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Novel SOFC Anodes for the Direct Electrochemical Oxidation of
Hydrocarbon

Abstract
This paper describes recent developments in solid-oxide fuel cells (SOFC) that use Cu-based cermets as the
anode for direct oxidation of hydrocarbon fuels, including liquids such as gasoline, to generate electrical
power without the need for first reforming that fuel to H2. Cu-YSZ cermets were found to be stable in
hydrocarbon environments, but exhibited low performance for direct oxidation. Reasonable power densities
could only be achieved with the addition of a catalytic oxide, like ceria, with the Cu cermet. Electrochemical
oxidation studies demonstrated that the initial products for reaction depend on the catalytic oxide. Finally, the
effect of sulfur impurities in the fuel is discussed.
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Novel SOFC Anodes for the Direct Electrochemical Oxidation of Hydrocarbon 
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Abstract 
This paper describes recent developments in solid-oxide fuel cells (SOFC) that use Cu-

based cermets as the anode for direct oxidation of hydrocarbon fuels, including liquids such as 
gasoline, to generate electrical power without the need for first reforming that fuel to H2. Cu-
YSZ cermets were found to be stable in hydrocarbon environments, but exhibited low 
performance for direct oxidation. Reasonable power densities could only be achieved with the 
addition of a catalytic oxide, like ceria, with the Cu cermet. Electrochemical oxidation studies 
demonstrated that the initial products for reaction depend on the catalytic oxide. Finally, the 
effect of sulfur impurities in the fuel is discussed. 
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Introduction 
The vast majority of H2 produced today is generated by steam reforming of hydrocarbons 

[1,2]. Whether or not we move towards a hydrogen-based economy, it seems inevitable that 
hydrocarbons will remain the major energy source for the foreseeable future. Therefore, the fact 
that most fuel cells currently under development require the fuel to be H2 represents a major 
hurdle for wide-spread adoption of fuel cells. If hydrocarbon reforming is performed at the site of 
the fuel cell, the system becomes more complex, expensive, and difficult to control. If reforming 
is performed at a central location, storage and distribution-infrastructure issues need to be solved. 
Furthermore, reforming almost inevitably leads to a significant loss in the “well-to-wheels” 
efficiency. Some calculations even suggest that the overall efficiency of fuel-cell systems after 
reforming may not exceed that of advanced systems based on heat engines [3]. Since the primary 
attraction of fuel cells in many applications is their high efficiency, the reforming step could 
prevent implementation of fuel cells in those cases. 

The development of direct-oxidation fuel cells, ones that use hydrocarbons directly 
without reforming, could have important consequences for the commercialization of fuel cells. 
Direct oxidation of hydrocarbon fuels is theoretically possible in solid-oxide fuel cells (SOFC) 
because O2- anions, not protons, are the species transported through the electrolyte membrane. 
Briefly, an SOFC generates electricity through the reduction of O2 to O2- anions at the cathode, 
transfer of the anions through an electrolyte that is an electronic insulator (usually yttria-
stabilized zirconia, YSZ), and finally by the oxidation of the fuel with O2- anions at the anode. 
Effectively, the chemical energy produced when the fuel is oxidized is given up to the electrons 
produced at the anode. The anode must be an electronic conductor and also a catalyst for 
oxidation of the fuel by O2- anions.   

The problem that prevents direct oxidation in SOFCs is the tendency of anodes to 
catalyze carbon formation. Indeed, carbon formation is usually thermodynamically favored with 
hydrocarbon fuels at the low O2 fugacities that exist in the anode compartment, unless there is 
also a large quantity of steam [4]. Therefore, the conventional approach to avoiding carbon 
formation is to simply add steam or oxygen with the fuel. The anode, almost always made with 
Ni, helps catalyze the approach to equilibrium, which in the presence of excess steam favors 
production of H2. In addition to the added complexity of a system in which steam is added with 
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the hydrocarbon, the added steam is effectively a diluent that reduces the anode fuel 
concentration. A less conventional approach has been used by Barnett and coworkers, who 
showed that direct, electrochemical oxidation of methane is possible for a narrow range of 
operating temperatures where carbon formation is not favored [5]. Unfortunately, there is no 
thermodynamic window of stability at practical temperatures for hydrocarbons other than 
methane [6]. Therefore, direct oxidation is not in general possible for anodes which contain Ni or 
other materials that catalyze the approach to equilibrium.  

A second approach to direct oxidation without carbon formation involves choosing anode 
materials that do not catalyze the approach to equilibrium and the carbon formation that occurs at 
equilibrium. For example, Steele and coworkers used this approach when they examined 
electronically conductive oxides as anodes [7]. Oxides do not tend to catalyze C-C bond 
formation and are therefore resistant to coke formation. While direct, electrochemical oxidation 
of methane was achieved on these ceramic anodes, the electronic conductivities of oxides appear 
to be insufficient to give reasonable performance. Our group has chosen to examine ceramic-
metallic (“cermet”), composite anodes, similar to conventional Ni-YSZ anodes, but to replace 
catalytically active Ni with catalytically inert Cu to allow for direct oxidation [8-10]. Obviously, 
Cu has a much higher electronic conductivity than any oxide at fuel-cell operating conditions; 
and, unlike Ni, Cu is a poor catalyst for C-C bond formation. By incorporating Cu with ceria, an 
excellent catalyst for hydrocarbon oxidation [11], we were able to achieve reasonable 
performance for direct oxidation of various hydrocarbon fuels.  

In this paper, we discuss methods for synthesizing Cu-based anodes in SOFCs and some 
of the performance characteristics of these materials. In principle, the discussion could be applied 
to SOFCs with any electrolyte; however, we will restrict ourselves to zirconia-based electrolytes, 
such as YSZ. 
 
Fabrication Methods 

In addition to providing electronic conductivity and catalytic activity, the anode in an 
SOFC must be porous to allow reactant gases to diffuse to the electrolyte interface, since the 
oxidation reactions occur only in the three-phase boundary, where the gas phase, the metallic 
phase, and the electrolyte are all in contact. This region is known to extend on the order of 10 µm 
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into the anode from the electrolyte interface [12,13]. As a final requirement, the thermal 
coefficient of expansion of the anode must match that of the electrolyte in order to avoid 
cracking. As mentioned in the previous section, most anodes are prepared from a cermet 
composite made from Ni and YSZ in order to meet these requirements. Typically, these cermets 
are approximately 50% Ni so as to ensure electronic connectivity between all the Ni particles in 
the composite. Fabrication of Ni cermets is usually accomplished by high-temperature 
calcination of NiO and YSZ powders, followed by reduction of the Ni [14]. The calcination 
temperature in most synthesis methods must be above 1600 K in order to sinter the YSZ 
component in the anode and provide ionic connectivity between the YSZ in the anode and the 
electrolyte. 

Because oxides of Cu melt at relatively low temperatures, it is not possible to prepare Cu-
cermet anodes in the manner described above. Therefore, we developed several novel fabrication 
methods in which the porous YSZ part of the cermet is prepared first and the Cu is added in a 
separate step. In early work, the porous YSZ was prepared from zircon fibers, supported on 
relatively thick YSZ electrolyte plates [15]. A glycerol slurry of zircon fibers and YSZ powder 
was applied to the YSZ electrolyte and then calcined to 1800 K, with the YSZ powder binding 
the zircon fibers onto the electrolyte and the zircon maintaining porosity to high temperatures. 
This method does not allow for the fabrication of anode-supported, thin electrolytes, which are 
required in order to achieve high performance. The second method for establishing a porous 
support for Cu involved introducing pore formers into YSZ ceramic tapes, as shown in the 
schematic of Fig. 1 [16,17]. Since the porous layer can be thick and mechanically strong, thin 
electrolytes can be prepared by dual tape casting, in which the thick tape with pore formers is 
cast onto a thin tape without pore formers. A third method involves making a NiO-YSZ 
composite with a thin YSZ electrolyte in the same manner that is used to make a normal, anode-
supported electrolyte with Ni-YSZ cermets [18]. After reduction of NiO, the Ni can be leached 
out of the YSZ using boiling nitric acid, leaving a dense YSZ layer supported on the porous YSZ 
substrate. In all of these cases, Cu and other catalytic components are subsequently added to the 
porous layer by wet impregnation of aqueous salts. After heating to ~750 K to decompose the 
nitrate ions, the copper oxides can be reduced in the normal manner.  
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Obviously, other methods for making Cu-based cermets can be devised. Assuming Cu 
cermets do indeed find applications in SOFCs, one should expect intense efforts to develop 
materials with better mechanical properties and microstructures, in the same manner that has 
been applied to Ni-based anodes [14]. 
 
Evidence for Direct Oxidation of Hydrocarbons 

The reason one can use Cu-based cermets for direct-oxidation anodes, while Ni-based 
cermets are unsuccessful, is graphically demonstrated in Fig. 2, which shows pictures of Cu-YSZ 
and Ni-YSZ cermets that have been heated in flowing methane for 1.5 hrs at 1073 K. While the 
Cu cermet was essentially unaffected by this treatment, the Ni cermet was covered with carbon 
and had fractured, probably due to expansion of the Ni after forming NiC. Obviously, the Ni 
cermet would not be stable for operation in a dry methane environment. Carbon formation is 
usually more severe with hydrocarbons other than methane [1]. For example, exposure of a Ni 
cermet to toluene at 973 K resulted in carbon deposition and fracture of the cermet [10], similar 
to what is seen in Fig. 2. Finally, while Ni is stable for steam reforming of methane at H2O:C 
ratios less than 2, a recent study of n-butane steam reforming over Ni catalysts showed that 
carbon deposition was severe between 620 and 820 K at H2O:C ratio of 2 [19], showing carbon 
formation would be difficult to avoid with hydrocarbons larger than methane on Ni-based 
anodes.  

Fig. 3 demonstrates that stable power generation can be achieved through direct oxidation 
of methane on Cu-cermet anodes [8]. In this experiment, the cell potential was held at 0.5 V and 
the current density was measured as a function of time as the fuel was changed from H2 to CH4

and back to H2 for cells with a Cu-cermet anode and a Ni-cermet anode. Although the 
measurements were performed at 1073 K, the power densities were low, primarily due to the use 
of thick, 230-µm electrolytes. With the Ni cermet, performance was stable in H2, but rapidly 
dropped in CH4. Changing the fuel back to H2 did not restore the performance of the Ni cermet. 
While the power density on the Cu cermet was found to drop when the fuel was switched from 
H2 to CH4, the performance in CH4 was stable and the power density returned to its initial value 
when the fuel was switched back to H2.
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It is important to establish that the data in Fig. 3 results from direct oxidation of CH4 and 
not some kind of reforming process. Because the cell used for the data in Fig. 3 was small and 
the flow rate was large, the conversion of CH4 was always less than ~6%. In principle, the 
production of electrons could be explained by reforming reactions like 2CH4 reacting to C2H6

and H2, with only H2 being electrochemically oxidized. However, Fig. 4 demonstrates that 
reforming is not responsible for the power generation with methane on the Cu-cermet anode and 
that the electrons were indeed produced by direct oxidation [8]. Here, the concentration of the 
outlet from the anode was measured as a function of the current density using gas 
chromatography. The data demonstrate that there were no leaks in our cell, since the production 
of CO2 was undetectable under open-circuit conditions. Furthermore, the production of CO2 and 
the conversion of CH4 increased linearly with the current density, as should be expected for 
direct oxidation by a simple Faradaic process. Finally, additional proof that reaction occurs by 
direct oxidation of methane on the Cu-cermet anode comes from the agreement between the data 
points and the solid line. The solid line corresponds to the calculated production of CO2,
assuming that the only reaction is the total oxidation of CH4 according to reaction (1): 

CH4 + 4O2- → CO2 + 2H2O + 8e- (1)  
The agreement between the CO2 production determined from GC analysis and from electronic 
measurements is strong evidence that reforming was inconsequential in this experiment. 
 The direct oxidation of hydrocarbons fuels is not limited to CH4. In previous papers, we 
have demonstrated that stable power generation can be achieved with anodes made from Cu 
cermets using a wide variety of hydrocarbon fuels, including n-butane [9], toluene, decane, and 
synthetic diesel fuel [10]. In the case of the fuels that are liquids at room temperature, it was even 
possible to inject the liquids directly into the anode compartment [10]. Again, analysis of the 
effluent from the anode indicated that CO2 and water were formed in amounts that agreed with 
the electronic current [9]. Fig. 5 shows results from an experiment in which pure gasoline 
(unleaded regular, purchased from a Mobil station in Philadelphia) was fed directly into the cell 
at 973 K. The model fuel cell and experimental conditions used in this measurement were similar 
to those in Reference [10]. The data demonstrates relatively stable performance, even with this 
complex fuel. The noise in the data of Fig. 5 results from condensation of liquids in the exit lines 
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from the model fuel cell, but we did not observe evidence of coke formation during the period of 
the experiment. 
 
Role of Ceria 
 We have alluded to the fact that fuel cells prepared from Cu-YSZ cermets that did not 
contain ceria showed very poor performance, especially with hydrocarbon fuels. This is shown in 
Fig. 6, where the cell potentials are shown as a function of current densities for CH4, n-butane, 
and H2 for two fuel cells that were identical, except that ceria was added to the cell in Fig. 6b), 
but not to the cell in Fig. 6a). In the absence of ceria, even the open-circuit voltage (OCV) for 
CH4 at 973 K is poor [16]. OCVs for n-butane and H2 on the Cu-YSZ anode were 1.05 and 1.1 
V, respectively; however, the power densities were still much lower than were found with the 
Cu/ceria-YSZ anode. 

Evidence has been presented that ceria assists in charge transfer at the three-phase 
boundary [20]; however, ceria may well play multiple roles in this system and we suggest that the 
primary role of ceria is as an oxidation catalyst. As a demonstration of this, cells were prepared 
in which molybdena was substituted for ceria at the anode; and the products of the 
electrochemical reaction at 720 K were then monitored while using propylene as the fuel. The 
low operating temperature made it necessary to apply a potential across the cell to 
electrochemically pump oxygen to the anode, but it also made it possible to observe the 
selectivity of the oxide catalysts. For both Cu/ceria-YSZ and Cu/molybdena-YSZ anodes, 
reaction was negligible at open circuit, indicating that reaction due to leaks was insignificant. 
Reaction rates increased linearly with the current density, demonstrating the oxidation of the 
propylene by the oxygen anions coming through the electrolyte. For cells containing ceria, 
essentially all of the propylene which reacted formed CO2 and water. However, for cells 
containing molybdena in place of ceria, the primary product at low current densities was acrolein. 
Even at 0.5 A/cm2, the selectivity of propylene to acrolein was greater than 50%.  

The simplest interpretation of these results is that ceria and molybdena act as catalysts in 
the three-phase-boundary region, where the gas-phase fuel, the electrolyte, and the electronic 
conductor all come together. Either molybdena or ceria are oxidized by O2- coming through the 
electrolyte and then subsequently reduced by the fuel. Because molybdena is selective for the 
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oxidation of propylene to acrolein, while ceria is nonselective, the products formed in cells with 
these two catalysts are different. In this picture, Cu is only an electronic conductor required for 
charge neutralization and not a catalyst for direct oxidation.  
 
Sulfur Tolerance 
 Most commercially available fuels contain sulfur. In the case of natural gas, sulfur-
containing compounds are added as odorants. While the allowable sulfur levels are being 
continuously reduced for gasoline and diesel fuel, these fuels will contain significant quantities 
of sulfur for the foreseeable future. Fortunately, the Cu-based cermets are significantly more 
tolerant of sulfur than the conventional, Ni-based cermets [21].  

First, copper sulfides are less stable than NiS [22]. Furthermore, because Cu does not 
appear to play a catalytic role in the anode, surface sulfides will probably not affect performance. 
In agreement with this, we found that it was possible to operate a cell made with a Cu-YSZ 
anode in n-decane containing 5000 ppm sulfur, added as thiophene, without deactivation for 24 
hrs. As discussed in the previous section, the performance of a Cu-YSZ cermet, without added 
ceria, is poor. When ceria was added to the anode to make a Cu/ceria-YSZ cermet, we observed 
severe deactivation with 5000 ppm [23]. Based on thermodynamic arguments, it appears that 
deactivation is due to formation of Ce2O2S. In agreement with this picture, the cell made with a 
Cu/ceria-YSZ cermet anode could be restored by simply exposing the anode to steam at the 
operating temperature, 973 K. Furthermore, by choosing the operating conditions so as to avoid 
formation of Ce2O2S, the cell could be operated for long times in the presence of sulfur. For 
example, we have shown that the Cu-based anodes can perform without difficulty in fuels 
containing at least 100 ppm of sulfur, a level sufficiently high to allow direct oxidation of some 
modern fuels. 
 
Conclusions 

We have demonstrated that electrical power generation can be achieved through the direct 
electrochemical oxidation of a wide variety of hydrocarbon fuels, including liquid fuels, in an 
SOFC. By careful consideration of the materials used in SOFC anodes, it is possible to make fuel 
cells that are resistant to coke formation and reasonably sulfur tolerant. Because only few 
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attempts have been made to fabricate direct-oxidation SOFCs, additional discoveries are almost 
certain to occur in the next few years. New materials with improved catalytic properties may still 
be discovered. Significant improvements in the performance can be expected when fuel cells are 
synthesized with thinner electrolytes, with improved anode structures, and with enhanced anode 
oxidation activities. Because the direct oxidation of hydrocarbon fuels provides so many 
advantages, we expect to see rapid advances in the development of these cells in the years to 
come. 
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Figure Captions 
 
Fig. 1 A diagram of the dual, tape-cast procedure used in preparing anode-supported fuel cell. 

(Taken from Reference 16.) 
 
Fig. 2 Photographs of metal-YSZ cermets after heating to 1073 K in flowing methane for 1.5 

hrs. a) Cu-YSZ and b) Ni-YSZ. 
 
Fig. 3 Current densities as a function of time for changes in the fuel at 1073 K.  The cell 

potential was maintained at 0.5 volts. (�) Ni/CeO2/YSZ; (�) Cu/CeO2/YSZ. (Taken 
from Reference 8.) 

 
Fig. 4 The conversion of methane at 1073 K using cell with a Cu/CeO2/YSZ anode and an 

electrolyte thickness of 130 µm.  The points (�) were determined from gas analysis and 
the line was calculated from the electrical current and the reaction CH4 + O2- = CO2 +
2H2O + 8e-. (Taken from Reference 8.) 

 
Fig. 5 Plot of cell potential and current density as a function of time for gasoline. The fuel was 

fed to the cell with N2 at a concentration of 40 wt% hydrocarbon. The measurements were 
performed in a similar manner to that described in Reference 10. 

 
Fig. 6 a)  Power densities and current density-voltage relationships for an SOFC using a Cu-

YSZ cermet as the anode at 973 K. The cell had a 60-µm electrolyte, and data are shown 
for the following fuels: H2(�), C4H10(�), and CH4(�). (Taken from Reference 16.) 
b)  Power densities and current density-voltage relationships for an SOFC using a Cu-
ceria-YSZ cermet as the anode at 973 K. The cell had a 60-µm electrolyte, and data are 
shown for the following fuels: H2(�), C4H10(�), and CH4(�). (Taken from Reference 
16.) 
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