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The Activity of Fe-Pd Alloys for the Water-Gas Shift Reaction

Abstract
The role of Fe promoters has been investigated on Pd/ceria, Pt/ceria and Rh/ceria catalysts for the water-gas
shift (WGS) reaction in 25 Torr of CO and H2O, under differential reaction conditions. While no
enhancement was observed with Pt and Rh, the activity of Pd/ceria increased by as much as an order of
magnitude upon the addition of an optimal amount of Fe. Similarly, the addition of 1 wt% Pd to an Fe2O3
catalyst increased the WGS rate at 453 K by a factor of 10 over that measured on Fe2O3 alone, while the
addition of Pt or Rh to Fe2O3 had no effect on rates. The amount of Fe that was necessary to optimize the
rates increased with Pd loading but was independent of the order in which Fe and Pd were added to the ceria.
Increased WGS activity was also observed upon the addition of Fe to Pd supported on Ce0.5Zr0.5O2. XRD
measurements, performed after running the catalyst under WGS conditions, show the formation of a Fe-Pd
alloy, even though similar measurements on an Fe/ceria catalyst showed that Fe3O4 was the stable phase for
Fe in the absence of Pd. Possible implications of these results on the development of new WGS catalysts are
discussed.
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The Activity of Fe-Pd Alloys for the Water-Gas Shift Reaction 

 

S. Zhao and R. J. Gorte  
Department of Chemical & Biomolecular Engineering 

University of Pennsylvania 
Philadelphia, PA 19104,USA 

 

Abstract 

 The role of Fe promoters has been investigated on Pd/ceria, Pt/ceria and Rh/ceria 

catalysts for the water-gas shift (WGS) reaction in 25 Torr of CO and H2O, under differential 

reaction conditions. While no enhancement was observed with Pt and Rh, the activity of Pd/ceria 

increased by as much as an order of magnitude upon the addition of an optimal amount of Fe. 

Similarly, the addition of 1 wt% Pd to an Fe2O3 catalyst increased the WGS rate at 453 K by a 

factor of 10 over that measured on Fe2O3 alone, while the addition of Pt or Rh to Fe2O3 had no 

effect on rates. The amount of Fe that was necessary to optimize the rates increased with Pd 

loading but was independent of the order in which Fe and Pd were added to the ceria. Increased 

WGS activity was also observed upon the addition of Fe to Pd supported on Ce0.5Zr0.5O2. XRD 

measurements, performed after running the catalyst under WGS conditions, show the formation 

of a Fe-Pd alloy, even though similar measurements on an Fe/ceria catalyst showed that Fe3O4 

was the stable phase for Fe in the absence of Pd. Possible implications of these results on the 

development of new WGS catalysts are discussed.  
 
  

Keywords: Water-gas shift, Pd, Pt, Rh, Fe, FePd alloys, ceria.  

 

Short Title: Fe-Pd Alloys for Water-Gas Shift
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Introduction     

 There is a need for better water-gas shift (WGS) catalysts for the development of efficient 

fuel processors for fuel-cell applications [1,2]. Getting higher WGS activities is crucial because 

it would allow the reaction to be carried out at lower temperatures where the equilibrium 

concentration of CO, a serious poison for low-temperature fuel cells, is decreased. Materials that 

are typically used for the WGS reaction in large-scale operations, such as Cu/ZnO, are not 

applicable for many fuel-cell applications due to the fact that they are sensitive to start-up/shut-

down cycles and may be pyrophoric [1,2]. Ceria-supported, precious-metal catalysts are one 

class of materials that have been identified as exhibiting very interesting properties for the WGS 

reaction with fuel cells [1-6]. The properties of ceria-supported precious metals are well known 

because of their application to automotive, emissions-control catalysis; however, the application 

of these materials to low-temperature WGS will require optimization in a very different manner. 

 While ceria-supported precious metals can exhibit higher rates than that obtained on 

commercially available Cu/ZnO catalysts under some conditions of interest for fuel-cell 

applications [1,4], even higher activities would be desirable to offset the cost of the precious 

metals. In recent work from our laboratory [7], the effect of a large number of promoters was 

investigated on Pd/ceria catalysts. The majority of these "promoters" (Tb, Gd, Y, Sn, Sm, Pr, Eu, 

Bi, and Cr) had minimal effect on the catalytic activity. A few others (V, Pb, and Mo) decreased 

WGS rates over Pd/ceria. However, rates on the Fe-promoted samples were found to be as much 

as 8 times higher than on unpromoted Pd/ceria at 473 K. Furthermore, there was an optimum Fe 

content that gave rise to the highest rates. 

 In the present study, we set out to investigate the reason for the enhancement in the WGS 

activity found on Pd/ceria. What we will show is that the enhanced activity associated with 

adding Fe2O3 to Pd/ceria is due to formation of a Fe-Pd alloy. The addition of Fe2O3 did not 

enhance rates on Pt/ceria or Rh/ceria, suggesting that there may be something unique about the 

Fe-Pd system. Interestingly, the stable form of Fe under WGS conditions in the absence of Pd is 

Fe3O4, suggesting that formation of the alloy provides a driving force for the reduction of Fe.  

Experimental 

The ceria used for all of the measurements in this study was synthesized by 

decomposition of Ce(NO3)3
.6H2O (Alfa Aesar, 99.5%) in air at 873 K. A ceria-zirconia, mixed 

oxide (Ce0.5Zr0.5O2) was also prepared by mixing aqueous solutions of ZrO(NO3)2
.xH2O 
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(Aldrich) and Ce(NO3)3
.6H2O, then drying the mixed solution at 383 K overnight, and finally 

calcining the dried powder in air at 873 K for 4 h. The Fe2O3 sample that was used as a support 

was prepared by decomposing Fe(NO3)3·9H2O (Aldrich, 99.99+%) in air at 873 K. For most 

experiments, Fe was added to the ceria or ceria-zirconia supports by aqueous impregnation with 

Fe(NO3)3·9H2O. After impregnation with the Fe(NO3)3·9H2O, the samples were again dried at 

383 K overnight and calcined in air at 873 K for 4 h. The BET surface areas for the supports 

used in this study are shown in Table 1, with the Fe loadings calculated as weight percent Fe2O3.  

The precious metals were also added to the oxide supports by wet impregnation using 

aqueous solutions of Pd(NH3)4(NO3)2 (Aldrich, 99.99%), Pt(NH3)4(NO3)2 (Alfa Aesar, 99.99%), 

or Rh(NO3)3 (Alfa Aesar, 99.9%). Following impregnation of the precious metal salts, the 

catalysts were dried at 383 K and calcined at 873 K. To determine whether the order in which Pd 

and Fe were added to ceria was important, we prepared a sample with 1 wt% Pd and 2.2 wt% 

Fe2O3 in which Pd(NH3)4(NO3)2 was added first, dried overnight, and, finally calcined in air at 

873 K for 4 h before adding Fe(NO3)3·9H2O. Still other catalysts was prepared by co-

impregnation of Fe and Pd onto the ceria support, again using aqueous solutions of Fe(NO3)3 and 

Pd(NH3)4(NO3)2 and similar drying and calcination procedures. 

The WGS reaction rates were measured in a ¼-inch, Pyrex, tubular reactor using 0.10 g 

of catalyst. Water was introduced by saturation of a He carrier gas flowing through a bubbler 

with de-ionized water. While the reactor pressure was always atmospheric, the partial pressures 

of CO, H2O and He were controlled by adjusting the relative flow rates of each component. All 

of the reaction measurements in this study were collected with partial pressures for CO and H2O 

of 25 torr. All the reaction rates were measured under differential conditions, with the 

conversions of CO and H2O kept below 10%. To avoid potential transients associated with 

catalyst oxidation and reduction, we always allowed the reaction to run for at least 30 min before 

analyzing the products. To ensure that the results were reproducible, the rates at each point were 

measured at least three times. The concentration of the effluent from the reactor was determined 

using an on-line gas chromatograph, SRI8610C, equipped with a Hayesep Q column and a TCD 

detector. 

          Phase identification in the samples was performed via x-ray diffraction with a Rigaku X-

ray diffractometer, using Ni-filtered, Cu Kα radiation (λ = 1.54184 Å). The diffraction 

measurements were performed in the range of 2θ = 30˚ - 50˚ with a scanning speed of 2˚ 2θ/min.  
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Results and Discussion 

The first evidence that the addition of Fe to the ceria support must do more than simply 

modify the properties of the ceria support came from WGS rate measurements with various 

Fe:Pd ratios, with representative data for the Fe-impregnated ceria catalysts reported in Fig. 1 

and Table 2. Fig. 1 shows Arrhenius plots for the WGS reaction, in 25 torr of both CO and H2O, 

with results for catalysts with 1 wt% Pd shown in Fig. 1a) and results for catalysts with 2 wt% Pd 

shown in Fig. 1b). In order to maintain differential conversions, it was necessary to use a higher 

temperature range for the less active catalysts, so that the most active catalysts are those for 

which the data is on upper right of the plots. In agreement with the earlier study of Pd on Fe-

doped ceria [7], the activities of the Pd catalysts prepared with Fe-doped ceria were higher than 

that with undoped ceria; and there is an optimal Fe content for maximizing the rates. However, 

the optimum Fe content was different for the two Pd loadings. For 1 wt% Pd, the maximum rates 

occur with 2.2 wt% Fe2O3; with 2-wt% Pd, the maximum rates occur at 4.3 wt% Fe2O3. In both 

of these catalyst, the Fe:Pd molar ratio is the same, approximately 3:1. 

Table 2 summarizes the data in Fig. 1 by giving the rates and activation energies at 453 K 

for each of the catalysts. As might be expected, rates with 2-wt% Pd on pure ceria were 

approximately twice that of the rates on the 1 wt% catalysts. Pd/Fe2O3 showed rates that were 

comparable to Pd/ceria, but both of these catalysts were much less active than the catalysts 

containing all three components. In agreement with an earlier study [7], the activation energy of 

the Fe-containing catalysts was somewhat higher than that found on Pd/ceria. Finally, it should 

be noted that the activity of 2.2 wt% Fe2O3 on ceria, extrapolated to 453 K, is expected to be 

only 0.0012x1018 molecules/s.g, much lower than any of the Pd-containing catalysts.  

The fact that there is a specific Fe-Pd stoichiometry associated with maximum WGS 

activity suggests that Fe-Pd compounds could be responsible for the increased activity. In this 

case, it would be expected that the order in which Pd and Fe are added to the catalyst should not 

matter. To explore this possibility, we prepared ceria-supported catalysts with 2.2 wt% Fe2O3 

and 1 wt% Pd by co-impregnation of the Pd and Fe precursor salts and by impregnating Pd 

before Fe. The rate data for these three samples are listed in Table 3 and demonstrate that there is 

no significant difference between the three samples.  

 To determine whether Fe could also promote Pt and Rh catalysts, we investigated 1 wt% 

Pt and Rh catalysts on some of the same supports listed in Table 1, with the rates reported in 
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Table 4. At 453 K, the rates on Pt/ceria and Rh/ceria are essentially identical to that which we 

observed on undoped Pd/ceria, although the activation energies on the Pt and Rh catalysts were 

slightly higher. What is more striking about the rates in Table 4 is the fact that the addition of Fe 

had no measurable effect on the rates with Pt- and Rh-based catalysts. Table 5, which gives the 

WGS rates for each of the precious metals when supported on pure Fe2O3, also demonstrates that 

enhanced rates only occur with Pd. The Fe2O3-supported Pt and Rh catalysts showed rates that 

were indistinguishable from that over the Fe2O3 catalyst itself.  

Since ceria-zirconia mixed oxides are usually found to be more active and stable than 

pure ceria, we measured reaction rates for 1 wt% Pd, Pt, and Rh on the Ce0.5Zr0.5O2 support, both 

with and without the addition of Fe, with the results shown in Table 6. First, the rates for each of 

the precious metals on the Ce0.5Zr0.5O2 support are very similar to the rates on pure ceria. Again, 

the addition of 2.9 wt% Fe2O3 led to a significant enhancement with the Pd catalyst, but there 

was essentially no change in rates upon the addition of Fe to the Pt and Rh catalysts. 

 To identify the phases responsible for the high activity in the Pd-Fe/ceria catalyst, we 

prepared the following catalysts: 6 wt% Pd on ceria; 13 wt% Fe2O3 on ceria; and 6 wt% Pd, 13 

wt% Fe2O3 on ceria. Each sample was then exposed to the same WGS reaction conditions at 473 

K for 2 h, then cooled in He to room temperature. Because initial experiments showed that the 

samples were re-oxidized when exposed to air at room temperature, we first passed 1-butene 

over the catalysts for 30 min at room temperature, before taking the samples out of the reactor, 

since the carbon-covered catalysts are not as susceptible to re-oxidation. Fig. 2 shows a 

comparison of XRD patterns on the three catalysts in the range of 30 to 50 degrees 2θ. The 

metallic Pd peak at 40.12 degrees 2θ was clearly observed for 6 wt% Pd/ceria. Based on the 

Scherrer analysis of the peak width at half height, we estimate the average Pd particle size to be 

approximately 7 nm, in reasonable agreement with a previous report showing the Pd particle size 

after the WGS reaction [8]. On the Fe2O3/ceria sample, the peak at 36.85 degrees 2θ shows that 

Fe remains in an oxidized form, but as Fe3O4. The 6 wt% Pd, 13 wt% Fe2O3 sample still shows 

the peak that we associate with Fe3O4, but now the peak associated with Pd has shifted upward to 

near 41.22 degrees 2θ, which would be associated with the (111) plane of the alloy, FePd. The 

diffraction lines remain broad due to the small metal particle sizes, but there may also be 

particles with a range of compositions. Finally, it is noteworthy that others have also reported 

that Fe-Pd alloys can form when Pd is deposited onto supports containing Fe2O3 [9]. 
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 Our finding that Fe exists as Fe3O4 under WGS conditions agrees with previous work on 

Fe-based catalysts and with thermodynamic calculations of the expected phase for Fe under these 

conditions [10]. For the Fe-Pd alloy to form under the same conditions implies that formation of 

the alloy must provide an energetic driving force for reduction of Fe. The phase diagram for the 

Pd-Fe system shows two alloy phases, a FePd phase and a FePd3 phase [11]. Since the maximum 

rates seem to occur in catalysts for which the Fe:Pd ratio is ~3, a large excess over the 1:1 ratio 

in FePd, and since Fe3O4 is observed together with the FePd phase under WGS conditions, there 

may be an equilibrium between Fe3O4 and FePd. This may explain why Pt and Rh catalysts are 

not affected in the same way as Pd catalysts. If alloys had formed with Pt and Rh, one should 

expect that the reaction rates on those catalysts would have been affected, either positively or 

negatively. While alloys of these metals with Fe do exist, there is evidence that they do not form 

as readily as FePd [12]. Finally, it is interesting to observe that Pd-Zn alloys also exhibit unique 

properties for steam reforming of methanol [13]. 

 A thermodynamic driving force for reducing Fe3O4 could explain the enhanced WGS 

activity that is observed for these catalysts. In previous work from our laboratory [5], it has been 

proposed that the WGS reaction over ceria-supported precious metals proceeds through a redox 

mechanism, as shown below:  

CO  +  σ   →   COad        (1) 

H2O  + Ce2O3  →  2 CeO2 + H2      (2) 

 COad + 2 CeO2 →  CO2 + Ce2O3 + σ       (3) 

According to this picture, CO adsorbs on the precious-metal sites (σ) and the adsorbed CO is 

then oxidized with oxygen from the ceria; the reduced ceria is then re-oxidized by H2O. If Fe, by 

its intimate contact with Pd, can enhance either the oxidation by water or reduction by CO, one 

should expect increased reaction rates for the alloy catalyst. 

  Independent of what mechanism is responsible for the rate enhancement upon formation 

of the Fe-Pd alloy, the results are intriguing in that they suggest that this and other alloys could 

prove to be interesting WGS catalysts. In addition to increasing reaction rates, alloy catalysts 

could exhibit increased stabilities and possibly allow decreased loadings of the precious metal. 

Certainly, the observation that Fe-Pd alloys show significantly higher reaction rates suggests that 

the combination of precious and base metals is an avenue worth exploring. 
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Conclusion 

We have demonstrated that the enhanced WGS activity observed upon the addition of Fe 

to Pd/ceria catalysts is probably due to the formation of a Fe-Pd alloy. Under WGS conditions, 

Fe would normally exist as Fe3O4, suggesting that formation of the alloy could provide a 

thermodynamic driving force for Fe reduction. Enhanced WGS activity was not observed upon 

the addition of Fe to either Pt or Rh catalysts, providing further evidence that specific 

interactions between Fe and Pd must be responsible for the higher rates observed in materials 

containing both elements. 
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Table 1. BET surface areas of supports used in this study, after outgassing at 623 K. 

Support BET surface area 

m2/g 

CeO2 61 

Ce0.5Zr0.5O2 84 

Fe-ceria, 0.7 wt% Fe2O3 64 

Fe-ceria, 1.4 wt% Fe2O3 64 

Fe-ceria, 2.2 wt% Fe2O3 60 

Fe-ceria, 2.9 wt% Fe2O3 54 

Fe-ceria, 5.7 wt% Fe2O3 43 

Fe-ceria, 11.4 wt% Fe2O3 41 

Fe2O3 12 
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Table 2. Differential Rates and Activation Energies for the Water-Gas-Shift Reaction on Fe 

Promoted, Pd/Ceria Catalysts 

Catalyst 
Rate at 453 K 

 (x 1018 molecules/s.g cat) 

Activation Energy 

(kJ/mol) 

Pd/ceria 0.27 49 

Pd/Fe-ceria, 0.7 wt% Fe2O3 0.84 52 

Pd/Fe-ceria, 1.4 wt% Fe2O3 1.58 60 

Pd/Fe-ceria, 2.2 wt% Fe2O3 2.42 67 

Pd/Fe-ceria, 2.9 wt% Fe2O3 1.91 61 

Pd/Fe-ceria, 5.7 wt% Fe2O3 1.21 57 

1 wt% Pd 

Pd/Fe2O3 0.47 55 

Pd/ceria 0.61 43 

Pd/Fe-ceria, 0.7 wt% Fe2O3 0.98 61 

Pd/Fe-ceria, 2.2 wt% Fe2O3 2.52 60 

Pd/Fe-ceria, 4.3 wt% Fe2O3 3.15 61 

Pd/Fe-ceria, 5.7 wt% Fe2O3 1.95 60 

Pd/Fe-ceria, 11.4 wt% Fe2O3 1.63 62 

2 wt% Pd 

Pd/Fe2O3 0.29 47 

Fe/ceria (Fe2O3: 2.2 wt%) 0.0012a 80 

 a. The reaction rate was extrapolated from higher temperature data.  
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Table 3. The Effect of Preparation Conditions for Pd/Fe-Ceria  

Catalyst Rate at 453 K 

 (x 1018 

molecules/s.g cat) 

Activation 

Energy 

(kJ/mol) 

1wt%Pd/ceria 0.27 49 

1wt%Pd/Fe-ceriaa (2.2 wt% Fe2O3) 2.42 67 

Fe/1wt%Pd-ceriab (2.2 wt% Fe2O3) 2.21 52 

1wt%Pd-Fe/ceriac (2.2 wt% Fe2O3) 2.89 59 

a. Fe2O3 was loaded onto ceria first, then Pd was loaded. 

b. Pd was loaded onto ceria first, then Fe2O3 was loaded. 

c. Pd and Fe2O3 were loaded onto ceria by co-impregnation. 
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Table 4. Differential Rates and Activation Energies for the Water-Gas-Shift Reaction on 

Fe-Modified Pt/ceria and Rh/ceria Catalysts 

Catalyst 

Rate at 453 K 

 (x 1018 molecules/s.g 

cat) 

Activation 

Energy (kJ/mol) 

Pt/ceria 0.24 61 

Pt/Fe-ceria, 0.7 wt% Fe2O3 0.24 69 

Pt/Fe-ceria, 1.4 wt% Fe2O3 0.28 73 

Pt/Fe-ceria, 2.2 wt% Fe2O3 0.29 73 

Pt/Fe-ceria, 2.9 wt% Fe2O3 0.25 66 

1 wt% Pt 

Pt/Fe-ceria, 5.7wt% Fe2O3 0.27 71 

Rh/ceria 0.23 55 

Rh/Fe-ceria, 2.2 wt% Fe2O3 0.23 57 

Rh/Fe-ceria, 2.9 wt% Fe2O3 0.25 58 
1 wt% Rh 

Rh/Fe-ceria, 5.7 wt% Fe2O3 0.23 58 

 
 

 

Table 5. Differential Rates and Activation Energies for the Water-Gas-Shift Reaction for 

Pd, Pt, and Rh Supported on Fe2O3.  
 

Catalysta Rate at 453 K 

 (x 1018 molecules/s.g cat) 

Activation Energy 

(kJ/mol) 

Fe2O3 0.04b 58 

Pd/ Fe2O3 0.84 55 

Pt/ Fe2O3 0.09 70 

Rh/ Fe2O3 0.06 69 

a. Pd, Pt and Rh loading were 1 wt%. 
b. Rate was extrapolated from higher temperature data.  
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Table 6. Differential Rates and Activation Energies for the Water-Gas-Shift Reaction on 

Ce0.5Zr0.5O2-Supported Pt, Pd, and Rh Catalysts 

Catalysta Rate at 453 K 

 (x 1018 molecules/s.g cat) 

Activation Energy 

(kJ/mol) 

Pd/Ce0.5Zr0.5O2 0.34 49 

Pd/Fe-Ce0.5Zr0.5O2 (Fe2O3: 2.9 wt%) 1.97 58 

Pt/Ce0.5Zr0.5O2 0.30 50 

Pt/Fe-Ce0.5Zr0.5O2 (Fe2O3: 2.9 wt%) 0.26 47 

Rh/Ce0.5Zr0.5O2 0.21 47 

Rh/Fe-Ce0.5Zr0.5O2 (Fe2O3: 2.9 wt%) 0.19 55 

a. Pd, Pt and Rh loading were 1 wt%. 
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Captions: 
 
Fig.1 a) Differential rates for the WGS reaction on 1%Pd/ceria (■), 1%Pd/Fe/ceria (0.7 wt% 

Fe2O3)(▲), 1%Pd/Fe/ceria (1.4 wt% Fe2O3)(♦), 1%Pd/Fe/ceria (2.2 wt% Fe2O3) (•), 

1%Pd/Fe/ceria (2.9 wt% Fe2O3) (○), 1%Pd/Fe/ceria (5.7 wt% Fe2O3)(□). 

b) Differential rates for the WGS reaction on 2%Pd/ceria (■), 2%Pd/Fe/ceria (0.7 wt% 

Fe2O3) (▲), 2%Pd/Fe/ceria (2.2 wt% Fe2O3) (○), 2%Pd/Fe/ceria (4.3 wt% Fe2O3) (•), 

2%Pd/Fe/ceria (5.7 wt% Fe2O3) (♦), 2%Pd/Fe/ceria (11.4 wt% Fe2O3) (□). 

 

 

Fig. 2   XRD data for (a) 6%Pd/ceria, (b) Fe/ceria (13 wt% Fe2O3) and (c) 6%Pd-Fe/ceria (13 

wt% Fe2O3). Samples were pretreated in the WGS condition at 473 K for 2 h. For 

Fe/ceria (13 wt% Fe2O3) and 6%Pd-Fe/ceria (13 wt% Fe2O3), after treatment under WGS 

conditions, cooling to room temperature, and then exposure to 1-butene to prevent sample 

reoxidation.  
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	The role of Fe promoters has been investigated on Pd/ceria, Pt/ceria and Rh/ceria catalysts for the water-gas shift (WGS) reaction in 25 Torr of CO and H2O, under differential reaction conditions. While no enhancement was observed with Pt and Rh, the a
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