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Mobile Robots as Remote Sensors for Spatial Point Process Models

Abstract
Spatial point process models are a commonly-used statistical tool for studying the distribution of objects of
interest in a domain. We study the problem of deploying mobile robots as remote sensors to estimate the
parameters of such a model, in particular the intensity parameter lambda which measures the mean density of
points in a Poisson point process. This problem requires covering an appropriately large section of the domain
while avoiding the objects, which we treat as obstacles. We develop a control law that covers an expanding
section of the domain and an online criterion for determining when to stop sampling, i.e., when the covered
area is large enough to achieve a desired level of estimation accuracy, and illustrate the resulting system with
numerical simulations.
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Mobile robots as remote sensors for spatial point process models

Paul Reverdy and Daniel E. Koditschek

Abstract— Spatial point process models are a commonly-used
statistical tool for studying the distribution of objects of interest
in a domain. We study the problem of deploying mobile robots
as remote sensors to estimate the parameters of such a model,
in particular the intensity parameter λ which measures the
mean density of points in a Poisson point process. This problem
requires covering an appropriately large section of the domain
while avoiding the objects, which we treat as obstacles. We
develop a control law that covers an expanding section of
the domain and an online criterion for determining when to
stop sampling, i.e., when the covered area is large enough to
achieve a desired level of estimation accuracy, and illustrate the
resulting system with numerical simulations.

Mobile robots have been extensively used as platforms
for remote sensors in recent years. Much of the statistically-
rigorous research on such platforms has focused on sensing
and mapping continuous fields using various models. This
has led to a series of results that focus on coordinating
a set of robotic vehicles [1], [2], [3] in order to cover a
domain of interest [4], [5]. These results have shown that
the problem of mapping a spatially-distributed continuous
field, e.g., by minimizing the uncertainty associated with
an estimate of that field, is closely linked to the problem
of covering the space with the remote sensors. The fields
studied in applications have included seawater temperature
and salinity [1], as well as atmospheric variables of interest
to meteorology, such as temperature and vorticity [6].

The mobile sensor network literature has placed signifi-
cantly less emphasis on spatial point process models, which
are statistical models that capture the distribution of discrete
objects in space. Point process models are the subject of
extensive study in the statistical literature [7] and have proven
useful in numerous applied fields. In ecology, point process
models have been used to study the distribution of plants
in a domain [8], [9], [10], while in search and rescue they
have been used to study the distribution of distress calls in
a service area [11], and in disaster management they have
been used for modeling the distribution of forest fires [12].

Consideration of spatial point process models has recently
begun to appear in the robotics literature, albeit largely in a
theoretical context. For example, the Probability Hypothesis
Density (PHD) used in multitarget tracking [13] can be
interpreted as approximating the target distribution as a
Poisson point process, which is in some sense the simplest
spatial point process. The connection between the PHD and
Poisson point processes has been utilized by several authors
to develop new implementations of the PHD filter [14]
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and to propose PHD filter-based methods for performing
Simultaneous Localization and Mapping [15]. More recently,
[16] used the PHD filter to implement an active strategy to
detect and register target locations.

Several works have used spatial point processes to study
the problem of robot navigation. A theoretical article [17]
studied the problem of high-speed navigation through obsta-
cle fields. Using a Poisson point process model of obstacle
fields, the authors of [17] derived fundamental bounds on
the the speed with which a vehicle could safely traverse
a field with a given mean density of obstacles. Spatial
point processes have also been applied in [18], [19] to
develop guidance laws for navigating through hazard fields,
where hazardous regions are distributed at unknown locations
throughout a domain. In these works, the spatial point
process is used as a model to predict the hazard locations.

Applying spatial point processes to physical problems
requires sensing the locations of the objects being modeled,
and can be done in a variety of ways. Standard procedures
for sensing plant locations in the ecology literature include
remote imaging [9] and other, labor-intensive, surveying
methods, while in search and rescue survivors needing rescue
can often be located by tracking a mobile phone [20].
Accurate measurements of survivor density can assist in
planning the allocation of resources. The use of mobile
robots could significantly improve such measurements.

In this work, we study the use of mobile robots as
remote sensors for spatial point process models. We focus
on developing algorithms for deploying vehicles to estimate
the parameters of point process models. The most basic
such model is the Poisson point process, whose single
parameter λ represents the mean density of points. Other,
more complicated point processes which model higher-order
details of the point structure are built up using the Poisson
point process, so we focus on the Poisson model as a place
to begin this new work. As we explain below, the problem of
estimating the parameter λ of a Poisson point process model
can be reduced to a coverage problem. In the context of
this reduction, a fundamental question concerns “cost:” how
extensive a domain must be covered in order to provide a
parameter estimate of specified accuracy. The Poisson point
model provides a natural way to answer this question.

The remainder of the paper is structured as follows. In
Section I we review the Poisson point process and derive
an online criterion for determining the size of the sampling
domain as a function of desired accuracy. In Section II we
develop a control law to perform the parameter estimation
and prove that the law covers the sampling domain while
avoiding obstacles. In Section III we show results of applying



this control law in simulated experiments. Finally, in Section
IV we offer perspectives on future work and conclude.

I. THE POISSON POINT PROCESS

We assume that the objects to be sensed follow a homo-
geneous Poisson point process in a region R ⊂ R2. In the
Poisson point process model, the number of points ND in
a region D ⊂ Rn is a random variable following a Poisson
distribution with parameter λA, where A = |D| is the volume
of the region (i.e., area, if D is two-dimensional as in our
present application setting): ND ∼ Poisson(λA), so the
probability mass function of ND is

f(ND, λA) = Pr [ND = k] =
(λA)ke−λA

k!
. (1)

Each point is assumed to be located according to a uniform
random distribution inside the domain D, independent of all
other points, i.e., the model ignores any possible interaction
between the ND points [7]. Samples of the Poisson point
process on a region D with parameter λ can be drawn by first
drawing the number of points ND according to the Poisson
distribution (1), then independently drawing locations for
each of the points from a uniform distribution on D [7].
The quantity ND modeled by the point process is a random
variable, but for any realization of the process the number of
points is a deterministic quantity which we denote by nD.

Fig. 1. Three example realizations of the Poisson point process with
parameter λ = 1 on the domain D = [0, 2]× [0, 2]. The points of each of
the three realizations are marked with blue triangles, red circles, and green
squares, respectively. Note that each realization has a different number of
points nD (two, eight, and three, respectively).

The expected value of ND is λA, so the mean density of
points under this model is E [ND] = λA/A = λ. Similarly,
the variance of ND is λA. Figure 1 shows three example
realizations of the Poisson point process model, each of
which has a different value of nD. It can be shown [7, p.
147] that λ̂ = nD/A is an unbiased estimator for λ; in Figure
1, the average value of nD is (2 + 3 + 8)/3 ≈ 4.33, so the
maximum likelihood estimate of λ is λ̂ = 13/3/22 ≈ 1.08,
compared to its true value, λ = 1. In general, the parameter
λ can vary from location to location in what is known as a
non-homogenous Poisson process. However, for the present
paper, we consider only the homogeneous Poisson process,
where λ is constant throughout the region R.

A. Sensor model
We want our mobile sensor-bearing robots to estimate the

density parameter λ, which they do by sampling a domain
D ⊂ R and counting the number of objects it finds. We
assume that each robot knows its location in the sampling
domain D and has a simple sensor, modeled as follows.

We model the robot as a rigid body with pose state q =
(x, θ) ∈ D × S1 ⊂ SE(2), where x is the location in the
domain and θ is the robot’s heading in the global reference
frame. The robot is equipped with a sensor of range ρ > 0
and angular field of view β ∈ (0, 2π] centered on θ, so the
sensor sees a region in the shape of a circular sector. When
an object is visible to the sensor, the sensor reports range and
bearing information to the robot; we assume the range and
bearing measurements to have minimal noise. Based on these
measurements and the robot’s known location, the robot can
then register the object’s location in the sampling domain.

In practice, the location and sensor measurement infor-
mation will not be known precisely but will be corrupted
with noise. However, since we will primarily be relying on
the sensor as a means to count the number of objects in the
domain, we can safely ignore sensor noise at this stage of
algorithm development.

B. Estimation
Our robots will estimate the density parameter λ by

sampling a domain D ⊂ R and counting the number of
objects they find; the natural estimate of λ is then the mean
observed density of points λ̂ = nD/A. This leads to two
main algorithmic questions: 1) How to sample the domain,
and 2) how to decide when one can stop sensing?

We note here that the problem of sampling the domain
can be reduced to a sensor coverage problem in the sense
of Choset [21]. To register the locations of all the objects
in the sensing domain D with our robot-borne sensors, and
thereby count nD, we must plan a path for the robots such
that the footprint of their sensors covers the whole domain.

To perform the estimation quickly, the domain should
be chosen such that the coverage problem can be solved
efficiently and that a simple criterion for deciding when to
stop sensing can be derived. The isotropic nature of the
Poisson point process model suggests selecting a circular
domain, and a stopping criterion can be derived based on the
concept of the representative volume element, which is the
size of the smallest sampling volume that is representative
of the macro-scale properties of the region [22].

Kanit et al. [22] suggest a relative error criterion for
determining the size of the representative volume element
for a point process:

εr =
εa
z
< ε, (2)

where εr denotes the relative measurement error of the prop-
erty being measured, εa denotes the absolute measurement
error, z the true mean value of the property, and ε � 1 a
threshold value. The criterion can be interpreted as follows:
stop sampling once the relative error of the estimate is below
the threshold value ε.



For estimating λ, we choose the standard deviation of the
estimate as the measure of absolute error εa. This leads to
the expression for relative error

εr =
2σ(λ̂)

λ
, (3)

which is empirically estimated as

ε̂r = 2
σ(λ̂)

λ̂
, (4)

where λ̂ = ND/A is the empirical mean density of points.
Using a Gaussian approximation to the distribution of mea-
surement error, this expression for relative error can be
considered as a worst-case bound on the (unknown) true
relative error that captures 95% of the possible values. This
is a form of Provably Approximately Correct (PAC) learning
[23], where one seeks an estimate that has error less than ε
with probability at least 1− δ.

Equation (4) reduces the relative error criterion to a
function of λ̂, the density estimate, and A, the area sampled.
The Poisson point process model assumption allows us to
compute σ(λ̂) in closed form for some sampling domains
D. In particular, if the sampling domain is a circle of radius
R, one finds, using Equations (4.109) and (1.58) of [7], that:

σ(λ̂) =
1

R

√
λ

π
. (5)

Therefore, the stopping criterion ε̂r < ε implies that one can
stop sampling once the sampling domain radius obeys

R∗ ≥ 2

ε
√
πλ̂

. (6)

If one has a method for covering discs of increasing radius,
this criterion is simple to implement online on a vehicle.1

II. CONTROL

Having reduced the sampling problem to a coverage
problem with an online stopping criterion, we can appeal
to the literature on robotic coverage to provide a frame-
work for control. In many applications, for example if the
robot is a ground-based vehicle mapping plant locations,
the points being sensed constitute obstacles that the robot
must avoid; this creates a combined requirement for both
coverage and obstacle avoidance. To cover a growing disc we
use a technique based on following a spiral path, which we
encode in a vector field. Following [24], we add an obstacle
avoidance strategy using a repelling vector field; the resulting
control law is simple to implement and maps naturally to
control policies for robots with non-trivial dynamics, e.g., the
unicycle. Other authors have also developed methodologies
for performing coverage and obstacle avoidance using spiral
paths; e.g., see Section 5 of [25]. Our vector field strategy is
less mathematically sophisticated than the cellular decompo-
sition strategy of [25] but significantly simpler to implement.

1For a domain D of area A, (5) generalizes to σ = λ/A. Using this
result, one can extend our results to use a lawnmower coverage strategy.

A. Spiral-based coverage

The derivation of the stopping criterion requires the robot
to cover a circular domain of increasing radius until the
criterion is met. A commonly-employed method for solving
such a coverage problem is to have the vehicle follow an
Archimedean spiral, which can be written in polar coordi-
nates as r(φ) = (α/2π)φ. See Figure 2 for an example.
The trajectory of such a spiral has a constant pitch of α,
so the vehicle crosses a ray from the origin at regular
intervals spaced α apart, which is assumed to be less than
the vehicles’ sensor footprint. Therefore, our mobile sensing
strategy is to deploy a robot along such a spiral pattern,
have it register point locations, and use these locations to
estimate λ̂, stopping when the criterion (6) is met. Note that
the idealized spiral coverage law employed in Figure 2 results
in the trajectory coming arbitrarily close to several points,
motivating the need for obstacle avoidance in applications.

Fig. 2. An example of the idealized point process estimation law. The
vehicle follows an Archimedean spiral with α = 1 until it has sampled a
sufficiently large domain. The dashed circle shows the footprint of a sensor
with range ρ = 0.5 and field of view β = 2π when the vehicle is located
at the position marked by the empty dot.

1) Robot kinematics: In the simulations that follow, we
implement the spiral-based coverage policy by modeling the
robot as a fully-actuated point particle. Despite this limitation
in the simulations, our control algorithm maps naturally to a
vehicle modeled as a kinematic or dynamic unicycle using
the transformation reported in Section III of [24].

2) Reference vector field: The obstacle avoidance strategy
developed in [24] avoids obstacles while performing a refer-
ence navigation task, in this case following a spiral trajectory.
This reference task is assumed to be encoded in a vector field
f : R2 → R2, whose flow generates the desired trajectory.
We encode the arithmetic spiral in a vector field that, in polar
coordinates x = (r, φ), takes the form

ṙ = α(R0 − r), R0 � α

φ̇ = (R0 − r),

where R0 � α is a reference radius. Note that in the absence
of obstacles, the dynamics ẋ = f(x) traces an arithmetic
spiral until r = ‖x‖ reaches the reference value R0, at
which point it stops. Therefore, R0 should be larger than
the largest required sampling radius, which can be estimated



from expected values of the intensity λ and desired relative
error ε. In Cartesian coordinates, f takes the form

ẋ =

[
ẋ1
ẋ2

]
= α

R0 − ‖x‖
‖x‖

x+ (R0 − ‖x‖)J2x, (7)

where J2 =

[
0 −1
1 0

]
is a symplectic matrix.

The dynamics ẋ = f(x) admit a Lyapunov function
V (x) = 1

2 (‖x‖ −R0)2. The gradient of V is

∇V =
‖x‖ −R0

‖x‖
x,

so in terms of V , the vector field f is

f(x) = −α∇V − ‖x‖J∇V = −A∇V,

where A = αI2+‖x‖J2 and I2 is the identity matrix. Setting
ẋ = f(x), we have V̇ = −∇V TA∇V = −αγ2V , where
γV = ‖∇V ‖ = |R0 − ‖x‖|.

The Hessian of V is

HV =
R0

‖x‖
x̂x̂T +

‖x‖ −R0

‖x‖
I2,

where x̂ = x/‖x‖. Direct computation yields

‖HV ‖ = max

{
|‖x‖ −R0|
‖x‖

, 1

}
.

Let 0 < ρ0 < R0/2 and R0/2 < ρ1 < R0. Then for ‖x‖ >
ρ0, ‖HV ‖ < R0/ρ0 − 1. Furthermore, for ‖x‖ < ρ1 < R0,
‖∇V ‖ > R0 − ρ1 > 0.

B. Obstacle avoidance

In some cases, for example an aerial vehicle sensing
mobile phone signals in order to locate survivors of a
disaster, there is no harm in the vehicle coming close to
the objects it is trying to locate. However, in other cases,
such as a ground vehicle tasked with locating plants or land
mines, the vehicle must treat the objects as obstacles to be
avoided so as to avoid risks to the objects or the vehicle
itself. In these cases, we must modify the coverage control
algorithm in such a way to incorporate obstacle avoidance
without damaging the coverage property of the control.

To each point obstacle i, located at xi ∈ R2, we associate
a local obstacle function ψi that is zero everywhere except
on a disc centered on the obstacle.

ψi =

{
1

2ρM
(ρM − ‖x− xi‖)2, x ∈ Bi

0, otherwise,
(8)

where Bi = {x ∈ D : ‖x− xi‖ < ρM} is a punctured open
disk. In addition,

∇ψi|Bi
= −ρM − ‖x− xi‖

ρM‖x− xi‖
(x− xi), (9)

Hψi
|Bi

= −
(

1

‖x− xi‖
− 1

ρM

)
n̄ψi

n̄Tψi
+
nψi

nTψi

ρM
, (10)

where nψi
= (1/γψi

)∇ψi, γψi
= ‖∇ψi‖, and n̄ψi

= Jnψi
.

Notice that γψi
|Bi

= ρM−‖x−xi‖
ρM

.

Consider the case of a single obstacle and the modified
Lyapunov function

ϕ = V + νψ, (11)

where ν > 0 encodes the relative importance of the spiral
coverage task and the obstacle avoidance. Then, we set the
control law

ẋ = −A∇ϕ = −A(∇V + ν∇ψ). (12)

With the dynamics (12), we have ϕ̇ = −α‖∇ϕ‖2. It can
be shown that setting ν > R0 − ρ0 implies that the obstacle
function dominates the dynamics near an obstacle. Therefore,
the dynamics accomplishes the coverage task while avoiding
obstacles, with the possible exception of critical points where
∇ϕ = 0, that can trap the robot. It suffices to show that any
such critical points are not stable. Then the following result
allows us to conclude that the system (12) is almost globally
asymptotically stable.

Lemma 1 (Proposition 2.1 of [26]): Let ϕ be a twice dif-
ferentiable Morse function (i.e., its Hessian, Hϕ, is non-
singular at every critical point) on a smooth manifold R,
with no boundary. Let f be a smooth vector field with
ϕ̇ = ∇ϕT f ≤ 0, and assume the set of critical points,
Gϕ, has a compact subset of local minima, GV ⊂ Gϕ,
and a nonempty set of local maxima and saddle points,
GV−Gϕ 6= ∅. Then, all initial conditions excluding a nowhere
dense set, GV − Gϕ, asymptotically converge to GV . We
conclude that GV is almost globally asymptotically stable.

Theorem 2: Consider an unconstrained planar agent and a
point obstacle located at xi with ‖xi‖ < ρ1, where ρ1 < R0,
that limits the workspace to the set R = D\{xi}, and the
obstacle potential ψi. Let GV ⊂ R be a compact goal set
admitting a smooth Lyapunov function V satisfying GV =
{x ∈ R : ∇V (x) = 0} where GV ∩B = ∅. For the combined
Lyapunov function (11) and the control law (12), there exists
a choice of ν and ρM guaranteeing almost global asymptotic
stability of GV .

Proof: Let λϕ be the smaller eigenvalue of Hϕ(xc).
Then, by Weyl’s inequality,

λϕ ≤ ‖HV (xc)‖ − ν
(

1

‖xc − xi‖
− 1

ρM

)
≤ R0

ρ0
− 1− ν γψ(xc)

‖xc − xi‖

≤ R0

ρ0
− 1− ν γ

min
V

ρM

where ρM < νγmin
V /(R0/ρ0 − 1) guarantees that λϕ is

negative. Note that for ‖x‖ < ρ1, γmin
V > R0 − ρ1, so

the condition reduces to ρM < ν(R0 − ρ1)/(R0/ρ0 − 1).
From Lemma 1, we conclude that GV is almost globally
asymptotically stable.

Corollary 3: This result generalizes to the case of more
than one obstacle when, for a pair of obstacles xi ∈ Bi and
xj ∈ Bj , Bi ∩ Bj = ∅.

The implication of the theorem is that any spurious critical
point introduced by an obstacle is unstable, so the control



law avoids getting stuck at obstacles. Since the task vector
field f dominates away from the (small) obstacle regions, the
control law accomplishes the coverage task with the possible
exception of some small areas near obstacles and within the
immediate vicinity of the origin. For practical purposes, it
suffices to deploy the robot away from an obstacle.

C. Extension to multiple vehicles

In this initial work we have focused exclusively on the
case of a single vehicle, but extensions to multiple vehicle
control policies are straightforward. The stopping criterion
remains the same, so the extension requires a multi-vehicle
version of the control law (12) and a data association method
to ensure the vehicles achieve an accurate count of nD. These
can be developed by employing the methods of [27] and [28]
for control, and [29] for data association.

III. SIMULATION RESULTS

In this section, we provide results of numerical simulations
of the control law developed in the previous section. These
simulations demonstrate the effectiveness of the control
law in performing estimation of the Poisson point process
parameter λ and the accuracy of the stopping criterion.

A. Results

Figure 3 shows the result of a simulation of the point
process estimation control law (12) developed in Section II.
The simulation was conducted with a realization of a Poisson
point process with intensity parameter λ = 0.1 on a region
R = [−20, 20] × [−20, 20]. The parameter values were set
as follows: the sensor radius ρ and field of view width β
were set to 1.1 and 2π, respectively, while the spiral pitch
α was set to 1 and the reference radius R0 to 40. Finally,
the initial location x0 was set to (0.1α, 0.1α) = (0.1, 0.1),
so ρ0 = 0.1.

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

Fig. 3. An example simulation of the point process estimation law. The
process has λ = 0.1 in the region [−20, 20]× [−20, 20], and the vehicle
uses the control law (12) to register obstacles (in red) in order to estimate
λ with ε = 0.33. Red dots represent the locations of the obstacles that
have been observed and registered, while blue dots represent those yet to
be observed. The dashed line shows the nominal spiral trajectory.

In the simulation shown in Figure 3, the repulsion strength
parameter ν was set to 40, the obstacle radius ρM set to 0.3,

and the stopping criterion parameter ε was set to 0.33. The
simulated trajectory is initially in reasonable agreement with
the desired spiral trajectory; eventually the obstacle interac-
tions cause the trajectories to diverge, but the controller still
covers the space, as can be seen by observing that there are
no unobserved points inside the simulated trajectory. When
the stopping criterion is met, the vehicle’s estimate of λ is
λ̂ = 0.1072, which corresponds to a true relative error of
0.07195, well below the desired level of 0.33.

Table I demonstrates the effectiveness of the stopping
criterion (6) for moderate values of α. The control law (12)
was simulated 100 times for different realizations of the
obstacle field, first with λ = 0.2 and α = 1. For the stopping
criterion, the desired relative error was set to ε = 0.2, so 95%
of the simulations should have relative error εr < 0.2; in fact
97% did, so the stopping criterion is somewhat conservative.
The mean estimate is λ̂ = 0.2015, resulting in a mean
relative error of 0.733%.

Repeating the exercise with a sparser obstacle field λ =
0.05 and a wider sensor footprint α = 3, we see that only
69% of simulations achieved the desired relative error and
that the estimates λ̂ exhibit significant systematic bias. This
is due to approximating the area covered by the sensor as
A = πR2, where R is the current distance of the robot to
the origin. When α is small relative to R, the approximation
is accurate, but when α is large the approximation tends to
underestimate the covered area, leading to an overestimate
of λ̂. In this case, a more accurate approximation of the area
could correct the bias.

λ α # simulations εr < ε mean λ̂ mean λ̂/λ− 1
0.2 1.0 97 0.2015 0.733%
0.05 3.0 69 0.6331 26.62%

TABLE I
RESULTS FROM SIMULATING THE CONTROL LAW (12) FOR 100

DIFFERENT REALIZATIONS OF THE OBSTACLE FIELD.

B. Discussion

The simulation results show that the simple control law
is effective at estimating the intensity parameter λ of a
Poisson point process with the desired level of accuracy.
However, the obstacle avoidance exacts a price by deforming
the idealized spiral trajectory. We are able to ensure that
the coverage property of the algorithm is robust to these
deformations by following a tighter spiral than the sensor
footprint strictly requires. This is costly because it requires
covering a longer trajectory than otherwise necessary; a
different obstacle avoidance method that resulted in less
deformation in the reference trajectory could carry out the
same task more quickly.

Finally, the stopping criterion (6) is somewhat conser-
vative. As explained in the derivation in Section I-B, (6)
requires sampling until the relative error εr is less than ε
with high probability, approximately equal to 95%. As seen
in the simulation examples, the mean relative error attained
by the stopping criterion can be significantly less than ε,
which means that the size of the sampling domain was larger
than required to obtain a relative error of ε. One could be less



conservative by requiring εr < ε with a more moderate prob-
ability. In general, the stopping criterion R∗ ≥ n

ε
√
πλ̂
, where

n > 0, results in stopping when εr < ε with probability
approximately equal to Φ(n)−Φ(−n) = Erf(n/

√
2), where

Φ(·) is the cumulative distribution function for the normal
distribution and Erf(·) is the error function. The criterion (6)
corresponds to the case n = 2.

IV. CONCLUSION

In this work we considered spatial point processes as
models of the locations of objects of interest in a region.
We then specialized to the Poisson point process, whose
single parameter λ represents the mean density of these
objects in the region, and studied the problem of deploying
mobile robots as remote sensors to estimate λ. This problem
combines aspects of the coverage problem for mobile robots
with the requirement to avoid the objects of interest, which
we treat as obstacles. We developed a criterion for deciding
online the size of domain to be covered in order to achieve
a desired level of precision in the estimate, and a control
law that covers the domain while avoiding obstacles. We
analyzed the control law and provided conditions under
which it achieves the task. Through simulations, we showed
that the estimation framework is effective; an implementation
on a ground robotic platform is in progress and will be the
subject of a future report.

This preliminary work focused on the Poisson point pro-
cess because of its simplicity and its central role in the field
of spatial point processes; its single parameter models the
mean object density, i.e., first-order moment, of the object
distribution. Future work will consider estimating higher-
order moments of the distribution. We will also consider
estimation problems for marked point processes, which are
point processes where the mark is a real number associated
with a point representing, e.g., size, type, or orientation. Such
estimation problems arise in numerous applications [7].

Another interesting direction for future work would be
to study probabilistically complete coverage in the point
process framework. In this setting a control policy could use
the real-time estimate of λ to adapt its coverage process such
that it is guaranteed, e.g., to detect a fraction 1 − ε of the
points with probability 1− δ.
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