the relevant thin films.  Cell images were taken 

after 4 hours of incubation and fixation with a 10% formaldehyde solution and mounting 

media (Biomeda; Foster City, CA). 

Cell culture supplies were from Invitrogen, Life Technologies (Carlsbad, CA); all 

other supplies were from Sigma (St. Louis, MO) unless noted.  Image analysis of 

projected cell area was performed with Scion Image (Frederick, MD), and is displayed as 

an average (± standard error of the mean) with paired t-tests to determine significance.   

2.5 Atomic Force Microscopy Characterization of Films and Gels.   

Force – indentation profiles of arterial sections, PA gels, and (PLL/HA)i films 

were collected with an Asylum 1-D AFM (Asylum Research; Santa Barbara, CA).  Thick 

homogeneous gels as well as gradient gels, which both range between 70 – 90 µm in 

thickness, were tested in the AFM with pyramid-tipped cantilevers (Veeco; Santa 

Barbara, CA) having a nominal spring constant of ~60 pN/nm that was more precisely 

determined from thermal calibration.  Force – indentation curves obtained with this tip 

geometry were fit up to 2 µm tip deflections with a Hertz cone model (10; 21).  In 

addition, homogeneous PA gels of all heights were tested with borosilicate sphere-tipped 

cantilevers (radius of 2.5 µm; Bioforce Nanoscience; Ames, IA) having a similar spring 
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constant ~60 pN/nm.  Force-indentation profiles from these samples were fit with a Hertz 

sphere model using a thin film correction appropriate when h = ~ 13 R, where h is sample 

thickness and R is the radius of the sphere-tipped indenter (22).  In this limit, the 

importance of a thickness correction and larger contact area increases exponentially 

relative to the semi-infinite substrate usually assumed for Hertz cone and sphere models 

(21; 23-25).  There was no statistical difference between the elastic moduli determined by 

the two probe geometries (p = 0.45) on thick PA gels.  Crosslinked and non-crosslinked 

(PLL/HA) films were tested with the same borosilicate sphere-tipped cantilevers (R = 2.5 

µm) using the thin film corrected Hertz sphere model.  Arterial tissue sections were tested 

with both cantilever geometries and were sufficiently thick to fit uncorrected versions of 

the Hertz cone (21) and sphere (23).  Samples were indented at rates of approximately 2 

µm/sec, which is generally sufficient to explore elastic rather than viscoelastic properties 

of cells, matrix, or substrates (26). 

 

3. RESULTS 

3.1 Tissue Elasticity by Surface Probing:  Young’s Modulus of Arterial Media 

Cells, their protrusions, and cell-scale extracellular matrix establish dimensions of 

microns that AFM cantilevers can generally probe with micron-diameter spheres glued to 

their tips.  These probes, as well as more conventional pyramidal tips, can investigate a 

range of scales down to molecular (i.e. nanometers).  With tissue, the combination of 

length scale and soft substrates motivates AFM characterization using a range of indenter 

geometries.  
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To probe the elasticity within the arterial media, fresh arteries (~2 mm diameter) 

were sectioned into ~100 µm long segments (see Methods) and mounted wet under either 

sphere- or pyramid-tipped AFM cantilevers. Arterial sections (n = 3) were probed with 

approximately ten force-indentation curves each.  The curves were fit well up to 

indentations of ~R (2.5 µm) by conventional Hertz cone (21) and sphere (22) models. 

Assuming incompressibility, Table 1 lists the fitted modulus within the narrow range 

Emedia = 5 – 8 kPa, appearing almost independent of tip length scale. 

Indentation by AFM strains the surface as well as the thickness of the material, 

with the strain decaying both laterally and with depth.  A simple, first estimate of the 

average radial strain at the surface, urr, upon indenting to a depth R is readily made for the 

sphere-tipped cantilever.  The material under the spherical indenter’s diameter (2R) is 

assumed to stretch homogeneously, upon indentation, to half the circumference (πR).  

This gives urr ~ (π/2 – 1) ≈ 55%, which is not extremely large in the context of 

sustainable arterial strains. Moreover, such a strain exceeds by about two-fold or more 

the maximum lateral strains of 10-30% typically generated by cell tractions on a range of 

soft substrates (2; 27). 

 

3.2 Thin Gel, Elastic Tissue Mimics  

Polyacrylamide (PA) gels, with variable bis-crosslinker and surface-attached 

collagen, have emerged as a reproducible system for cell studies on the effect of matrix 

compliance. Most such studies have used PA gels approaching ~100 µm in thickness.  

Much thinner PA gels (Fig. 2A) were obtained by addition of a small volume of spacer 

microbeads to PA prior to polymerization between two coverslips.  Removal of the 
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upper, chlorosilanized coverslip yields a gel that is not only covalently bound to the 

lower coverslip but is also smooth over its top surface.  Even for the thinnest gels of 5 

µm, indentation to a depth ~R (2-3 µm) with sphere-tipped AFM probes (Fig. 2B) show 

force profiles in surprisingly good agreement with the Hertz sphere model provided use is 

made of a thin film correction (22).  Without the correction, the classic Hertz model 

analysis leads to an artificially high modulus (by up to ~50% here, Fig. 2C open points), 

as expected of stress-stiffening with strain constraints at the underlying rigid glass.  With 

the correction, gel elasticity did not vary significantly with film thickness (p = 0.38) for 

either lightly crosslinked (0.03% bis) or densely crosslinked (0.3% bis) samples, for 

which respective average moduli are Egel = 1.4 ± 0.1 kPa and 8.1 ± 0.1 kPa (Fig. 2C).   

On the thickest, 70 µm PA gels, pyramid-tipped probes gave elastic moduli that 

were not significantly different (p = 0.45) from those determined by the sphere-tipped 

probes, with or without a correction for sample thickness.  Thicker gels also tested by 

simple tension tests give similar moduli (1).  The results here collectively suggest that 

thin films of soft PA gels (E ~ 1 kPa) as well as moderately stiff PA gels (E ~ 8 kPa) can 

accurately mimic ECM stiffness without overwhelming stiffening due to the underlying 

glass substrate.   

 

3.3 Cell Spreading on Thin Gels. 

Attaching collagen to PA gels creates a more adhesive surface for cells without 

altering gel elasticity (1).  Four hours after plating SMCs (the aorta-derived cell line, 

A7R5) on various collagen-coated PA substrates, SMCs are more spread on stiffer 

substrates (Fig. 3A).  This substrate-stiffness dependent trend with projected cell area is 
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most prominent and clear at low elastic modulus, Egel < 5 kPa.  At high E, including an 

extrapolation to cells plated directly on glass, spread cell area plateaus.   

Cell spreading is remarkably independent of gel height, h; cell spreading on both 

5 and 70 µm PA gels prove statistically similar (p = 0.41, Fig. 3A).  Although these cells 

typically have lateral dimensions of ~50 µm or more, traction forces (27; 28) are such 

that cells do not “feel” a rigid substrate that is as close as 5 µm away, which is more 

typical of a cell height than a lateral dimension. On the other hand, modulus 

determinations by AFM on 5 µm substrates clearly require a correction for film 

thickness. For tissue layers such as the arterial media, however, sensitivity to the local 

micro-elasticity means that adjacent layers (eg. adventitia or intima) can be stiffer or 

softer without propagating deeply into a given layer.   

The thickness independence down to h ~ 5 µm is sensible since cell tractions have 

been shown to create lateral displacements of 2 µm or less on various PA gels (27; 28).  

The minimum length scale for cell traction propagation normal to the spreading axes (or 

axis) is an interesting question to address with thinner gels – perhaps together with 

assessing sensitivity to lateral gradients.  The biologically relevant results here seem 

consistent with relatively homogeneous elastic properties within the media as revealed by 

the small coefficient of variation in Emedia (see Table 1). 

A hyperbolic fit of cell spreading versus substrate stiffness (1) proves insightful 

and has a form that defines the half-saturation constant, E1/2-spread: 

 

Area = a (Egel)m / [(E1/2-spread) m + (Egel)m] + const.    (m ≈ 1) (Eqn. 1) 
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For 5 µm and 70 µm PA gels, E1/2-spread = 7.9 kPa and 10 kPa, respectively; the statistical 

equivalence of the two datasets thus implies E1/2-spread ≈  8.9 ± 1.1 kPa.  Most important 

from this analysis is the remarkable correspondence E1/2-spread ≈  Emedia has a physiological 

interpretation as an elastic set point for SMC.  Cells will spread more than normal for 

substrate perturbations that lead to matrix rigidification, i.e. E > E1/2-spread (Fig. 3A, large 

inset cell).  Likewise, cells will spread less for substrate perturbations that lead to matrix 

softening, i.e. E < E1/2-spread (Fig. 3A, small inset cell).   

 Adhesive spreading is also dependent on ligand density, hence the need to attach 

collagen to the surface of gels (1; 4; 6) for cell receptors to bind.  Importantly, gel-

attached collagen is surface accessible on both supramolecular and micron length scales 

that are typical of cell receptors and protrusions.  This is shown with anti-collagen 

functionalized quantum dots (~10 nm) here (see Fig. 3B inset) as well as micron-sized 

beads (2) that bind only to the gel surfaces when collagen is attached.  Addition of 

functionalized quantum dots after cells are allowed to attach to the gels shows cells 

exclude the particles.   

The coupled dependence of cell spreading on both ligand density and stiffness proves 

highly non-linear, with a modest but clear maximum in cell spreading on the PA gel 

substrates (Fig. 3B).  At very low ligand on any substrate investigated, SMC spread 

minimally.  On gels with the highest ligand densities, cell spreading is suppressed, 

especially on soft substrates.  Moderate ligand densities (~200 ng/cm2 collagen) lead to 

considerable cell spreading (1; 4). It is important to note that cell spreading in Fig. 3A is 

performed at the optimal collagen density for the given substrates.   
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3.4 Layer-by-Layer Films:  Elasticity and Crosslinking 

Multilayers of PLL as the polycation alternating with HA as the polyanion were 

prepared on glass coverslips or slides with 20 layer pairs, i.e. (PLL/HA)20.  By use of 

fluorescein–PLL and confocal microscopy (18), a film thickness of ~ 4 µm was 

estimated.  Samples were then mounted in the AFM and probed with sphere-tipped 

cantilevers using instrument parameters identical to the probing of PA gels, i.e. 

indentation rates of ~2 µm/sec and indentation distances of several microns.  Force – 

indentation curves of (PLL/ HA)20 films were fit with the same thin film correction of the 

Hertz sphere model (22) used earlier on thin PA gels: ignoring the correction here leads 

to a similar overestimate as seen with PA gels (Fig. 2C).   Importantly, the measurements 

on multilayers yield an apparent elastic modulus in the z-direction, Eperp.  The 

qualifications on this modulus arise in part because the layer-by-layer formation process 

leads to orthotropic rather than isotropic symmetry, hence measurements perpendicular to 

the layer symmetry give only a modulus in that direction.  Additionally, the PLL layers 

(but not the HA layers) have been found to reorganize as fluorescent-PLL diffuses slowly 

throughout the film (18; 19).  Eperp for PLL/HA films is thus an apparent modulus with an 

implicit time scale.   

With the above qualifications for the multilayers, (PLL/HA)20 was determined to 

have an average Eperp ~ 85 kPa.  This appears significantly stiffer than equivalently thick 

PA gels, and yet the multilayer films here contain highly swellable polysaccharides (eg. 

HA) and are thus also hydrogels.  Differences in chemistry, however, alter pore size, 

hydration, and crosslinking between monomer units, and thus give very different 

properties.  
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Covalent crosslinking between multilayers should limit polyelectrolyte diffusion 

(18; 19),  but it may not limit viscoelastic mechanisms involving solvent flow or unbound 

polyelectrolytes.  Thus, the multilayer maintains a more orthotropic symmetry where the 

elastic modulus is an apparent Eperp normal to the layer.  Covalent bonding between 

polymer chains within the multilayer was done with EDC and Sulfo-NHS (see Methods) 

and increased the elastic modulus ~15-fold without a significant change in gel thickness.  

Stiffening from these covalent bonds implies that polymer chains in the un-crosslinked, 

ionic films are not so strongly bound to each other, mirroring the crosslink-dependent 

stiffness of PA gels.   

 

3.5 Layer-by-Layer Films:  Collagen Addition and Cell Spreading 

To study cell spreading on these multilayers, we pre-adsorbed collagen-I onto the 

surface of both the native and crosslinked multilayers.  Surface concentrations similar to 

PA gels that gave “optimal” spreading (Fig. 3B) were sought (i.e. ~50-1000 ng/cm2).  

This approximate range was achieved by overnight incubations and was verified, as with 

the PA gels, by use of calibrated imaging of fluorescent collagen (see Methods).  

Furthermore, FRAP (fluorescence recovery after photobleaching) experiments were done 

on crosslinked PLL/HA films with fluorescent collagen adsorbed.  This was spot-

bleached under high laser power and then the intensity of the spot was followed.  

Collagen mobility was very limited, with recovery of bleached intensity saturating at 

~20% of bleached intensity over cell culture-relevant time scales (~hours).  Thus the 

multilayer-bound collagen seems reasonably well adsorbed and at surface concentrations 
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on both native and cross-linked multilayers that have already been found optimal for 

SMC spreading on PA gels (Fig. 3B). 

SMCs were therefore plated on the collagen-coated multilayer films, and cell 

spreading was observed after 4 hours (Fig. 4).  Spreading is clearly promoted on the 

much stiffer, crosslinked multilayers.  Initial results for projected cell area are thus 

consistent in trend with the results above on PA gels (compare Fig. 3A to Fig. 4).   

 

3.6  Surface Probe Resolution on Elastic Gradients 

The results above are sensible and consistent only to the extent that the surface 

probe measurements of elasticity are well calibrated.  While excellent correlation with 

macroscopic tension tests have been achieved using thick PA gel samples of 70 µm (1), 

the spatial resolution limits for heterogeneous, soft samples have not yet been addressed.  

Tissues are, of course, non-homogeneous as well as soft, and so validated methods of 

measurement are important for present and future work in this general area of cell 

responses to elasticity.  This section concludes with a final surface probe result on 

gradient PA gels.   

A microfluidic mixing system created crosslinking gradients with fixed 

acrylamide monomer concentration (8%) from several input ports of various bis-

acrylamide crosslinker concentrations.  Through a series of channels, the mixer generates 

a smooth gradient in crosslinker concentration (from 0.048 – 0.48%) that spans the width 

of the gel (2.8 mm) in a 90 µm thick PA gel.  Gradient gels (n = 2) were probed using 

pyramid-tipped AFM probes, with measurements (n = 157) made at multiple locations, 

200 µm apart along the width of the gel (Fig. 5).  When compared to homogeneous PA 
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gels of identical monomer concentration and indicated crosslinking concentration (inset 

square data, Fig. 5), the two input points can be clearly identified and an equal mixture of 

the two inputs (i.e. ½ [0.048% + 0.48%] = 0.264%) has a modulus found in the middle of 

the gel.   A linear fit of the elastic gradient in the central portion of the gel yields a slope 

of 12 Pa/µm for the detectable change in elastic modulus with distance.  This result 

illustrates the potential accuracy of AFM-determined elasticities in non-homogeneous 

soft samples such as layered arterial cross-sections (eg. Fig.1). 

 

 

4. Discussion  

Tissues, in general, and arteries, in particular, are heterogeneous in their elasticity 

as well as anisotropic, soft, and non-linear (8).  Surface probing here of sectioned 

hydrated tissues by AFM appears to be an accurate method to locally measure effective 

elasticities in the relevant kiloPascal range.  Histological sectioning of a tissue can in 

principle compromise the tissue’s mechanical integrity.  However, comparisons seem 

very good with macroscopic measurements of moduli on larger and more intact SMC 

tissue samples (8), where surface effects are minimal.  With care, the same AFM probing 

methodology can be applied to in vitro matrix mimics that range from micron thin films 

of covalently crosslinked gels, to physically crosslinked multilayers, and microgradient 

gels.   
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4.1 Probing the Elasticity of Soft Polymer Films with AFM  

Measuring the elasticity of polymeric films of various types may seem relatively 

trivial when compared to the complex structure, loading conditions, and viscoelasticity of 

tissues.  However, in the thin film limit, substrate defects and rigid supports can prove a 

significant complication.  Nonetheless, the correlation between macroscopic and 

nano-scale mechanics noted elsewhere (1) for hydrated gels carries over to thin film 

regimes.  This proves to be only minimally affected by indenter geometry within this 

height range, since the moduli determined by sphere and blunted pyramid tips for 70 µm 

gels is not statistically different (p = 0.45).  Using sphere-tipped probes, the elastic 

modulus did not significantly change as a function of height (p = 0.38) in PA gels of high 

or low crosslinking density studied here (Fig. 2C).  In many past applications of Hertz 

cone and sphere models (21; 23-25), an implicit assumption had been that indentations 

were being made into a semi-infinite substrate regardless of a rigid support.  As one 

approaches the limit of thin film elasticity, stiffening due to the rigid, constraining 

support and indenter geometry become important to substrate mechanics (Fig. 2C).  

The few micron thick films of (PLL/HA)20 present further complications in 

probing by AFM.  These films are heterogeneous in being orthotropic, and they are non-

covalent assemblies that can creep under the stress of the AFM probe.  Moreover, in the 

native films, the outermost layers are likely to be more sparse and hydrated, with a 

reduced electrostatic interaction versus the more ordered layers below.  Even in the lower 

layers though, fluorescent recovery after photobleaching demonstrates significant PLL 

fluidity as this polymer diffuses among and within layers (18; 19).  This suggests that 
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water as well as crosslinking reagents will also readily diffuse into the layers.  Converting 

the purely electrostatic crosslinking of such native films (ionic interactions) to covalent 

crosslinking between the ammonium groups of PLL and the carboxylate groups of HA 

(15) (amide bonds) leads to the not so surprising result that film height decreases as 

polymer chains in the soft upper layers are crosslinked and water is shed from the film.  

Increased layer density along with the covalent rather than physical bonds both contribute 

to the 10-fold increase in the apparent elastic modulus, Eperp (Fig. 4).   

 

4.2 Cell Spreading Responses and ECM Relevant Microenvironments 

Cell spreading on thin PA films of several microns appear equivalent to those 

reported recently on much thicker, soft or stiff PA substrates (1; 2; 6; 29).  The basic 

trend in projected cell area, given sufficient surface accessible collagen (Fig. 3B inset), is 

a hyperbolic, saturable spreading with increasing modulus, Egel.  On the softest and 

thinnest PA gels examined (~ 1 kPa; 5 µm thick), spreading differences were minimal. 

This implies surface tractions generated by cells decay prior to reaching the rigid support.   

With increasing stiffness, thin PLL/HA substrates qualitatively promoted 

spreading similar to PA gels at roughly similar collagen concentrations.  The apparent 

elasticity scale, Eperp, for the multilayers should not, however, be equated with the Egel for 

PA gels, which seem to be more ideal in their material behavior.  For all systems studied, 

however, the AFM elasticity measurements were taken in seconds (at indentation rates of 

µm/sec), tending to make viscoelastic materials appear more elastic than viscous.  

Differences with the multilayers thus arise from slow polymer and collagen diffusion that 

is absent from even the most loosely crosslinked PA gels bearing covalently attached 
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collagen.  Crosslinked multilayers are stiffer, as expected, due to covalent crosslinks 

rather than electrostatic crosslinks, and this tends to promote cell spreading on a collagen 

coating.  For future measurements, however, longer time scales of minutes to hours seem 

relevant to understand the properties seen by cells in spreading. 

The hyperbolic form of spreading with increasing E reveals a mechanical setpoint, 

E1/2-spread, for spreading (1).  This is expected to correspond to a typical in vivo stiffness of 

cell-matrix environments.  Given dissimilar behavior in other cell types, such as neuronal 

branching (7) and endothelial tube formation (30) on soft gels, it is reasonable to assume 

that E1/2-spread  differs among cell types,  which require  wide-ranging micromechanical 

environments  for different cell/tissue function.  Further evidence is noted in the original 

studies of epithelial cells on soft gels (3) where cells were shown to have smaller, 

dynamically ruffled shapes, and fibroblasts were reported to be more polarized on soft 

gels.  Nevertheless, matrix compliance and ligand density are coupled variables that 

determine cell responses dependent on the typical matrix stiffness in vivo (1; 4).  By 

explicitly measuring such a range here for vascular SMCs in arterial media by AFM 

indentation, we note that the elasticity range of 5 – 8 kPa agrees with typical E1/2-spread ˜  

8 – 10 kPa.   

Biphasic behavior seen with cell spreading versus collagen concentration on soft 

materials is mechanistically overlapping with biphasic behavior in cell migration versus 

ligand on rigid substrates (31).  At low ligand densities, there is a lack of adequate 

attachment for a cell to pull itself forward (or spread as here), while at high ligand 

densities, detachment from ligand is needed to move forward (32).  Detachment is 

probably not a limitation in cell spreading on gels, so recently introduced spreading 
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models contain a penalty term for cell stretching (1).  Extension is facilitated by the actin 

cytoskeleton, which is signaled to assemble through cell adhesion to stiff substrates by 

signaling mechanisms that are under active investigation but do seem to involve calcium 

and Rho-family kinases (2; 33).  Whether cell spreading will force open membrane 

channels, will dissociate signaling complexes that initiate cascades, or will cause specific 

conformational changes in select proteins are all possible but unclear mechanisms at this 

point. 

 

4.3 Lateral Resolution of AFM on soft gels  

In addition to ligand concentration dependences, spatial variation in matrix 

elasticity is known to give rise to a form of cell motility termed durotaxis (2; 5).  Cells 

tend to move to stiffer substrates, with immobilization by spreading.  While step and 

steep gradients are detectable by cells (2; 5), whether or not shallower but clearly 

measurable gradients of 12 Pa/µm (Fig. 5) can produce a durotactic response has yet to 

be reported.  Although the gradient gels studied here were thick, the results for 

homogeneous gels (Fig. 2C) indicate that thinner gels with gradients should yield similar 

results. 

 

5. Conclusion  

Surface probe measurements of local elasticity allow a relatively accurate 

assessment of the mechanical properties of various soft matrices, materials, and thin 

films.  Such assessments correlate well with adhesive spreading of a cell:  stiffer 

materials tend to promote spreading of smooth muscle cells and half-max spreading 
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occurs on PA matrices that approximate the stiffness of the SMC-rich arterial media.  

Remarkably, films that are microns thick and much thinner than the spread dimensions of 

a cell still prove equivalent to much thicker hydrated substrates.  The answer likely lies in 

micron-scale or less lateral substrate displacements exerted by a cell; such tractions can 

decay sufficiently before the rigid support proves constraining.  Current challenges in 

surface probe measurement lie in accurately obtaining highly localized determinations of 

not only elasticity but also of more complex rheology for natural and synthetic matrices – 

especially on appropriate time scales that are biologically relevant.  Surface or material 

preparation difficulties lie in the controlled generation of uniform, sub-micron, and soft 

gels either with PA gels, multilayers, or other materials.   
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Figure 1:  Arterial Section. Arteries contain three layers of distinct composition and 

artery-dependent thickness. The Intima faces the vessel lumen and is lined with 

endothelial cells.  The Media is both elastic and contractile with SMCs typically 

composing ~30-60% of the mass (20).  Collagen is the predominant matrix protein at 

~10-40% by mass, with elastin also being a significant fraction.  The outermost, 

protective layer is the Adventitia, which is expected to be far stiffer.  

 

Figure 2:  Thin Film PA gels and their Elasticity. (A) Schematic of the polymerization 

process used to create PA gels down to micron-sized thickness.  Acrylamide solutions 

containing a low concentration of appropriate spacer beads were polymerized between a 

lower aminosilinated coverslip and an upper chlorosilanized coverslip with a weight on 

top.  Once fully polymerized, the non-stick upper coverslip was removed, yielding a thin 

PA gel.  (B)  Typical AFM indentation profile of 5 µm thick PA gel using a microsphere-

tipped probe. The fit used here is a thin film correction (22) of Sneddon’s model of an 

axisymmetric probe indenting an infinite material.  Agreement between fit and 

experiment is seen up to indentations of ~50% in gel height.  (C)  PA thin film elasticity 

proves essentially independent of thickness as measured by AFM indentation.  5% 

acrylamide solutions were mixed with either 0.3% (squares) or 0.03% (circles) bis-

acrylamide crosslinker and polymerized with beads of varying radius.  Closed points use 

the thin-film correction to the Hertz sphere model; open points use the classic Hertz 

sphere model.  The horizontal lines are averages of the thin-film corrected results.  
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Figure 3:  Cell Spreading on Thin PA Films. (A) Spreading of SMCs was assessed on 

5 µm and 70 µm thick PA gels as well as glass.  No statistical difference was noted 

between cell populations on gels of similar compliance but different thickness (p = 0.34).  

However, cell spreading shows a steep dependence on the elastic modulus of substrates 

with similar collagen density, as observed before (1).  Inset images show representative 

cells spreading on both ‘soft’ 1 kPa and ‘very stiff’ 35 kPa PA gels.  White arrows in the 

images indicate 5 µm diameter spacer beads used to set the gel thickness. Scale bar = 50 

µm.  (B) 70 µm PA gel substrates of varying compliance and glass were coated with 

various collagen densities.  While cells within the optimal region behaved similarly to 

those above, cells on both higher and lower collagen concentrations were smaller, 

indicating a biphasic behavior (1; 4) dependent on the elasticity of the substrate.  Inset 

image shows quantum dot labeling of a collagen-coated 8 kPa PA gel.  Scale bar = 15 

µm.   

 

Figure 4:  Cell Spreading on thin (PLL/HA)20 Films.  Thin multilayer films of poly(L-

lysine)/ hyaluronic acid (PLL/HA)20, assembled by a layer-by-layer method (18) and 

selectively crosslinked, were assessed by AFM indentation.  Multilayers were 

subsequently coated with a collagen monolayer to promote cell adhesion.  Cells were 

then plated on these multilayer films (~4 µm thick), and the spread cell area was 

measured.  Cells spread very little on un-crosslinked films, and yet chemically 

crosslinked (PLL/HA)20 films, with a 15-fold increase in elastic modulus, showed a 5-

fold increase in cell spread area.  Cell morphology resembled that on PA gels.  
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Figure 5:  PA gels with Resolvable Elasticity Gradients.  Using techniques described 

elsewhere (5), a 10-fold crosslinker gradient was established across the width of an 8% 

PA gel by microfluidic mixing of solutions containing 0.48%, 0.264%, and 0.048% bis-

acrylamide.  Using AFM indentation combined with lateral stage displacements, the 

elastic modulus was locally measured and mapped across the gel.  Binned data is 

displayed as a function of length across the gel.  Open squares denote gel standards 

containing the indicated crosslinker concentration.  These correspond to the microfluidic 

inputs of minimum (left), intermediate (center), and maximum (right) crosslinker 

concentrations. 

 

Table 1: Local elasticity of medial layer in arterial section as determined by AFM. 

AFM Indenter Fitted Depth Apparent Emedia 

Sphere-tipped (n = 25) 2.5 ± 0.4 µm 5.7 ± 0.3 kPa 
Pyramid-tipped (n = 42) 2.7 ± 0.2 µm 7.3 ± 0.7 kPa 
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