
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CBE) Department of Chemical & Biomolecular
Engineering

July 2003

Internally Consistent Approach for Modeling
Solid-State Aggregation: I. Atomistic Calculations
of Vacancy Clustering in Silicon
Manish Prasad
University of Pennsylvania

Talid R. Sinno
University of Pennsylvania, talid@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cbe_papers

Postprint version. Published in Physical Review B Volume 68, Number 4, (2003) 45206 1-12. Publisher URL: http://dx.doi.org/10.1103/
PhysRevB.68.045206

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cbe_papers/4
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Prasad, M., & Sinno, T. R. (2003). Internally Consistent Approach for Modeling Solid-State Aggregation: I. Atomistic Calculations of
Vacancy Clustering in Silicon. Retrieved from http://repository.upenn.edu/cbe_papers/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76392068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcbe_papers%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe_papers?utm_source=repository.upenn.edu%2Fcbe_papers%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe?utm_source=repository.upenn.edu%2Fcbe_papers%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe?utm_source=repository.upenn.edu%2Fcbe_papers%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe_papers?utm_source=repository.upenn.edu%2Fcbe_papers%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cbe_papers/4?utm_source=repository.upenn.edu%2Fcbe_papers%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevB.68.045206
http://dx.doi.org/10.1103/PhysRevB.68.045206
http://repository.upenn.edu/cbe_papers/4
mailto:libraryrepository@pobox.upenn.edu


Internally Consistent Approach for Modeling Solid-State Aggregation: I.
Atomistic Calculations of Vacancy Clustering in Silicon

Abstract
A computational framework is presented for describing the nucleation and growth of vacancy clusters in
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representations of the process in order to provide a systematic method for probing the details of atomic
mechanisms responsible for aggregation. In this paper, the atomistic component of the overall framework is
presented. First, a detailed set of targeted atomistic simulations are described that characterize fully the
thermodynamic and transport properties of vacancy clusters over a wide range of sizes. It is shown that cluster
diffusion is surprisingly favorable because of the availability of multiple, almost degenerate, configurations. A
single large-scale parallel molecular dynamics simulation is then used to compute directly the evolution of the
vacancy cluster size distribution in a supersaturated system initially containing 1000 uniformly distributed
vacancies in a host lattice of 216,000 Si atoms at 1600 K. The results of this simulation are interpreted in the
context of mean-field scaling theory based on the observed power-law evolution of the size distribution
moments. It is shown that the molecular dynamics results for aggregation of vacancy clusters, particularly the
evolution of the average cluster size, can be very well represented by a highly simplified mean-field model. A
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ABSTRACT 

 

A computational framework is presented for describing the nucleation and growth of vacancy clusters in 

crystalline silicon. The overall approach is based on a parametrically consistent comparison between two 

representations of the process in order to provide a systematic method for probing the details of atomic 

mechanisms responsible for aggregation. In this paper, the atomistic component of the overall framework 

is presented. First, a detailed set of targeted atomistic simulations are described that characterize fully the 

thermodynamic and transport properties of vacancy clusters over a wide range of sizes. It is shown that 

cluster diffusion is surprisingly favorable because of the availability of multiple, almost degenerate, 

configurations. A single large-scale parallel molecular dynamics simulation is then used to compute 

directly the evolution of the vacancy cluster size distribution in a supersaturated system initially 

containing 1000 uniformly distributed vacancies in a host lattice of 216,000 Si atoms at 1600 K. The 

results of this simulation are interpreted in the context of mean-field scaling theory based on the observed 

power-law evolution of the size distribution moments. It is shown that the molecular dynamics results for 

aggregation of vacancy clusters, particularly the evolution of the average cluster size, can be very well 

represented by a highly simplified mean-field model. A direct comparison to a detailed continuum model 

is made in a subsequent article. 

PACS #: 61.72Ji 
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I. INTRODUCTION 

 

The design and control of microstructural evolution is central to the processing of materials 

ranging from metals to plastics to ceramics. One of the most tightly controlled processes is 

microelectronic device fabrication on crystalline semiconductor substrates. In the case of 

crystalline silicon, the most common semiconductor material, nucleation and aggregation of 

point defects are responsible for the formation of a wide variety of defects (generally known as 

microdefects)1,2. While most microdefects are detrimental to microelectronic device function, 

some can be useful if their size and spatial distributions can be controlled3. The latter issue also 

is relevant for the future fabrication of nanoscale electronic devices based on quantum dots4,5. 

The most fundamental building blocks for microdefect formation in crystalline materials are 

native point defects, namely the self-interstitial and the vacancy. These two species are the 

mediators for impurity diffusion6,7 and also lead to large clusters by aggregation1,2,8. 

 

While theory and simulation have played important roles in the refinement of silicon 

processing technology with respect to the control of point defect distributions and microdefect 

formation8,9,10, most of the commercially significant progress has come about by careful 

experimentation11,12,13. In fact, process scale (continuum) modeling efforts have not yet led to 

robust and quantitatively predictive simulation tools. One of the principal reasons for this is the 

lack of reliable methods to estimate accurately the thermophysical properties of point defects and 

defect clusters, and therefore the precise reaction and aggregation pathways that are responsible 

for the observed kinetics.  
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There are several techniques for investigating each aspect of the overall aggregation process. 

At the coarsest level is the continuum approach, which reduces the description of the aggregation 

process to a series of coupled reaction-diffusion-advection equations. This approach is highly 

efficient and is not limited by maximum cluster size, but requires that all cluster physics and 

properties be specified a priori. Furthermore, all microstructural information is lost, both at the 

individual cluster and local distribution levels. At the other extreme is the atomic simulation 

approach, which considers explicitly the dynamics of each atom, but obviously cannot simulate 

process-relevant time and length scales. In atomistic simulation, the only required input is the 

interatomic potential that governs the dynamical evolution of the atomic trajectories. In between 

these limits are methods, such as Kinetic Monte Carlo14,15, that attempt to retain atomistic-level 

detail, but coarse-grain the details of the atomic motion to allow for much larger and longer 

simulation scope. Once again, Kinetic Monte Carlo requires that an interaction and transport 

description for each cluster be specified a priori. 

 

A. Internally Consistent Methodology 

 

This paper is the first of two articles that focus on vacancy aggregation in crystalline silicon 

to present a multifaceted computational framework for systematically and quantitatively probing 

solid-state nucleation and growth phenomena. The approach is a three-pronged one: the first 

component consists of a series of targeted atomistic calculations, in which structural, 

thermodynamic, and transport data for a range of vacancy cluster sizes are computed 

systematically using molecular dynamics (MD) and statics (MS)16,17. The second component is a 

single large-scale parallel MD simulation in which a highly supersaturated system of vacancies is 
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allowed to evolve in time without any constraints. The primary result of this simulation is a 

transient vacancy size distribution function in a thermodynamically closed system, which is 

analyzed here using mean-field scaling theory. Both atomistic components employ the 

Environment-Dependent Interatomic Potential18,19 (EDIP), an empirical potential that has been 

shown to lead to good agreement with electronic structure predictions for vacancy defect 

structures and energies in silicon20.  

 

A subsequent article will describe the third component of this study, which is a detailed, 

continuum-level description of the large-scale MD simulation. The continuum model is based on 

a mean-field approximation represented mathematically by a system of coupled Master 

equations21,22. The continuum model and the scaling analysis are parameterized entirely using 

atomistic simulations. The connection between these three individual components is shown 

schematically in Figure 1. The key result is that a parametrically consistent, quantitative 

comparison between the results of the continuum and atomistic-level models can be made, which 

leads to mechanistic (as opposed to parametric) insight into nucleation and growth phenomena.  

 

This paper is organized as follows. Section II is a brief overview of previous modeling of 

vacancy clusters in silicon. Section III focuses on individual vacancy cluster structure and 

thermodynamics. Cluster transport properties, with emphasis on the multiple-pathway 

mechanism responsible for enhanced vacancy cluster diffusion, are presented in Section IV. 

Next, in Section V, we describe a parallel molecular dynamics simulation of vacancy 

aggregation in which a transient size distribution is generated. The basic features of the 
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aggregation process are analyzed in the context of analytical scaling theory in Section VI, which 

has been applied to a variety of nucleation and growth processes. 

 

II. VACANCY AGGREGATION IN CRYSTALLINE SILICON 

 

Vacancy aggregation in silicon has been studied extensively because large vacancy clusters 

(voids) are known to be harmful to microelectronic device yield and reliability, particularly gate-

oxide integrity (GOI)23,24. Voids have been observed directly by TEM to organize into octahedral 

structures aligned almost exclusively along the (111) crystallographic planes of the silicon 

lattice25. This phenomenon has been explained by the low energy of the Si (111) surface relative 

to other orientations26, and an important goal of this work is to make a detailed connection 

between the thermodynamics of small vacancy clusters and large octahedral voids.  

 

In addition to the direct technological implications for crystal growth, the vacancy 

aggregation process is a prototypical model for solid-state nucleation and growth and can be used 

as the basis for investigation of more complex phenomena, such as coupled diffusion-

aggregation problems in carbon-doped silicon27,28. Several investigators have developed various 

continuum models aimed at predicting the evolution of the void size distribution during 

Czochralski silicon crystal growth. These efforts (see for example, Sinno and Brown29, 

Dornberger et al.30, and Nakamura et al.31) have relied on the assumption of diffusion-limited 

homogeneous nucleation in which single vacancies attach and detach from a dynamically 

evolving system of clusters. While these studies have led to models that can capture the essential 

features of vacancy cluster formation during crystal growth, they are not yet quantitatively 
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predictive. It is not clear whether the reasons for this are due to an incomplete picture of the 

physics or whether the required thermophysical properties are insufficiently characterized. 

 

The thermophysical properties of vacancy clusters are difficult to characterize because small 

clusters only can be observed indirectly (e.g. by positron annihilation and electron paramagnetic 

resonance)32,33,34, and also are difficult to approach with atomistic simulation because of the large 

computational cells and long simulation times required for adequate relaxation. These limitations 

are especially significant for ab initio and tight-binding molecular dynamics approaches, which 

include the effects of electronic contributions to varying extents. Despite these limitations, 

notable progress in this area recently has been made. Two series of tight-binding calculations35,36 

recently have shown that the binding energies of vacancy clusters are a non-monotonic function 

of size, and cannot be expressed simply in terms of nearest-neighbor interactions 32,37. In ref. 

[14], a second-nearest neighbor (2NN) interaction was introduced to account for vacancy cluster 

energetics and was found to reproduce well the tight-binding formation energies. The results in 

ref. [36] also were poorly represented by a simple dangling bond model, and an extended model 

based on new bond formation due to atomic relaxation was proposed.  

 

The vacancy cluster formation energies computed in ref. [35] were used in Kinetic Monte 

Carlo (KMC) calculations to demonstrate the effect of the different binding assumptions38. In 

these KMC simulations, the results of the tight-binding estimates for cluster energies were 

mapped onto an Ising model (nearest neighbor interactions only) and a so-called extended Ising 

model (2NN interactions included). The inclusion of 2NN interactions greatly enhanced the 
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mobility of clusters in the KMC simulations and lead to faster-evolving, broader cluster size 

distributions when compared to models that only included NN interactions.  

 

A consistent feature of all atomistic studies of vacancy clusters to date is the particular 

stability of certain cluster structures, namely the six-vacancy ring and the ten-vacancy 

adamantine cage20,35. The stability of the ring hexavacancy has been confirmed with ab initio 

calculations39. These ring and cage structures are postulated to play an important role in further 

cluster growth20,35 and are further considered in Section III.  

 

III. ATOMISTIC MODELING OF VACANCY CLUSTER THERMODYNAMICS 

 

A detailed study of vacancy cluster thermodynamics, transport, and structure is presented 

based on a synergistic combination of molecular statics (MS), molecular dynamics (MD), and 

lattice dynamics simulations for free energy estimation. All atomistic calculations were 

performed with the empirical EDIP potential, which has been shown to lead to a very good 

representation of vacancy cluster properties. While in principle less accurate than electronic 

structure calculations, the use of an empirical potential allows for a wider range of phenomena to 

be considered dynamically, such as cluster transport and nucleation.  

 

The dynamical simulations were used to investigate the formation and transport properties of 

vacancy clusters in the size range 1≤N≤30, while the statics calculations were used to estimate 

the zero-temperature energies of clusters containing up to 969 vacancies embedded in host 

crystals containing up to 46,656 atoms. The size of the simulation cell in each case was 

 7



determined by limiting the concentration of vacancies to 2 % atomic fraction, which was found 

to be well below the threshold in which a cluster interacted with its periodic image. The 

molecular dynamics simulations were performed in the NPT ensemble using a Nose-Hoover 

chain method40. A time step of 0.23 fs was used for all simulations. Our protocol for performing 

the MD simulations was to carry out a set of 10 runs of 40,000 time steps at each temperature for 

each cluster size and configuration. Short runs were employed to reduce the chance of partial 

cluster breakup, especially at the higher temperatures. The results were then averaged to 

minimize statistical uncertainty. All vibrational free energies were computed based on a 

combination of the Quasi-Harmonic Approximation41 at low temperature and thermodynamic 

integration16 for higher temperatures. Further details of the simulation techniques employed in 

our calculations are given in ref. [20]. 

 

A. Initial Conditions and Cluster Geometry 

 

The short time scale associated with MD simulation precludes full, long-range (i.e. diffusive) 

relaxation of cluster geometries. As a result, the choice of initial cluster geometry is critically 

important for making conclusions regarding nucleation and growth pathways20,42,43. Three 

distinct cluster growth modes, shown in Figure 2, were investigated in order to find the 

energetically favorable growth mode. The first two growth modes considered here are based on 

previous work by Bongiorno et al.35; these are the Hexagonal Ring Cluster (HRC) and the 

Spherically Shaped Cluster (SPC). HRC clusters are constructed based on the observed stability 

of the six-member ring and ten member cage bond structures in the diamond lattice. Spherically 

Shaped clusters are formed by the removal of atoms in concentric spherical shells around a 
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central atom. The third cluster growth mode investigated was the (111)-oriented stacking fault 

(SF), which consists of interconnected six-member vacancy rings arranged along a (111) plane.  

Also shown schematically in Figure 2 are the limiting, or macroscopic, shapes of clusters 

produced by each of the three growth modes. Note that the Hexagonal Ring cluster growth mode 

naturally leads to octahedral structures aligned along the (111) crystallographic planes. 

 

B. Cluster Thermodynamics 

 

The dominant cluster growth mode was determined by computing cluster formation 

enthalpies with MD in the temperature range 500≤T≤1600 K for HRCs, SPCs, and SF clusters 

containing between one and thirty vacancies. The formation enthalpies for a cluster of size i was 

defined as , where  is the enthalpy of a perfect lattice with N 

sites. The results of these calculations at 800 K are shown in Figure 3 and demonstrate clearly 

that the SF growth mode is not favorable relative to the HRC and SPC modes. Extrapolation of 

this conclusion to larger cluster sizes can be made readily, based on the linear scaling of the SF 

cluster energies as compared to the sub-linear scaling for Hexagonal Ring and Spherically 

Shaped clusters. The predicted high formation energy of Stacking Fault clusters is significant 

because other empirical Si potentials have been observed to predict the collapse of spheroidal 

vacancy clusters into stacking faults

N
f

i ENiNiNEE ]/)[()( −−−= NE

43,44 at high temperatures. 

 

The formation energies of Hexagonal Ring and Spherically Shaped clusters appear to 

approach each other for clusters containing about 18 vacancies. However, for smaller (and 

larger) clusters the HRC mode is found to be significantly more energetically favorable20. The 
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predicted stability of Hexagonal Ring clusters relative to Spherically Shaped clusters for these 

sizes is consistent with the predictions of tight binding molecular dynamics32,35. No simple 

functionality is apparent for the Spherically Shaped cluster formation energies in this size range, 

but it is expected that these energies will scale similarly to the HRC mode as cluster size 

increases and surface area-to-volume ratios evolve macroscopically, i.e. surface-area/volume ~ 

1/r, where r is a characteristic radius for the cluster. 

 

The scaling behavior of the HRC formation enthalpy was investigated for larger clusters with 

MS. The 0 K enthalpies of formation show an approximately n2/3 power-law scaling (actual 

exponent=0.64) that extends all the way to the very smallest clusters, indicating that an 

expression of the form  is appropriate for capturing the 0 K enthalpic portion 

of the formation free energy for all Hexagonal Ring clusters. A comparison between (0 K) MS 

and 1000 K MD results for the formation energies of clusters up to size thirty shows that both 

sets of calculations give almost identical power-law fits

3/2)()( nTTE f
n σ=

20 and indicate that (1) molecular statics 

are sufficient for capturing the local atomic, and (2) the temperature dependence of the formation 

enthalpy is essentially negligible. 

 

Formation free energies and entropies for the Hexagonal Ring clusters in the size interval 

1<N<35 also were computed at temperatures ranging from 500 K to 1400 K. Interestingly, the 

formation free energies also are observed to scale approximately as n2/3 at all temperatures as 

shown in Figure 4. Furthermore, the entropies of formation are entirely independent of 

temperature; see inset in Figure 4. These results of this thermodynamic analysis are used to fit an 

expression for the temperature dependent surface free energy for clusters20: 
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                                                  ( ) 3/241044.476.2)( nTT −×−=γ  eV.                                        (3.1) 

  

This expression is most accurate for clusters of size N>30 because smaller clusters deviate from 

the classical n2/3 energy scaling behavior. For smaller clusters a correction must be added as 

discussed in ref. [20], and highlighted in Figure 4. An expression for vacancy cluster formation 

free energies therefore is proposed for the size interval 1≤N≤30 and is given by 

 

                                               ( )67.0464.0 1034.423.3)( nTnT −×−=γ  eV,                                   (3.2) 

 

where the two terms represent the formation enthalpies and entropies, respectively. Note that the 

entropic and enthalpic portions each are scaled to different power-law fits. This is necessary to 

maintain the validity of eq. (3.2) over the entire fitted temperature range, 500≤T≤1400 K. 

 

The EDIP potential predicts a thermodynamic melting temperature of about 1530 K45. 

However, a large amount of solid superheating (up to about 2200 K)19 can be achieved in perfect 

crystals with periodic boundary conditions. The presence of defects such as vacancies lowers this 

limit somewhat. Our simulations at 1600 K in the superheated solid remain completely stable 

and demonstrate that the properties of single vacancies and clusters are well defined in the 

superheated region. While the EDIP crystal is thermodynamically metastable at this temperature, 

we find that even with large vacancy clusters, (for example a 165 vacancy HRC embedded in a 

lattice of 13,824 host atoms) the simulation cell can be annealed indefinitely at 1600 K without 

any melting as verified by rapid quenching using a conjugate gradient algorithm.  Furthermore, 

simulations well into the superheated region (up to T=1800 K) indicate that cluster enthalpies 
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and the Arrhenius dependence of vacancy diffusion are unchanged from those at lower 

temperatures. The primary advantage of performing simulations at high temperatures is greatly 

accelerated evolution rates. 

 

C. Equilibrium Cluster Size Distributions 

 

The use of eqs. (3.1) and (3.2) for accurately representing cluster free energies in the size 

interval 1≤N≤30 was investigated by computing equilibrium cluster size distributions with eqs. 

(3.1) and (3.2) and comparing them to the one generated using the actual values of the computed 

free energies of formation. In a thermodynamically open system, the equilibrium concentration 

of a cluster of size i, C , can be written as )(Teq
i

 

                                                       )exp()(
kT
G

NzT
f

i
ai

eq
i −=C ,                                                 (3.3) 

 

where, Na is the number density of lattice sites, zi is the number of possible ways of arranging the 

cluster on each lattice site and  is the formation free energy of the cluster. In an open system 

each cluster species can reach equilibrium independently of the other species in the system. In a 

closed system, however, the equilibrium cluster size distribution is determined by minimizing the 

total free energy subject to the constraint that the total number of vacancies is conserved, i.e. 

, where N

f
iG

V
i

i NiX =∑ V is the total number of single vacancies and Xi is the number of clusters of 

size i46.  The total free energy of a closed system consisting of only vacancy defects is given by47 
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where G0 is a reference free energy, defined here as the free energy of a perfect lattice with the 

same total number of lattice sites, Ns, as the defected system. Nmax is the maximum cluster size 

considered in the minimization. The first term on the left-hand side of eq. (3.4) represents the 

reference free energy of the perfect crystal. The second term represents the vibrational free 

energy contributions of all clusters to the system, while the last summation gives the 

configurational entropy, and reflects the number of ways that an ensemble of clusters of different 

sizes can be arranged within the lattice. 

 

The {G } were determined using either eqs. (3.1) and (3.2) or the actual atomistic 

simulation data. In each case, the constrained minimization problem was solved with N

f
i

15

max = 30, 

Nv = 1 , and N10× s=5 . Figure 5 shows the three predicted equilibrium distributions of V2210× 1, 

V2, and V30 as a function of temperature. It can be seen clearly that while the predictions of eq. 

(3.1) deviate somewhat from the result obtained with the discrete atomistic values, eq. (3.2) 

provides an excellent representation of the cluster formation free energies as a function of 

temperature in the size interval 1≤N≤30. For larger clusters, eq. (3.1) is expected to be accurate.      

A striking feature of Figure 5 is the sudden transition at a critical temperature between clustered 

and unclustered equilibrium size distributions. At high temperatures, entropic effects counteract 

the clustering energetic driving force and monomers are the dominant species, while at lower 

temperatures, V30 (the largest allowable in our simulation) become dominant. The transition 

temperature predicted by the atomistic data and eq. (3.2) is about 1350 K, while eq. (3.1) leads to 
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a value of about 1300 K. Although it is difficult to make a direct comparison with experimental 

conditions given the small value of Nmax used here, the 1350 K value is in excellent agreement 

with the experimentally observed range of 1320-1370 K during crystal growth48.  The 

appearance of larger clusters that would be detectable experimentally would occur at slightly 

lower temperatures, typically only a few degrees because aggregation is very rapid49. 

  

The error in the predicted melting temperature (i.e. 1530 K for EDIP versus 1685 K from 

experiments) does not necessarily affect the above comparison because the predicted 

(thermodynamic) melting temperature is a function of the accuracy of the potential in both the 

solid and liquid phases. Properties predicted in the solid phase should essentially be independent 

of how well a potential performs in the liquid state. In general, for a potential such as EDIP, 

which is parameterized primarily with respect to solid phases, it is to be expected that the solid-

state free energy curve will be more accurate than the corresponding liquid-state one.  

 

IV. VACANCY CLUSTER DIFFUSION  

 

A common assumption50,51 in the process modeling of solid-state aggregation of point defects 

and impurities in silicon is diffusion-limited growth by monomer addition (and dissociation). In 

the case of vacancy aggregation, the reaction pathway generally is expressed as a sequence of 

single-vacancy events 

 

                         L                       (4.1) K →←+ →←+→←+ →← ++−
+−

211
11111

NNNN k
N

k
N

k
N

k VVVVVV
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where VN denotes a vacancy cluster containing N vacancies and kN represents the 

aggregation/dissolution rate of cluster VN. The justification for this assumption typically is based 

on the assumed low concentration and diffusivity of dimers and larger vacancy clusters relative 

to single vacancies.  

 

In this section, a detailed atomistic analysis of vacancy cluster diffusion rates and 

mechanisms is presented that demonstrates the mobility of small vacancy clusters and leads to 

quantitative estimates for their diffusivities. All diffusion simulations were performed using long 

MD runs of 6-20 million time steps (approx. 5-15 ns) in the NVT ensemble at 1600 K, 

corresponding to a timestep of approximately 0.8 fs. System sizes ranging from 216 to 1728 

atoms were used, depending on the cluster size (1 10≤≤ VN ) under consideration. In addition, 

the temperature dependence of single vacancy and dimer diffusion was probed with simulations 

at temperatures ranging from 1300 K to 1650 K. The diffusion coefficient in each case was 

computed using the Einstein relation 

 

                                                      
t
rtr

D
CM

N
CM

N
N

2)]0()([
6
1 −

=                                                 (4.2)  

  

where  is the center-of-mass of a cluster of size N. The center-of-mass (CM) for a 

vacancy cluster was computed first by locating the positions of each of the vacancies (see below) 

in the cluster, and then computing the average coordinates. 

)(tr CM
N

 

The use of a single CM trajectory to determine cluster diffusivity requires very lengthy 

simulations. In the case of single vacancy diffusion, a far better approach is to compute the total 
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mean-squared displacement (MSD) for the entire atomic system, which leads to a particle-

averaged trajectory. However, the latter approach artificially increases estimates for cluster 

diffusion by including “internal diffusion” in which vacancies exchange positions with 

neighboring atoms (and hence increase the MSD) without leading to net cluster translation. The 

statistical efficiency of the CM mean-squared displacement calculations was increased 

substantially using the multiple time-origin approach17. In order to further reduce the error in the 

calculated diffusion coefficients five runs were performed for each cluster size. 

 

A. Single vacancy Properties 

 

The computed single vacancy diffusion coefficient is described well by the Arrhenius 

expression  

                                           scm
kT

eVDV /30.0exp1076.2 24 





−×= − ,                                     (4.3) 

 

and, in combination with the vacancy free energy for formation, leads to an estimate of the 

vacancy contribution to self-diffusion as  

 

                                         1121 65.3exp1028.6 −−





−×= scm

kT
eVCD eq

VV .                                (4.4) 

 

The predicted self-diffusion coefficient is in good agreement with estimates derived from metal 

diffusion experiments52, especially at high temperature. For example, at 1600 K our value is 

2.3×1010 cm-1s-1 which, compares reasonably well with the 6.12×109 estimate of Bracht et al52, 

 16



especially given the large uncertainty associated with these numbers in the literature. 

Interestingly, both the diffusion (0.3 eV) and formation (3.35 eV) activation energies are in 

excellent agreement with values regressed from metal diffusion experiments53. 

 

B. Cluster Diffusion 

 

Vacancy cluster diffusion was analyzed using the CM mean-square displacement (eq. 4.1) 

and a vacancy-tracking algorithm to allow for dynamical structural analysis during diffusion. In 

general, cluster diffusion is expected to proceed via multiple transition (but still associated) 

states, as opposed to a single concerted event. Individual vacancies were tracked throughout each 

run by repeated monitoring of atomic positions. Any time an atom was found to be within 10 % 

of a bond length away from a previously known vacancy position, its position (on the perfect 

lattice at same density) was exchanged with the vacancy and the new vacancy position stored. 

The vacancy position data was used to compute a dynamic total inter-vacancy separation 

function, defined by 

                                                          ( )2∑∑
>

−=
i ij

ji
n

sep rrr ,                                                    (4.5) 

 

where the summation indices, i and j>i,  run over the number of vacancies in the  cluster. 

 

1. Vacancy Dimer Diffusion  

 

The evolution of the separation function, rn
sep, and the actual mean-square displacement of 

the vacancy dimer CM at 1600 K is shown in Figure 6. The separation function shows that the 
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divacancy alternates between three primary configurations as it diffuses within the silicon lattice. 

These separation function values, 2.35 Å, 3.85 Å and 4.57 Å, correspond to the nearest neighbor 

(NN), 2nd-nearest neighbor (2NN), and 3rd-nearest neighbor (3NN), configurations, respectively.  

 

The separation function is observed to increase sharply beyond the 3NN value (4.57 Å) at 

about 0.3 ns; this event corresponds to dimer dissociation, and the evolution of the MSD in this 

region corresponds to the diffusion of two single vacancies. However, the confined simulation 

system and the positive binding free energy of the divacancy quickly lead to re-association of the 

dimer, and the dimer diffusion mechanism is observed once again. The computation of dimer 

(and other cluster) diffusion coefficients must be based only on the regions in which the 

diffusing cluster is associated. Shown in Figure 6 is the multiple time-origin averaged data in 

which dissociated dimer diffusion is removed, leading to a substantially lowered slope that 

would be obtained from a linear fit of the full MSD data. 

 

The temperature dependent diffusion coefficient for V2 is plotted in Figure 7 for the 

temperature range 1300<T<1650 K. The error bars in Figure 7 represent two standard deviations 

in each direction of the distribution of estimates at each temperature. The entire temperature 

range can be represented reasonably well with a single Arrhenius function with slope 1.45 eV. 

However, there is sufficient resolution in the data to suggest that a better interpretation is that the 

effective activation energy is higher at high temperature (~2 eV) and decreases (~1.3 eV) at 

lower temperatures.  
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The observed temperature dependence of the vacancy dimer diffusion coefficient was studied 

further by monitoring the time spent in each associated configuration as a function of 

temperature. It is shown in Figure 8 that most of the simulation time (>90 %) is spent in the 

nearest-neighbor (NN) configuration, with most of the remaining time spent in the 2NN 

configuration. However, it is important to note that the 3NN configuration still plays an 

important role in V2 diffusion: the fact that far more time is spent in the NN and 2NN states 

indicates that the average residence time per visit is small for the 3NN configuration, but the 

actual number of visits is in fact comparable to the others (see Figure 6). Mechanistically, this 

implies that the observed temperature dependence should be a function of both the NN-2NN and 

2NN-3NN transitions, which would support the hypothesized deviation from a simple Arrhenius 

curve shown in Figure 7. The time distribution among the three states is weakly dependent on 

temperature; the time fraction spent in state 3NN is largely unaffected by temperature and only 

the NN and 2NN ratios change as the cluster mobility increases. This is due to the strong driving 

force for regenerating the NN configuration, which has a very high binding energy of 1.61 eV 

relative to the isolated vacancies according to the EDIP potential. This value is in excellent 

agreement with previous estimates54,55. 

      

In order to determine the source of the high and possibly variable activation energy for 

vacancy dimer diffusion relative to single vacancy diffusion, a series of static relaxations were 

performed in which a vacancy dimer was allowed to relax in a host lattice under the constraint of 

fixed vacancy-vacancy separation. Single vacancy diffusion occurs via a direct path, with the 

split-vacancy representing the transition state. The energy barrier for this transition is given in 

eq. (4.3) as 0.3 eV, with identical initial and final configurations. On the other hand, vacancy 
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dimer diffusion is highly asymmetric; the energy profile as a function of separation for the dimer 

is shown in Figure 9 as the separation increases along the NN 2NN 3NN transition pathway. 

Several features of interest are apparent. First, the 2NN configuration is energetically 

unfavorable with respect to both the NN and 3NN configurations because the atom in between 

the two vacancies in the 2NN configuration must support two dangling bonds, rather than one 

per atom for the NN and 3NN configurations. Binding energies computed for distances higher 

than the 7.67 Å, i.e. the 4th neighbor distance along the (110) direction (4NN-110) are 

approximately zero. A detailed analysis of the capture distance between two vacancies is 

presented in a subsequent article. 

 

The activation energy for the NN 2NN transition is about 2.5 eV. This interpretation is 

subject to the assumption that the narrow dip in the energy at 1.5NN in Figure 9 does not affect 

the kinetics of the transition from the NN to the 2NN dimer states. The observed local stability at 

exactly 1.5NN is due to the formation of a split-vacancy structure. The barrier for the 

2NN 3NN transition is substantially lower, 1.3 eV, and results because of the high energy of 

the 2NN configuration. Therefore, a possible explanation for the observed temperature 

dependence in Figure 7 is that dimer diffusion is governed primarily by the 2NN 3NN 

transition at low temperature, where the NN 2NN transition becomes prohibitively slow 

because of its very high activation energy. At higher temperatures, the balance is shifted towards 

the NN 2NN transition, which becomes more important because of the overall stability of the 

NN configuration, i.e. the cluster is most often found in this state as seen in Figure 8.  

 

2. Vacancy Trimer Diffusion 
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A similar analysis was performed for the vacancy trimer. The actual and averaged MSD and 

separation function, , for the vacancy trimer at 1600 K are shown in Figure 10. While the 

general trends are similar to the dimer case, the number of associated states during trimer 

diffusion increases to more than eight, although several of these have identical separation 

functions and only about five distinct values of the separation function can be identified. Once 

again, the cluster is observed to dissociate temporarily during the simulation but in each case 

quickly re-associates and continues to diffuse as a bound cluster. 

n
sepr

 

The effect of temperature is more complex for trimer diffusion, as shown in Figure 11. Here, 

the energies of the different states are closer and exchange between them is more easily 

achieved. For temperatures below about 1400 K, the first two configurations (defined in terms of 

increasing separation function) dominate the diffusion process. At high temperatures, the trimer 

is observed to sample configurations with larger separation function more frequently as it 

becomes more mobile. The configurations of the various associated trimer states are shown in 

Figure 12 in order of increasing separation function from left to right. Each arrow in Figure 12 

represents a reversible transition that requires the diffusion of a single atom (or vacancy). The 

energy value for each transition is taken as the energy difference between the two states at 0 K – 

all energy differences were computed by static minimization and do not include any additional 

barriers due to the formation of transition states. The mobility of vacancy clusters therefore can 

be understood in terms of the high degree of connectivity between the different associated states. 

The overall energy barrier for trimer diffusion should be reduced by the presence of these 

multiple pathways. For example, the transition from structure 1 to structure 2 in Figure 12, which 
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is the most energetically expensive, is not required for continued trimer diffusion; the trimer can 

diffuse indefinitely without ever visiting structure 1. This is consistent with the fact that in Figure 

11, structure 1 is not the most visited configuration at high temperature. The key configuration in 

this case is structure 2, which can be regenerated via several, lower energy pathways. 

 

3. Larger clusters 

 

The dependence of cluster diffusivity on cluster size for larger clusters was investigated at 

1600 K. Figure 13 shows diffusivities for clusters in the size range 1≤N≤10 (solid line with error 

bars). Two important conclusions can be inferred from these results. The first is that cluster 

diffusion (N>1) can be described well by a single power-law with an exponent of about –1.25. 

This result is useful because it allows for extrapolation to larger cluster sizes, which also are 

expected to be mobile given the slow rate of decay shown in Figure 13. On the other hand, the 

single vacancy diffusion coefficient is substantially larger that would be predicted by 

extrapolating the observed power law behavior to N=1. The deviation of the single vacancy 

diffusion coefficient is easily explained by the results in the previous two sections: the single 

vacancy diffuses via a mechanism that does not involve the formation and destruction of 

vacancy-vacancy “bonds”. 

 

V. VACANCY AGGREGATION BY PARALLEL MOLECULAR DYNAMICS 

 

The atomistic simulations described in Sections III and IV focus on the quantitative 

description of individual vacancy cluster thermodynamics and transport. Ideally, given a 
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sufficiently accurate interatomic potential, these estimates can be used directly as input into 

continuum models to predict vacancy aggregation dynamics under experimental conditions. 

Unfortunately, no empirical potential for silicon currently is accurate enough for such purposes56. 

In fact, even electronic structure calculations are still too uncertain for direct parameter 

estimation57. The aim of this Section is to bypass the requirement for a quantitatively predictive 

potential by using parallel molecular dynamics (PMD) to generate “experimental data” which 

with a continuum model can be compared in an internally consistent manner.  

 

A PMD run was performed using a large cubic simulation cell consisting of 216,000 host 

silicon atoms arranged in a tetrahedral lattice from which 1,000 equally spaced vacancies were 

removed. The five million time step simulation (corresponding to about 4.5 ns of real time) was 

carried out in the NVT ensemble at 1600 K and approximately zero pressure. These conditions 

were chosen to give very high vacancy supersaturation and vacancy cluster diffusivities. During 

the course of the simulation, atomic coordinates for the entire system were stored at 1,000-

80,000 time-step intervals. Each of these coordinate files then was used as a starting point for a 

rapid-quench MD simulation in which the temperature was lowered from 1600 K to 100 K in 

3000 time steps. The quenched configurations were then compared to a reference perfect lattice 

at the same density in order to locate the vacancies in the system. Vacancy clusters then were 

identified using the Stillinger definition58 that connects vacancies together based on their 

separation distances59. In this algorithm, a vacancy is used to identify a new cluster. Each time a 

new vacancy is found within its interaction range, it is added to the cluster. The neighbors of 

these vacancies are then found and so on, until all interacting vacancies are identified for each 

cluster. 
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The choice of cutoff distance for defining clusters is critical for a meaningful measure of the 

cluster size distribution. While the surface energy function presented in Section III (eq. 3.1) was 

based on the Hexagonal Ring cluster geometry in which each vacancy is adjacent to three others 

except at the cluster surface, it is clear that clusters are dynamically evolving structures, 

especially at high temperature. For example, the diffusing dimer was shown to alternate among 

three configurations: NN, 2NN, and 3NN. A snapshot in time could potentially find the dimer in 

any of these three configurations. A restrictive definition of a cluster based only on NN 

interactions would mistakenly identify the dimer as two single vacancies unless it was captured 

in the NN configuration. In other words, the cutoff distance for defining clusters must be chosen 

consistently to encompass the interaction range between vacancies. The average cluster size 

evolution was computed based on 2NN, 3NN, and 4NN-110 (4th-nearest neighbor along the 110 

direction) cutoff distances. The 2NN criterion for defining associated clusters significantly 

under-predicted the evolution dynamics, but both the 3NN and 4NN-110 definitions were found 

to give the same cluster size distribution for the entire simulation. The 4NN-110 cut-off is used 

for all results discussed in this work. 

 

The transient size distribution was analyzed by computing moments according to the general 

expression 

                                                                                                                           (5.1) ∑=
s

s
n

n XsM

 

where Xs is the number of clusters of size s, and n is the moment order. Thus, the 0th moment 

(M0) corresponds to the total number of clusters, and the ratio of the of the 2nd and 1st moments 
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(M2/M1) is a measure of the average cluster size. These quantities and the concentration of single 

vacancies are plotted as a function of time in Figure 14. Also shown are power law fits to each of 

these quantities. All are observed to fit well to power laws after an initial period of about 0.1 ns. 

The exponents are -0.39 for the total cluster number (M0), 0.39 for the average cluster size 

(M2/M1) and –0.81 for the monomer number (X1). 

 

VI. MEAN-FIELD SCALING ANALYSIS 

 

The power-law evolution of the vacancy cluster size distribution suggests that a mean-field 

scaling analysis should be applicable. Family et al.60 have shown that a transient analysis of the 

Smoluchowski equation can be performed analytically by assuming a scaling form for the size 

distribution. The approach has been generalized by Sorensen et al.61 to include a broader 

description of the aggregation/fragmentation kernels. The Smoluchowski equation is written as 

 

                 [ ] [∑∑
∞

=
+

=+
+ −−−=

1
),(),(),(),(

2
1

j
jkjk

kji
jiji

k XjkFXXjkKXjiFXXjiK
dt

dX ],        (6.1) 

 

where Xk is the number of clusters of size k, K(i,j) is the coagulation kernel between two clusters 

of size i and j, respectively, and F(i,j) is the fragmentation kernel, which describes the rate of 

dissociation of a cluster of size i+j into two clusters of size i and j, respectively. Assuming that 

the coagulation and fragmentation kernels are homogeneous, i.e.  and 

, and using the following scaling form for size distribution  

),(),( jiKaajaiK λ=

),(),( jiFaajaiF α=
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where s(t) is the average cluster size, defined as (M2/M1), eq. (6.1) can be written as61 

 

                                                              )2(**
*

*
+−= αλ ss

dt
ds .                                                       (6.3) 

 

In eq. (6.3), s*=s(t)/s0, and t*=t/t0, where s0 is the equilibrium value of the average cluster size, 

and t0 is the characteristic time for the size distribution to reach equilibrium. For very small 

times, i.e. when s*<<1, the solution of eq. (6.3) is given by  

 

                                                        [ ]zists )1(*** )1( λ
λ

−
+−= ,                                                     (6.4) 

 

where  is the scaled initial value of the mean cluster size, and 0
* /)0( stssi == )1/(1 λ−=z . 

Thus, if is sufficiently small,  at small times. However, if  is large, i.e. the initial 

mean cluster size is not much smaller than the equilibrium value, s

*
is zts ~* *

is

0, this scaling behavior will 

not appear because the second term on the left-hand side of eq. (6.3) becomes significant before 

t* is large enough to make  negligible.  *
is

 

The evolution of M2/M1 in Figure 14 is qualitatively consistent with the form of eq. (6.3). At 

very small times (t < 0.01 ns), a flat profile is observed, and in this region  is dominant. For 

t>0.1 ns, the first term in eq. (6.4) becomes dominant and a power scaling is observed, consistent 

*
is
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with the analyses in refs. [60] and [61], and also with a small value of . Using a detailed mean-

field simulation of the vacancy aggregation process (to be described in detail in a future 

publication), we estimate that the limiting value of the mean cluster size, 

*
is

)(0 ∞→= tss , 

approaches 200 and therefore  for the system represented in the PMD simulation. 

This small value is consistent with the short initial transient in Figure 14. 

3* 105~ −×is

(~),( jiK

 

In order to make quantitative conclusions regarding the actual value of the exponent for 

M2/M1, a kinetic (and homogeneous) form for the coagulation kernel, K(i,j), must be postulated. 

In the following, we assume that the PMD timescale is sufficiently small so that we do not need 

to consider the fragmentation problem. This assumption is justified below. Using diffusion-

limited aggregation theory62,63, K(i,j) is written as 

 

                                                     ,                                                (6.5) 2))( jiji rrDD ++

 

where rx and Dx (x=i,j) are the radius and diffusivity, respectively, of a cluster of size x. The 

second term on the right-hand side of eq. (6.5) represents the total capture radius for the 

aggregation of clusters i and j, which is expected to be proportional to the sum of the radii of the 

interacting clusters. The form of eq. (6.5) implicitly assumes that no activation barrier for 

coagulation exists, which is a good assumption for highly supersaturated systems at early times 

where a high driving force for aggregation exists. The existence of an activation energy barrier 

for the aggregation and dissolution kernels will be discussed further in a future publication. A 

similar expression can be written for the coagulation of clusters of size iγ  and jγ  so that 
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In eq. (6.6) it is assumed that the clusters are approximately spherical and therefore  If 

the diffusion coefficients also are assumed to be homogeneous, i.e. , then the 

coagulation kernels are homogeneous overall, i.e. 

.~ 3/1nr

i
p

i DD γγ =

 

                                                         .                                                   (6.7) ),(),( 3/2 jiKjiK p+= γγγ

 

The growth exponent for the mean cluster size, M2/M1, in Figure 14 was given as 0.39, which 

leads to an estimate for 56.13/2 −=+= pλ , or 23.2~ −p  This predicted decay for the cluster 

diffusion coefficient as a function of size is plotted along with the actual cluster diffusion 

coefficients in Figure 13. The mean-field diffusion coefficient decay is essentially a single 

power-law fit of the actual diffusion coefficients. 

 

The interpretation of our atomistic simulation results in the context of a simple scaling theory 

was tested by comparing the results in Figure 14 directly to eq. (6.4) with 56.1−=λ , 

 s, and . The solution of eq. (6.3) and the MD results for M5
0 101 −×=t 2000 =s 2/M1 are shown 

in Figure 15. Note that the solution represented by eq. (6.4) has been expressed in dimensional 

units of seconds and total vacancy number, so that a direct comparison with the MD results could 

be made. Clearly, the agreement is excellent not only for the power law region (which is 

determined solely by the fit value of λ ), but also in the initial transient. The overall agreement is 

evidence that our estimates for s0 and t0 are correct and that the interpretation of the atomistic 
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simulation results in terms of a simple scaling theory is justified. Of course, no conclusions can 

be made for longer times based on this analysis because we have neglected the process of 

fragmentation in Figure 15. Furthermore, the average cluster size is a single moment of the entire 

cluster size distribution and it is unlikely that a highly simplified analysis such as the one above 

is capable of reproducing finer details of the cluster size distribution, such as the number of 

individual cluster sizes as a function of time. These additional components will be considered 

explicitly in a full mean-field model in ref. [64]. 

 

VII. CONCLUSIONS 

 

A comprehensive atomistic analysis of vacancy cluster diffusion and aggregation in 

crystalline silicon was performed using the EDIP potential and state-of-the-art large-scale 

parallel molecular dynamics. The length and time scales accessed by molecular dynamics in this 

work enabled a direct analysis of the size distribution evolution with mean-field theory. The 

diffusion of small vacancy clusters is found to be an important mechanism in setting the 

evolution during vacancy aggregation. A closed form expression for the free energy of vacancy 

clusters also was developed and was demonstrated to represent well the equilibrium properties of 

HRC vacancy clusters, which have been shown to be the most stable cluster morphology 

predicted by the EDIP potential. These findings are entirely consistent with more detailed 

electronic structure calculations, as well as the experimentally observed octahedral structure of 

large vacancy clusters.  
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The molecular dynamics results for the evolution of the vacancy cluster size distribution 

were interpreted in terms of a simple mean-field scaling analysis, which demonstrates explicitly 

the contribution of cluster diffusion to the overall evolution dynamics. It is expected that vacancy 

cluster diffusion also will be important in the accurate continuum modeling of defect evolution 

during actual crystal growth and high temperature wafer processing because vacancy clustering 

is observed to initiate at high temperature (1450 K) during crystal growth. Furthermore, the 

interplay between mobile monomers, dimers, and other small clusters could affect the balance 

between vacancies and other point defects, such as self-interstitials and dopants. These studies 

will be presented in a future publication. The results in this paper should be instrumental in 

developing a highly accurate and predictive model for vacancy aggregation in silicon. 

Furthermore, the overall approach presented here should be applicable to the study of more 

complex aggregation phenomena, such as the co-aggregation of multiple species, where 

continuum models are generally more difficult to pose. 
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FIG. 1: An integrated, internally consistent approach for mechanistic and parametric 

investigations of solid-state aggregation. 

 

FIG. 2: (1) HRC, (2) SPC, and (3) (111)-SF vacancy cluster growth modes in the silicon 

lattice. Shown are the HRC-6, 10, 14, and 35 clusters, the SPC-6, 10, 14, and 35 clusters, 

and the SF-6, 10, 13, and 24 clusters. 

 

FIG 3: Enthalpies of formation for HRC (squares and solid line), SPC (circles) and SF 

(diamonds and solid line) vacancy clusters at 800 K. The HRC clusters are favored over 

the other two growth modes. Error bars are approximately the size of the symbols. 

 

FIG. 4: Formation free energies for HRC clusters in the size interval 1<N<35 at 500 K 

(triangles) and 1400 K (circles). Solid lines are optimal power fits (exp. = 0.62), dashed 

lines are n2/3 fits. Inset: Formation entropies averaged over entire temperature range. 

Power law fit (solid line) and n2/3 fit (dashed line) give identical results. 

 

FIG. 5: Equilibrium concentrations of V1 (squares), V2 (circles), and V30 (diamonds) 

species as a function of temperature. The three sets of data shown are for free energies 

computed from eq. (3.1) (short dash lines), eq. (3.2) (long dash lines), and full atomistic 

results (solid lines). The vertical line shows the nucleation temperature predicted by eq. 

(3.2) and the discrete atomistic free energies. 

 



FIG. 6: Center-of-Mass Mean-square displacement (CM-MSD) and inter-vacancy 

separation function (solid squares) for the vacancy dimer at 1600 K. Also shown is the 

averaged CM-MSD (dashed line). 

 

FIG. 7: Arrhenius plot for the V2 diffusion coefficient. Solid line represents a single 

Arrhenius fit, while the two dashed lines show possible activation energy variation with 

temperature.  

 

FIG. 8: Residence time fraction spent in each associated state during dimer diffusion at 

1200 K (squares), 1500 K (circles), and 1600 K (triangles). 

 

FIG. 9: Statically relaxed formation energies of dimer configurations along the 

NN 2NN 3NN transition. 

 

FIG. 10: Center-of-Mass Mean-square displacement (CM-MSD) and inter-vacancy 

separation function (solid squares) for the vacancy trimer at 1600 K. Also shown is the 

averaged CM-MSD (dashed line). 

 

FIG. 11: Residence time fraction spent in each associated state during vacancy trimer 

diffusion at 1200 K (squares), 1400 K (circles), and 1600 K (triangles). 

 

FIG. 12: Configurations of seven individual associated states involved in the diffusion of 

vacancy trimers (light-spheres are vacancies, dark ones are Si atoms). The separation 



function increases from left to right: values are 2.42, 3.03, 3.17, and 3.54 (A/σ ). Also 

shown are the elementary transition pathways (arrows). Energy differences are for 

transitions from lower label to higher label: e.g E1 2 = +1.93 eV. 

 

FIG. 13: Diffusion coefficients for vacancy clusters as a function of cluster size at 1600 

K. Solid line and squares – EDIP predictions; dashed line and diamonds – mean-field 

model fit. 

 

FIG. 14: Temporal evolution of M0 (squares), M2/M1 (circles), and X1 (diamonds). Power 

law fits (for t > 0.1 ns) give exponents of  –0.39, +0.39, and –0.81, respectively. 

 

FIG. 15: Evolution of s*(t) as a function of time. Squares: direct atomistic simulation; 

Solid Line: solution of eq. (6.3). 
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