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Abstract—Model-based testing of embedded real-time systems
is challenging because platform-specific details are often ab-
stracted away to make the models amenable to various analyses.
Testing an implementation to expose non-conformance to such
a model requires reconciling differences arising from these
abstractions. Due to stateful behavior, naive comparisons of model
and system behaviors often fail causing numerous false positives.
Previously proposed approaches address this by being reactively
permissive: passing criteria are relaxed to reduce false positives,
but may increase false negatives, which is particularly bothersome
for safety-critical systems. To address this concern, we propose
an automated approach that is proactively adaptive: test stimuli
and system responses are suitably modified taking into account
platform-specific aspects so that the modified test when executed
on the platform-specific implementation exercises the intended
scenario captured in the original model-based test. We show that
the new framework eliminates false negatives while keeping the
number of false positives low for a variety of platform-specific
configurations.

I. INTRODUCTION

Advances in automated test generation from system models
do not always translate to realizable benefits in terms of testing
an implementation of the system. While it is now routinely
possible to generate hundreds or even thousands of test cases
from models, the ability to use those for testing a particular
realization of the system is hampered by two main bottlenecks:

1) Translating the tests generated from the model – which,
by definition, abstracts away some implementation specific
details – into equivalent scenarios for the actual system.

2) Deriving an oracle – an arbiter of correctness – that can
decide whether the actual system passed or failed such a
test when it is executed.

At a conceptual level, these do not appear to be problem-
atic. Translating tests derived from a model to a particular
implementation is simply a matter of concretizing the abstract
test scenario. And, the model itself is a good oracle for
judging the correctness of the implementation: in fact, typically
tests generated from executable models include not only the
inputs used to trigger a particular model behavior, but also the
corresponding outputs produced by the model, which can then
be considered as the output expected from any implementation
of the system for that test, modulo abstraction. Figure 1 shows
this view: if f is an abstraction function that maps the system
to the model, then, to address (1), for each abstract inm

i in
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the generated test, pick some concrete ins
i in f−1(inm

i ) and
to address (2), check that the concrete output produced by the
system maps to the abstract output produced by the model,
i.e., check that f(outsi ) = outmi .
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Fig. 1: Concretizing model-based tests: A simplified view

However, the situation is often more complex, especially
for testing real-time control systems, which is our focus.
In practice, real-time systems often exhibit non-deterministic
behaviors such as run-to-run variations in timing. Executing
model-based tests on such systems can lead to false positives –
a system may behave correctly but still not match the model’s
behavior exactly as captured in the test. The effects of the
hardware platform on which the system executes have to be
taken into account. Figure 2 shows a better reflection of the
typical situation.
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Fig. 2: Concretizing model-based tests: A typical scenario

The model we deal with here is that of an embedded soft-
ware controller, which continually processes inputs, updates
its state and produces outputs in discrete steps. Abstracted
away typically are the notion of time (specifically, the exact
relationship between the execution steps and real time) and
the analog hardware interfaces in the sensors and actuators
that interact with the real-world. The system under test (SUT)
is an implementation (i.e., software controller) of the model.
Ideally, for conformance testing the behavior of the model must
be compared to that of the SUT (represented by dotted lines



in Figure 2). In practice, the inputs and outputs have to be
mediated through the hardware execution platform.

Tests generated from models provide the inputs and outputs
of the model at each execution step. Replicating the test sce-
nario on an actual system in a test environment that simulates
the real world, requires accounting for these differences which
usually involves more than a simple step-wise concretization
of inputs. Timing differences may require that the actual test
environment must stimulate the hardware interfaces within a
certain real-time window. Further, the environmental inputs
that would lead to a particular input required for the model-
based test may depend on the real time instant at which the
test environment provides the stimulus. In these circumstances,
finding a concrete sequence of inputs to the target system to
replicate the scenario produced by the inputs in the model-
based test is non-trivial. Further, the output produced by the
system, even when it is behaving correctly, could be different
from the outputs produced by the model, because of timing and
abstraction induced differences. This makes using the model
as the oracle problematic.

The majority of existing model-based testing approaches
are concerned with generating test cases and demonstrating
that the SUT conforms to the model. Techniques specifically
for testing real-time behaviors such as extending the model
with non-deterministic real-time behaviors [1] using timed
automata [2] or UPPAAL [3] can potentially characterize sys-
tem non-determinism accurately. These approaches, however,
do not scale well, since the introduced non-determinism can
increase reachable state space exponentially, which also contra-
dicts the original intent of using platform-independent models.
Oracle steering [4] is an alternative approach that attempts to
slightly change the model behaviors in order to accept non-
deterministic real-time behaviors. In oracle steering, the system
is deemed to have passed the test if some model behavior
can be found that is similar to the observed system behavior,
but there is no guarantee that the modified test inputs used
to steer the model still retain the intent of the original test
scenario. If, as is typical, the test was generated to achieve
a certain purpose, we need a way to ensure that the purpose
is indeed realized when each time the test is executed on the
target platform.

In this work, we propose a complementary approach that
translates a sequence of abstract model inputs to an equivalent
sequence of concrete system inputs, which would considerably
advance the utility and practicality of model-based testing.
Equivalence here is to be construed broadly as a relation
between finite sequences of test inputs (and outputs) that is
sufficient to capture the notion of test scenario.

II. BACKGROUND AND PROBLEM STATEMENT

A. Model-based Testing

Model-based testing broadly refers to the use of models
of software to perform software testing. In particular, models
are frequently used to derive test suites and oracles. The model
describes, in some abstract fashion, input/output sequences that
are possible or acceptable. The SUT is considered a black box
whose input/output sequences must conform to that described
by the model [5].

Of particular interest to us are the use – in testing –
of models of reactive systems which are typically specified
as (extended) finite state machines [6] or labeled transition
systems [7]. Such models provide an operational view of the
system that enables execution/simulation of the model over
a series of steps. Tests generated from such models capture
the input provided to the model and the corresponding output
produced by the model which becomes the oracle information
against which the output produced by the SUT is compared.
Notionally one may view a test execution as providing the
same input to the SUT and the model and checking that the
corresponding outputs match at each step. There is a rich
body of research in the use of such behavioral models for
test generation [5], [8].

These models by necessity abstract away implementation
details which makes them amenable to various automated
analyses. We call these platform independent models. However,
since these models also provide an operational view, executable
representations are often derived from these models using
automated translation as well as manual coding. Executable
implementations for the target hardware environment can often
be derived from these models. Such implementations are called
platform-specific implementations. These typically have addi-
tional components (e.g., input and output devices) and details
that are not represented in platform-independent models. In
particular, there are typically timing delays associated with
input and output devices, code execution, and communications
between components. Furthermore, these timing aspects are
non-deterministic (e.g., a sensor’s sampling routine may take
a non-deterministic amount of time to process data). However,
the platform-independent model is specified as a discrete-
time transition system where time progresses in discrete steps
between computations. Reliably reproducing a test scenario
on the platform-specific implementation that is equivalent to a
given test scenario for the platform-independent model requires
reconciling differences induced by the timing abstraction and
non-determinism, which we address in the present work.

B. The Four-Variable Model

In order to precisely characterize timing at different sys-
tem boundaries, our approach uses and extends Parnas’ four-
variable model. Figure 3 shows the four-variable model defined
by Parnas et al. [9].

Monitored variables are used to express physical environ-
ment changes that can be observed by the execution platform.
The execution platform typically uses input devices (i.e., sen-
sors) to observe the status of monitored variables. Controlled
variables are used to express physical environment changes
that can be enforced by the execution platform. The execution
platform typically uses controlled variables to characterize
changes and uses output devices (i.e., actuators) to enforce
them. Input variables and output variables are used to express
inputs and outputs of the software controller or the platform-
independent model, which are represented by SOF.

For a given variable v, we use vt to represent the time-
function of its value [9]. Given definitions of the four variables,
the following relations can be defined.

IN Relation: (
˜
mt,

˜
it) ∈ IN , where

˜
mt and

˜
it represent

the vectors of monitored and input variables, respectively,
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Fig. 3: The four-variable model

represents the physical interpretation of the input devices.

SOF Relation: (
˜
it,

˜
ot) ∈ SOF , where

˜
it and

˜
ot represent

the vectors of input and output variables, respectively, repre-
sents the software system with input-output behavior.

OUT Relation: (
˜
ot,

˜
ct) ∈ OUT , where

˜
ot and

˜
ct represent

the vectors of output and controlled variables, respectively,
represents the effects of the output devices.

C. Problem Statement

We can now describe the problem as follows. Given a test
case (

˜
it,

˜
ot) for SOF , we want to find a test case (

˜
mt,

˜
ct) for

IN ·SOF ·OUT , such that (
˜
it,

˜
ot) ∈ IN(

˜
mt)×OUT−1(

˜
ct).

Further, executing the system-level test (
˜
mt,

˜
ct) on IN ·SOF ·

OUT should exercise SOF in a way that is “equivalent” to
executing the test (

˜
it,

˜
ot) on SOF . We will leave the notion

of equivalence to be informally understood as the “intended
scenario” in the test (

˜
it,

˜
ot).

In words, we seek a system test case that is equivalent to
a given software test case. However, in practice, we do not
need an equivalent system test case but rather a method to
test the system in an equivalent way. This can be achieved
by first finding equivalent system inputs, then executing the
system with those inputs and finally verifying that the output
produced by the system is equivalent to the output expected
of the software. The problem can then be formulated as:

1) Given input variable vector
˜
it and the relation IN , find

monitored variable vector
˜
mt, such that (

˜
mt,

˜
it) ∈ IN .

2) Similarly, given controlled variable vector
˜
ct and the re-

lation OUT , find output variable vector
˜
ot, such that

(
˜
ot,

˜
ct) ∈ OUT .

The first goal would enable execution of model-based
tests on platform-specific implementations and the second goal
would enable the use of the model as the oracle when executing
those tests on platform-specific implementations.

As used in the literature of testing real-time systems, we
define false positive and false negative as the following:

1) False Positive: If a test fails on a system that is acting
correctly, we call it a false positive.

2) False Negative: If a test passes on a system that is acting
erroneously, we call it a false negative.

D. Motivating Example

We use a PCA (Patient-Controlled Analgesia) infusion
pump system as an example to illustrate the problem and our
approach throughout this paper. A PCA infusion pump system

is a safety-critical medical device that physically interacts with
a patient by injecting medication for the purpose of pain-relief.
The infusion is controlled using several sensors and actuators.
The patient can control the device via a user interface and a
pump motor is used to apply force so that the medication can
flow from the syringe to the patient through intravenous tubes.
Various sensors are used to detect abnormal conditions such
as empty reservoirs and air in line, when happened, the patient
is notified by actuators such as buzzers and LED lights.

t1 t2 t3

C_Flow
_Rate

Timet0

Fig. 4: Flow rate change due to starting infusion and detecting
air in line on the platform-specific implementation

In a simplified scenario from the infusion system, suppose
there are two monitored variables M Start Infusion, which
is a button that the patient can press to start infusing, and
M Air in Line, which is a sensor that monitors if there is air
in the flow of the medication. Correspondingly, there are two
input variables I Start Infusion, which indicates if the start-
infusion button has been pressed, and I Air in Line, which
indicates if air-in-line has been detected by the sensor. Fur-
thermore, O Flow Rate is an output variable that represents
the computed infusing flow rate and C Flow Rate is the actual
flow rate enforced by the pump motor.

Suppose we have a model-based test scenario in which
I Start Infusion and I Air in Line become true at the same
time. When executing this test scenario on the model,
O Flow Rate is always 0, which is the expected behavior.
Otherwise, the air could be infused and cause serious conse-
quences to the patient.

When executing this test scenario on a platform-specific
implementation, however, this test may pass or fail de-
pending on the platform. Specifically, an execution plat-
form may have a longer delay in converting the quantity
of M Air in Line into I Air in Line than converting the
quantity of M Start Infusion into I Start Infusion, which can
happen because data sampling and processing in the sensor
can take longer time than transmitting an electrical signal
in the button. Then Figure 4 illustrates how C Flow Rate
changes. Specifically, M Start Infusion and M Air in Line
become true at t0; I Start Infusion becomes true at t1, which



starts infusing; I Air in Line becomes true at t2, which tries
to stop infusing by setting O Flow Rate to 0; eventually,
C Flow Rate becomes 0 at t3 because of the delay in the
pump motor. As a result, a failure is rendered even if the
system is acting correctly, which is a false positive, because
the model oracle does not take into account delays from the
platform-specific implementation and the original test scenario
has also been changed.

The effect of such shifting may affect testing effectiveness
in multiple ways. First, although the scenario at system level
is “pressing start-infusion button with air-in-line detected”, the
scenario at the model level becomes “air-in-line is detected
during infusion”. Thus, it is not surprising that the model-based
oracle does not match system outputs. Second, depending on
the types of tests generated from the model, for example,
model-based tests may execute a certain part or behavior of
the system with a specific combination of inputs. When such
a combination is lost, testing may fail to find the faults that
should have been found.

Alternatively, considering the longer delay the air-in-line
sensor has, we could potentially schedule M Air in Line to
be true before M Start Infusion becomes true, such that
I Air in Line and I Start Infusion can be true at the same
time on the software controller.

III. APPROACH

A. Framework Definitions

We build on the four-variable model and introduce a few
additional definitions. For a given variable v, we use vt to
represent the time-function of its value [9], where the domain
consists of real numbers (i.e., time) and the range consists of
all possible values of v in a real-time environment. We also
define vk to represent the step-function of its value, where the
domain consists of integers (i.e., steps) and the range consists
of all possible values of v in a discrete-time environment.
Furthermore, the value of v at time t and step k are represented
by vt(t) and vk(k), respectively.

1) Model-based Tests and SOF-Delay: In a system with
r input variables and s output variables, we characterize a
specific model-based test interaction in the following form:

(ik1(k1), ik2(k1), ..., ikr (k1))

and its oracle in the form:

(ok1(k1), ok2(k1), ..., oks(k1))

where k1 is a specific step number (e.g., the first step).

Test execution on the model and its implementation is
considered to be step-wise (i.e., in terms of discrete time). For
example, when executing a test case for conformance testing
of a Simulink model and a corresponding C implementation
running on the target platform, at each step, a test interaction
is executed on both the model and the implementation, and
their outputs are compared. The implementation conforms to
the model for this test case if there is no discrepancy between
their outputs at every step. Thus defined, model-based tests
and oracles implicitly have the following two features.

1) Model-based tests and oracles are in terms of discrete time,
which makes it far easier to record the actual outputs and

compare them with the oracle. A naive value comparison
for each output variable at each step would do the work.

2) The test and oracle execute at the same time, which ab-
stracts away the fact that the execution itself takes time and
this zero-delay assumption can be problematic in model-
based testing.

Now we lift this test interaction and its oracle from
discrete-time to real-time:

(it1(t1), it2(t1), ..., itr(t1))

and its oracle would be
(ot1(t1 + ∆SOF), ot2(t1 + ∆SOF), ..., ots(t1 + ∆SOF))

where t1 is the time of step k1 and ∆SOF is the execution
delay of the software controller. Note that, while we consider
timing of different sensor and actuator components separately,
we view the software controller as a single synchronous
component. That is, the software controller takes all input
variable values at the same time t1 and produces all output
variable values at the same time t1 + ∆SOF

1, where ∆SOF
represents the execution delay of the software controller and
it is a platform-specific non-deterministic value.

2) IN-Delay: The IN relation maps monitored variables
to input variables and we define the delay from a change to
monitored variables to a change to input variables as IN-Delay.

IN-Relation is defined between two vectors, i.e.,
˜
mt and

˜
it, while the exact mapping between elements of

˜
mt and

˜
it

are implicit. When it comes to IN-Delay, informally, within
an input device component, ∆ij is the delay from the time
that the corresponding monitored variable changes values, to
the time that input variable ij changes values. And we do
not explicitly define which monitored variable(s) map to ij in
order to simplify our definition, but such a mapping indeed
exists. For example, if we have an input device component
that monitors flow rate, the M Flow Rate variable represents
the actual flow rate and the I Flow Rate variable is a sampled
flow rate from the flow rate sensor. Therefore, ∆M Flow Rate,
representing the delay from the time M Flow Rate changes
value to the time its input variable(s) change values, would
be equivalent to ∆I Flow Rate, representing the delay from its
monitored variable(s) change values to the time I Flow Rate
changes value.

In a special case where p monitored variables have a one-
to-one mapping to p input variables, we would have that ∆mj

is equivalent to ∆ij where 1 ≤ j ≤ p.

Given a specific test interaction at system level:

(mt
1(t1),mt

2(t1), ...,mt
p(t1))

the corresponding test interaction at the software controller
level would be

(it1(t1 + ∆i1), it2(t1 + ∆i2), ..., itr(t1 + ∆ir ))

where ∆ij represents the timing delay defined above.

Ideally, if all the delays are known values and if we want
an input variable vector:

(it1(t1), it2(t1), ..., itr(t1))

1Technically, it is impossible even for two consecutive assignments to
happen at exactly the same time, but the difference is often too small to
be captured, so we still treat them as at the same time.



the monitored variable vector would be
(mt

1(t1 −∆m1
),mt

2(t1 −∆m2
), ...,mt

p(t1 −∆mp
))

Therefore, if we know all the exact values of ∆ (which
is unfortunately non-deterministic but can often be character-
ized), all monitored variable values can be perfectly aligned
such that, given this monitored variable vector, the software
controller will get the input variable vector, and produces an
output variable vector that matches its oracle.

3) OUT-Delay: The OUT relation maps output variables to
controlled variables and we define the delay from a change to
output variables to a change to controlled variables as OUT-
Delay, which can further be defined in the same way as IN-
Delay, by replacing monitored variables with output variables,
input variables with controlled variables, and sensors with
actuators.

In a system with q controlled variables, when executing
the above monitored variable vector, we will get a controlled
variable vector as the following:

(ct1(t2), ct2(t2), ..., ctq(t2))

Similarly, the output variable vector would be
(ot1(t2 −∆o1), ot2(t2 −∆o2), ..., ots(t2 −∆os))

Other relationships can be characterized similarly as in
monitored and input variables.

Environment

Software 
Controller

Hardware Platform
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Input
Devices
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Devices
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Fig. 5: The architectural view of the platform-specific imple-
mentations

4) Events: We define an event as setting any one of the
m-i-o-c variables to a specific value at a specific time. We do
not require that two consecutive events to be different, that is,
if we take flow rate as an example, samples obtained within
a certain period of time may all be the same. Physical events
(e.g., pressing a button) can be defined similarly, that is, a
button pressed electrical signal will set the button pressed input
variable to be true.

Specifically, if we take the flow rate sensor as an example,
the sensor itself runs a sampling routine at a certain rate. The
actual flow rate is a monitored variable and the sampled flow
rate is an input variable. The software controller always takes
existing input variables’ values to update its internal state. In
our case of executing model-based tests, each test interaction
has events for all the m-i-o-c variables. We use M-I-O-C-
event to represent events that set values of m-i-o-c variables,
respectively.

B. Platform-specific Implementations

Figure 5 shows an overview of the execution environment
of platform-specific implementations. Specifically, a platform-
independent model can often be translated and compiled to
the code that runs on the hardware platform and we refer to
this piece of code as software controller. Besides, a platform-
specific implementation also contains input devices (i.e., sen-
sors) and output devices (i.e., actuators). The sensor takes
stimuli from the physical environment, while a stimulus can
be a physical event (e.g., pressing a button) or pre-processed
inputs (e.g., sampling flow rate), and the actuator causes some
effect in the physical environment (e.g., starting a motor or
turning on a light).

Computing Waiting

Step Step

Inputs Outputs

Fig. 6: The input/output timing in real-time step

Figure 6 shows typical real-time steps in the software
controller. The step starts with obtaining inputs to update its
internal state, then producing outputs, and waiting for a fixed
time frame. We define step size on the implementation as the
time interval between two consecutive I-events or O-events.

We have described how monitored and output variables can
be derived from input and controlled variables, respectively, in
an environment of known delays of input and output devices.
However, all the delays are non-deterministic on the execution
platform. That is, when executing a reverse mapping

˜
mt from

˜
it on the platform, the resulting input variable vector

˜
i′t is not

always equivalent to
˜
it.

Low 
delay

High 
delay

I-event time 
window

M-event time 
window

500 ms

1000 ms

1500 ms

2000 ms

Fig. 7: Time window for M- and I-events

Here, we define the notion of time window as a period
of time during which an event should occur, such that when
executed on the platform with non-deterministic delays, it
can trigger expected effects. Figure 7 shows an example. We
assume that one step is mapped to 500 ms in this example.
Suppose that an I-event is expected between the time 1500
ms and 2000 ms as shown, then the time window for the



corresponding M-event is estimated based on the upper-bound
(shown as high delay) and lower-bound (shown as low delay)
of delays. Note that, however, when the variance of delays is
too large, the time window for M-event can be too small or
even does not exist.

C. Direct Execution of Model-based Tests

Figure 8 shows executing a test case on a platform-specific
implementation. When an M-event is given, a C-event (i.e., a
response) is expected during the time we refer to as estimated
C-event time window. Due to various delays (i.e., IN-delay,
SOF-delay, and OUT-delay), the actual C-event cannot be
produced within the expected time frame. Thus, there is a
mismatch and this test fails, although the software controller
works as expected.
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Output Devices
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Controller
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time window
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Fig. 8: Real-time execution

D. Scheduling M-events

Figure 9 shows how our approach schedules M-events.
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Fig. 9: Scheduling M-events

Given a model-based test interaction, we start with esti-
mating a future time window during which all I-events should
occur for all input variables. Suppose the largest delay of all
input variables is ∆max, and the step size is step. Both ∆max

and step are mean delay values obtained from the execution
history [10].

In order to maximize the possibility that an input event
can occur during our expected time window, the estimated
future I-event time should be in the middle of two consecutive
steps. Therefore, if we have current as the timestamp at which
the software controller finishes one step, then the future time
timeI-events when all I-events of the current test interaction
should happen is estimated as:

timeI-events = current− step/2

+ ceil((∆max + step/2)/step) ∗ step

then a monitored variable mj with delay ∆mj
should be sent

at time

timeM-eventj = timeI-events −∆mj

which is shown as scheduled M-event in Figure 9.

Although this is also an online real-time system testing
approach, the overhead is minimized. Model-based test gener-
ation is offline to take advantages of many automated tooling
support. During online execution, the scheduling overhead is
often too small to create timing discrepancies. However, when
too many events are scheduled to happen at the same time, the
overhead can be significant enough to affect system behavior.
Therefore, we also set a threshold such that events with similar
scheduled time (specifically, similar scheduled time is in this
case all subsequent events that have a scheduled time no later
than 10 ms from the current event) will be combined and sent
together to mitigate the scheduling overhead.

E. Adjusting C-events

Figure 10 shows how our approach adjusts C-events.
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Fig. 10: Adjusting C-events

If scheduling M-events has been done successfully, the
software controller should have executed the expected test
scenario originated from model-based tests and produced O-
events that match model-based test oracles. But what the
environment receives are C-events. Then all we need to do
is to bring the timing of C-events back to the model level and
compare to see if they match the oracle output.

Specifically, given the same timeI-events from scheduling
M-events, we define a time window during which the cor-
responding O-event should happen, i.e., between timeI-events
and timeI-events + step. Therefore, given a C-event at time
timeC-eventj , an output variable oj with delay ∆oj should have
been produced at time

timeO-eventj = timeC-eventj −∆oj

which would fit into one of the expected O-event time windows
and its value is compared with oracles to determine if the test
passes or fails.

F. Benefits of Our Approach

Test cases for system testing are usually written manually,
which is a time consuming process and often, only a small
number of test cases can be written and executed, leaving
potentially many aspects of the system untested. Although the
software itself may have been tested heavily, it is unlikely
to have been exercised in the context of system-level test
scenarios.



When model-based tests are used to test an implementation,
frequently the “wrong” test cases may be executed (because the
scenario exercised is quite different) and then compared with
the “wrong” oracle (because the model and the implementation
exercised different behaviors). Our approach provides a way
to execute model-based tests (or any test cases that can be
generated from a platform-independent model) in a way that
is appropriate for the specific implementation platform.

While test cases can be generated relatively easily from
platform-independent models, without the proposed frame-
work, detailed models of platform specific components are
needed to derive tests that can be executed on the implemen-
tation. This makes test generation harder because of model
complexity and affects scalability. The proposed approach
addresses this by abstracting the platform specific details to
a minimal set of parameters (e.g., the mean and variance of
timing delays) and using that information during test execution
instead of test generation.

IV. EVALUATION

A. Research Questions

We wish to evaluate the following two aspects:

First, to what extent does the proposed approach re-
duce false positives? False positives naturally arise during
testing platform-specific implementations using model-based
tests. Starting with a test suite that passes on the platform-
independent model, we would like to understand the per-
centage of tests that can still pass on the platform-specific
implementations with different timing configurations. Then
we can evaluate how well the false positive rate can be
reduced using the proposed approach. Furthermore, what are
the platform-specific characteristics that affect the effectiveness
of our approach? Specifically, we would like to characterize
the applicability of the proposed framework in terms of timing
delays at different system boundaries.

Second, does the proposed approach introduce additional
false negatives? Some existing techniques that test platform-
specific implementations aiming at reducing false positives
often introduce additional false negatives [4], which can be
particularly bothersome for safety-critical systems. Empirical
evidence of limiting false negatives using the proposed ap-
proach will strengthen the case for its applicability to safety-
critical system domains.

B. Case Study Example

We used a PCA (Patient-Controlled Analgesia) infusion
pump system as our case study example [11]. This system is
modeled using MathWorks Simulink and Stateflow [12], [13].

The top level system has 76 input variables and 31 output
variables. This system also contains seven subsystems. Table
I shows basic information of the subsystems. Some of the
subsystems have been used as case examples in previous
studies [14], [4], [15].

C. Device Configuration

Code for platform testing was generated from the Simulink
and Stateflow models using the MatLab Simulink Coder [16].

TABLE I: Infusion pump subsystem information
Subsystem # Input Vars # Output Vars

Alarm 102 5
Config 63 25

Infusion Manager 53 5
Logging 43 2

System Statistics 69 5
System Monitor 3 1
Top Level Mode 30 3

This tool produces platform agnostic C code. To execute
this code on a target, platform specific code is needed to
configure the target peripherals and memory. The target plat-
form manufacturer provides this code in the form of a Board
Support Package (BSP). Other than a small assembly language
bootstrap the remainder of the BSP consists of libraries of
short routines for interfacing with the platform’s peripherals
(e.g. clocks, I/O, timers). A small amount of handwritten code
was required to create the Interrupt Service Routines (ISR) for
asynchronous sensor inputs such as button presses and limit
switch activations. The top-level executive is a simple infinite
loop that repeatedly executes the Simulink generated code and
then sleeps until the next execution cycle time. During sleep,
ISRs are still supported to prevent sensor inputs from being
lost between increments.

The platform used for this testing was an Atmel
ARM91SAM7X development board. In order to show the
generic nature of the development procedure described here,
the same code was recompiled and executed on a Pololu
Orangutan SVP Robot Controller. External hardware was
added to simulate the functions of the infusion pump including
a motor, buttons to simulate user input and limit sensors,
annunciators, and LED displays. The on-chip USART was
used to create a simple monitor port to allow printf statements
to be observed during execution.

A 500 ms timing loop was used to slow down execution
to allow ample time for user interaction with the system.
The selection was arbitrary and could have been significantly
shorter. In order to automate interactions with the device during
testing for sending sensor events and receiving actuator events,
the device was connected to a PC through a serial port.

D. Simulating Sensors and Actuators

We identified multiple sources of timing delays and we
wanted to assess how the delays affect testing and how our
approach reconciles timing induced mismatches. In order to
create a variety of platform-specific configurations, we further
created additional sensor and actuator timing delays.

Specifically, the modeled sensor has two threads. The first
thread constantly reads M-events from the test driver and
the second thread creates additional delays for each M-event.
When an M-event’s delay time has elapsed, the M-event will
be sent to the software controller as an I-event. I-events will
update the software controller’s input variable states used to
update the software controller’s internal state in the next step.

Similarly, the modeled actuator has two threads in which
the first thread constantly reads O-events from the software
controller and the second thread creates additional delays for



each O-event. When an O-event’s delay time has elapsed, the
O-event will be sent to the test driver as a C-event.

In this study, randomized sensor and actuator delays follow
a normal distribution. For a platform-specific configuration, we
characterize it using max mean and standard deviation. Max
mean is used to provide an upper bound of mean delay for
each event. In a specific platform, each event would have a
random mean delay between 0 and max mean and a fixed
standard deviation. The mean delay and standard deviation
of each event is used to create a randomized delay during
execution. Note that on both the sensor and the actuator, if the
generated random delay is negative, 0 is used.

In our study, max mean values used were 250, 500, 1000,
and 2000 ms and standard deviation can be 0, 25, 50, 100,
and 200 ms. Therefore, we would have 20 different platform-
specific configurations, plus the ideal situation in which both
max mean and standard deviation are 0, i.e., there is no delay2.

E. Test Case Generation

Though test cases from any source can be used with our
approach, we generated our test suite using Simulink Design
Verifier [17] to take advantage of its automated model-based
test generation capability. Tests were generated for the branch
coverage criterion to provide a rich and realistic set of cases.

Specifically, there were a total of 592 branch coverage
objectives for the model. Among them, test cases could be
generated to satisfy 524 objectives. 41 objectives were proven
to be unsatisfiable and 27 objectives were undecidable within
the given time budget (10 hours in our experiment). Combine-
dObjectives (Nonlinear Extended) option was used to reduce
the test suite size while maintaining coverage. As a result, the
test suite was reduced to 116 test cases with a total of 1048 test
interactions. Test oracles were also generated from the model
and later used to check if each test interaction passes or fails
on platform-specific implementations.

We executed the test suite 5 times for each of the 21 differ-
ent platform-specific configurations, once with the framework
mediated timing adjustments and once directly executed, for
a total of 210 times, with a total of more than 220K test
interactions.

F. Mutation Generation

We generated mutants using Milu, a mutation testing
tool for C programs [18]. We generated 50 mutants evenly
distributed across the seven subsystems based on the total
number of possible mutants in each subsystem.

Equivalent mutants, which are behaviorally equivalent to
the original system, can jeopardize the use of mutation testing.
Although detecting equivalent mutants is possible, specifically
in the case of finite state systems [19], [20], it does not scale
well. Therefore, we did not attempt to remove equivalent
mutants since it is cost-prohibitive for our case example
systems.

2This is essentially the same as executing test cases on the platform-
independent model, although the system still exhibits negligible delays due
to, e.g., transition.

We ran our test suite on all the mutants in an execution
platform with max mean to be 500 ms and standard deviation
to be 50 ms.

We first executed the test suite directly on the implemen-
tation (without delays) to determine if the mutant can ever be
killed. If so, we then executed the test suite using our approach
in the above platform-specific configuration, and check if those
failed tests can still fail.

V. RESULTS & DISCUSSION

In this section, we address our research questions and
discuss the implications of our results. We begin by presenting
false positives that can be reduced using our approach.

A. Reducing False Positives

We ran the full test suite with 1048 test interactions on
21 different platform-specific configurations. On each con-
figuration, we ran the full test suite 5 times in order to
account for non-determinism in terms of timing from the
hardware platform as well as from the injected sensor and
actuator delays. All test interactions are supposed to pass on
the platform-specific implementations.

TABLE II: Median number of passed tests and percentage
point decrease in false positives

Max Std. Scheduled Direct FP
Mean Deviation Execution Execution Decrease

0 0 1048 (100%) 1048 (100%) 0%

250

0 1048 (100%) 884 (84.35%) 15.65%
25 1048 (100%) 463 (44.18%) 55.82%
50 1048 (100%) 682 (65.08%) 34.92%

100 899 (85.78%) 177 (16.89%) 68.89%
200 197 (18.8%) 68 (6.49%) 12.31%

500

0 1048 (100%) 273 (26.05%) 73.95%
25 1048 (100%) 6 (0.57%) 99.43%
50 1048 (100%) 67 (6.39%) 93.61%

100 840 (80.15%) 3 (0.29%) 79.86%
200 161 (15.36%) 8 (0.76%) 14.6%

1000

0 1048 (100%) 3 (0.29%) 99.71%
25 1048 (100%) 16 (1.53%) 98.47%
50 1048 (100%) 14 (1.34%) 98.66%

100 843 (80.44%) 4 (0.38%) 80.06%
200 117 (11.16%) 5 (0.48%) 10.68%

2000

0 1048 (100%) 3 (0.29%) 99.71%
25 1048 (100%) 2 (0.19%) 99.81%
50 1048 (100%) 3 (0.29%) 99.71%

100 831 (79.29%) 2 (0.19%) 79.1%
200 134 (12.79%) 2 (0.19%) 12.6%

Table II shows the number and percentage of passed
test interactions using the proposed approach (i.e., scheduled
execution) and direct execution of model-based tests on each
platform-specific configuration. The percentage point decrease
in false positives is simply calculated by subtracting failed
percentage of test interactions using scheduled execution from
that using direct execution.

It is not surprising that direct test execution and output
comparison are very sensitive to time fluctuation. As timing
delays are randomly injected, direct execution would start to
fail quickly when delays increase. In general, mean delay
dominates the number of passed/failed tests in direct execution,



which is also intuitively straightforward since an event is more
likely to miss its time window with larger delays, leading
to unexpected output. Standard deviation may affect direct
execution in multiple ways. A larger standard deviation in
general leads to more failed tests with small max mean delays
(i.e., 250 and 500 ms), but since direct execution is completely
unguided, a larger standard deviation may also have more
passed tests (e.g., 250-25 and 250-50) for the same max
mean delay. This happens because the configuration 250-25
randomly assigned higher delays to those variables that are
more sensitive to time fluctuation. With large max mean delays
(e.g., 1000 and 2000 ms), around 99% tests would fail in spite
of standard deviation.

The proposed approach reduces false positives in all cases
(except the 0-0 case where there is no false positive). As shown
in Table II, our approach is robust to absolute delay values (i.e.,
max mean), but can still be sensitive to delay variance (i.e.,
standard deviation) when it is large. Specifically, our approach
can reduce most false positives with a standard deviation
less than 200 ms despite mean delays, but start accumulating
false positives with the 200 ms standard deviation. The event
scheduling mechanism in our approach ensures that each event
can fit in the right time window, but if we recall the definition
of time window in Figure 7, for example, a larger delay
variance would lead to a narrower time window for M-events.
When the delay variance is large enough, the time window
for the corresponding M-event may not exist, thus the event
scheduling cannot guarantee that the I-event can be received
by the software controller at the right step.

Our approach always estimates and expects I-events to
happen in the middle of two consecutive steps, which already
give both direct and scheduled executions certain tolerance to
timing delays. In our study, we used an almost fixed delay to
schedule M-events from I-events, and convert C-events to O-
events. Since the actual sensor/actuator have non-deterministic
timing delays, it would be difficult for the event scheduling
to be accurate when the delay variance is too large. It would
still be possible to schedule input events accurately if there
are more known characteristics of the delay distribution. Then
applying a more sophisticated scheduling algorithm would
reduce false positives further. For example, the delay may vary
widely overall, but may not change much during a short period
of time. In such a case, using a short period of history delays
would make the scheduling much more accurate. We leave
such improvements as future work.

We used large variances of delays for the purpose of
evaluation. Although our approach did not perform well on
the 200 ms standard deviation settings, they may not even be
realistic in practice. For example, even if we assume normal
distribution of delays with a mean of 1000 ms and a standard
deviation of 200 ms, then 68.3% of the values will be within
the range of 800 - 1200 ms, and 95.4% of the values will
be within the range of 600 - 1400 ms, which are already
unrealistically large ranges of delays.

B. Eliminating False Negatives

Reducing false positives in our approach is essentially
accepting good system behaviors that would be rejected oth-
erwise, but it may also run the risk of accepting bad system
behaviors.

We first performed a mutation testing on the platform-
independent model. For each of the 50 generated mutants, we
ran the full test suite with 1048 test interactions and recorded
the test interactions that failed on the mutant. Specifically,
in our 52400 (i.e., 1048 test interactions on 50 mutants) test
interaction executions, 13081 test interaction executions failed
due to injected mutants. We selected a representative platform-
specific configuration with a max mean delay of 500 ms and
a standard deviation of 50 ms. We then performed the same
mutation testing on the platform-specific implementation and
observed whether each of the 13081 failed test interaction
executions still fails and we call it false negative if it passes.
In our experiment, we did not observe any false negative as a
result of using our approach.

Existing approaches, e.g., oracle steering, may accept sys-
tem behaviors that are similar enough to the model behaviors,
while a similarity threshold is often set manually in order
to constrain and balance the number of false positives and
negatives. Unlike prior work, our approach does not modify
the model or the oracle for the purpose of accepting system
behaviors with discrepancy, avoiding the risk of accepting bad
system behaviors.

Nevertheless, since testing itself is incomplete and has false
negatives (i.e., testing can only show the presence of faults, not
their absence), our approach only ensures that no additional
false negatives can be introduced. Thus, the quality of the
original model-based tests plays an important role in finding
faults and reducing overall fault negatives.

VI. THREATS TO VALIDITY

External Validity: We used only one system as the case
example to evaluate our approach. Our experiment could be
limited, but we actively worked with domain experts to set up a
realistic experimental environment. Although there is only one
case example in our study, the infusion pump system consists
of subsystems some of which have been used in previous
studies [14], [4], [15] as standalone systems.

We used several MathWorks tools for building models
and generating code and test cases. We also used the actual
hardware device in our study. Since these are widely used com-
mercial tools, we believe that our results can be generalizable
to other systems in these domains.

Besides the actual delays on the device, we also simulated
additional delays in order to create a variety of platform-
specific configurations. These simulated delays, however, may
not represent realistic hardware specifications, but they do
show that our approach can work in a variety of platform-
specific configurations.

Internal Validity: We used a specific test suite generated
from Simulink Design Verifier satisfying branch coverage on
the model in our experiments. The results may change if other
forms of test suites are used. However, both branch coverage
and model-based tests are commonly used in practice.

We used measured delay information in our approach
to schedule and adjust events. The measured delays in our
experiments may not reflect the precision that one could obtain
in practice. However, we also simulated unrealistically large



delays and large variances of delays in order to account for
possible biases.

Construct Validity: We used mutants rather than real
faults to demonstrate that our approach can eliminate false
negatives that can possibly be introduced by other similar
techniques. It is possible that using real faults would lead to
different results, although mutation testing has been widely
used and has been shown to be similar to real faults [21].

VII. RELATED WORK

Kim et al. defined testing and verification frameworks,
using an approach similar to the one described here, that can
precisely capture timing at different system boundaries [10],
[22]. Specifically, they manually created a limited number of
system level tests from system timing requirements. Additional
delays due to other components such as hardware are measured
and added to the timing requirements to relax passing criteria,
reducing false positives from executing model-based tests on
platform-specific implementations. However, the frameworks
do not attempt to reproduce the intended scenario of the
original model-based tests and use only single stimulus (e.g.,
pressing a button). The goals also do not include automated
test generation and execution. For a system at the scale of our
case example, creating thousands of test interactions each of
which involves more than 100 variables would be impractical
without automation.

Several techniques support limited forms of non-
determinism [23], [24], [1], [25] by introducing extended
model formats such as timed automata with real-valued clocks
[2] and UPPAAL [3]. Specifically, non-deterministic timing
behaviors are introduced in the models. False positives can be
reduced if the software model can explicitly account for the
same amount of non-determinism as the system has. These
approaches, however, often result in an exponential increase
in the difficulty of demonstrating conformance, restricting the
amount and type of non-determinism that can be handled.

Our approach does not require changes to the original
software model to account for non-determinism. In fact, adding
system non-determinism contradicts the original intent of using
platform-independent models, which abstract away platform-
specific details to make the models amenable to various anal-
yses. Besides, introducing non-determinism can often increase
false negatives. While false positives in testing embedded real-
time systems often lead to wasted manual effort, false negatives
(i.e., missed faults) can lead to catastrophic consequences.
Furthermore, our approach decouples test generation and exe-
cution, as well as platform-independent models and platform-
specific non-determinism, and therefore can be used to extend
many existing approaches.

Larsen et al. defined an online testing framework based
on UPPAAL models for testing real-time systems [1], [25]. In
their work, test cases can be generated and executed, and test
results can be checked, all online. A test step is generated from
the model and executed on the SUT at one time, which reduces
the size of reachable state space and thus improves scalability.
Despite the fact that their work also requires changes to the
original model to accept non-deterministic system behaviors,
this online testing relies on fast test and oracle generation,
and behavior comparison, which often introduce significant

overhead that can change input/output events and thus system
behaviors. Therefore, its application is restricted by the size
and complexity of systems. While our approach to test exe-
cution and comparison is also online, model-based tests and
oracles are generated offline. Event scheduling happens online,
but the overhead is typically negligible.

Oracle steering was recently proposed as an alternative
approach to reduce false positives [4], in which the model
is carefully steered to exhibit behavior that is closer to the
observed behavior of the SUT. To ensure that undesirable
system behaviors are not overlooked by the oracle, constraints
are placed on how far the model could be steered to accom-
modate the observed system behavior. This is achieved by first
attempting to execute equivalent tests, one step at a time, on
both the system and the model, and when there is a mismatch
of the corresponding outputs, modifying the model inputs (and
often parts of the model state) within reasonable bounds so
that the model behavior can be nudged closer to the system
behavior. Empirical assessment of the approach confirmed that
such a steered model is more effective as an oracle – the
number of false positives (reported mismatches not attributable
to real system defects) is greatly reduced, but the number of
false negatives has also increased. Furthermore, the approach
is defined and built over discrete time, and may not be able to
handle the richness of real-time behaviors.

VIII. CONCLUSIONS

We have described our testing framework based on the
four-variable model defined by Parnas et al. [10] and the frame-
work for testing timing defined by Kim et al. [9]. Our testing
framework precisely captures timing of different hardware
components. Our scheduling-based approach enables executing
model-based tests on platform-specific implementations. Our
approach brings together the advantages of existing automated
model-based testing and oracle generation tools. Tests and
oracles are generated offline, while test scheduling, execution,
and test result checking are online. This approach has the
benefit of online testing – the scheduling can be adaptive to
the timing change at runtime, but avoids common problems in
online testing – tests are generated offline using existing tools
to reduce online overhead.

Future work is based on the following observations.

(1) Our approach takes a fixed mean delay of each hard-
ware component and schedules events. This approach does
not perform very well in an execution platform where delays
have large variance. Instead, a more sophisticated scheduling
algorithm can be applied that can make better use of delay
information.

(2) Event sequences generated by our approach can contain
important timing information. For example, the timing gap
between two events (specifically, between an M-event and a C-
event) can reflect whether the platform-specific implementation
satisfies system level timing requirements.
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