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Microfluidic PLGA microcapsules for the sustained delivery of recombinant human bone 

morphogenetic protein 2 in 3D printed PCL/βTCP scaffolds 

ABSTRACT 

Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a clinically available 

osteogenic growth factor.  In its current form, approved for clinical use, however, the growth 

factor is delivered in excessively high doses, resulting in unpredictable bone growth and 

unwanted, sometimes life-threatening, clinical side effects.  It has clearly been demonstrated that 

the sustained, long-term release of the proteins can lead to improved ossification, owing 

particularly to the rapid metabolism of the biologically active growth factor when delivered 

alone in solution.  Delivery systems for rhBMP-2 have been investigated extensively; yet still, 

further exploration into the best means of protein delivery — in order to curb the side effect 

profile and improve the quality of the bone generated — is warranted.  The present review of 

literature introduces extensive work evaluating optimal rhBMP-2 delivery, with particular focus 

on natural polymers, inorganic materials, as well as synthetic materials for protein delivery.  In 

particular, poly(DL-lactide-co-glycolide) (PLGA) microspheres, conventionally fabricated by a 

solvent extraction/evaporation procedure, are discussed for their use in sustained drug delivery. 

The application of rhBMP-2 for bone tissue engineering holds great promise for researchers and 

clinicians in both the medical and dental fields; yet, there remains a great need for further 

investigation of improved protein delivery mechanisms. 
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REVIEW OF LITERATURE 

 The treatment of skeletal defects within the craniofacial region poses a significant 

challenge for plastic surgeons, oral and maxillofacial surgeons, and dental professionals alike.  

Such defects can be the result of trauma, disease, or congenital deformities — such as cleft lip 

and palate — and can lead to disfigurement, and loss of ability for normal function.1  Depending 

on defect size, tissue repair is possible; but in defects beyond a critical size, bone grafts are often 

necessary.  Autogenous bone grafts remain the optimal, “gold standard” of treatment; however, 

there is significant post-op pain and donor site morbidity,2, 3 as well as increased costs and 

limited donor site bone availability, leading investigators to seek out alternate graft sources.2  

Bone Morphogenetic Proteins 

 Recombinant human bone morphogenetic proteins (rhBMPs), key cytokines in bone 

formation and repair, have been evaluated for their use in the treatment of craniofacial defects.2, 4, 

5  Bone tissue engineering involves the delivery of an osteoinductive growth factor—such as 

BMP—at the site of the defect.  BMP-2, BMP-4, BMP-7, and BMP-9 are members of the 

transforming growth factor beta (TGF-β) superfamily, and have demonstrated the capacity to 

induce progenitor cells from mesenchymal sources to differentiate into osteoblasts.4  They play a 

role in osteogenesis, chondrogenesis, angiogenesis, as well as mesenchymal stem cell 

chemotaxis.4, 6 

 BMPs play a critical role in cellular functioning and the formation of new tissues; 

however, the most effective means of delivering the growth factor to the site of repair has yet to 
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be determined.  When administered as a bolus dose, rapid dispersion throughout the body can 

result in undesirable side effects such as local inflammation, soft tissue edema, ectopic or 

heterotopic bone formation, and seromas.7-9  BMPs have a very short half-life; therefore, when 

administered in solution, much of the bioactive protein is rapidly lost, leaving insufficient 

amounts of protein to act at the intended site.10  

Current clinical applications:  

 Currently, the growth factor is approved for clinical use in a few select applications.  In 

the form of the INFUSE bone graft, rhBMP-2 has been approved by the U.S. Food and Drug 

Administration as a medical device for use in spinal fusions, sinus lift procedures, and repair of 

alveolar defects after dental extractions.11  Approval for the clinical delivery of rhBMP-2 with 

INFUSE was first granted by the FDA in 2002, for delivery of the growth factor in an adsorbable 

bovine type I collagen sponge (ACS).11  There are, however, drawbacks of this application; the 

most striking of which is the extreme, supraphysiologic dose of protein required for the desired 

osteogenic effect.12, 13  It is noted that the amount of rhBMP-2 present in one INFUSE dose for a 

single spinal fusion exceeds the amount of exogenous BMP naturally present in 1000 humans.13  

Nonetheless, rhBMP-2 is still combined with adsorbable collagen sponges for clinical use.   

 A retrospective cohort study from the Journal of the American Medical Association 

evaluated 328,468 patients undergoing spinal fusion procedures between 2002 and 2006.14  They 

reported an extreme increase in the use of the growth factor from 0.69% to 24.89% during the 

four year period.  In addition, higher rates of complications such as dysphagia, edema, 

hematoma, and respiratory problems, were reported when BMP was used in anterior cervical 
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fusions.  The use of BMP was also correlated with increased length of hospital stay and higher 

hospital charges.14  The authors were the first to compile national data on the use of BMPs in 

spinal fusion surgery, and successfully highlighted the widespread use of the growth factor 

clinically and the concerns of many medical professionals. 

 In addition, the growth factor is often used off-label in other anatomical sites such as 

alveolar clefts or cranial vault reconstruction.15  Alonso et al.16 compared the delivery of 

rhBMP-2 in an adsorbable collagen sponge matrix to a traditional iliac crest autogenous bone 

graft (ABG) in cleft palate patients aged 8-12 years, all with pre-operative orthodontic maxillary 

expansion.  Results illustrated alveolar bony bridging, as well as normal dental eruption, in all 

patients.  Overall average bone volume was slightly less in the treatment group as compared to 

the ABG patients, but clinical results were favorable in both groups.  The authors noted that the 

decreased structural stability of the collagen sponge carrier was problematic.  Additionally, post-

operative swelling was noted in more than a third of the rhBMP-2 graft group.16  Similar post-

operative swelling was reported by Shah, Smyth, and Woo15 in a case report of an rhBMP-2/ACS 

implant for a cranial vault repair in a 2 year-old boy with craniosynostosis.  The patient exhibited 

severe facial, periorbital, and scalp swelling, resulting in surgical removal of the implant.15  It has 

been suggested that the side effect profile of rhBMP-2 is more extreme and more common after 

such off-label uses.9  Moreover, the adverse side effects associated with the growth factor are of 

extreme concern in a pediatric, growing population.   

 Off-label use of rhBMP-2 is also common in the field of periodontics, where the growth 

factor is delivered in alveolar defect repair, as well as sinus elevation procedures, by combining 

pieces of rhBMP-2-soaked ACSs with particulate allograft or xenograft bone materials.17  Due to 
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the off-label nature of these uses, there are few clinical studies evaluating their efficacy.  A 2012 

study evaluated the use of rhBMP-2/ACS in combination with a bovine-derived xenograft in 

human subjects undergoing sinus elevation procedures.17  The authors illustrated that in samples 

in which rhBMP-2/ACS was delivered in combination with a xenograft, there was increased 

resorption of the graft material, combined with decreased new bone formation, and increased 

marrow spaces noted histologically, compared to patients treated with the xenograft alone.  They 

concluded that the combination of these materials was not efficacious.17  Their findings are in 

contrast with previous work comparing rhBMP-2/ACS with the use of a collagen sponge alone 

for a similar procedure, in which investigators concluded that the combination of rhBMP-2 and  

an ACS was the optimal treatment condition.18  Inconclusive results and limited studies suggest a 

need for further investigation in this arena.   

 In light of the aforementioned bioactivity and side effects, as well as the growth factor’s 

often inconsistent clinical performance, much of the scientific and medical community agree that 

the application of rhBMP-2 for clinical procedures needs further optimization.11  Hence, with a 

particular focus on animal studies, there has been a great deal of investigation evaluating the 

growth factor and its optimal delivery methods.  

BMP delivery: Requirements for delivery systems 

 In vitro studies have demonstrated the efficacy of BMPs in the initiation of osteogenetic 

pathways, as well as subsequent activation and differentiation of mesenchymal cells.4  However, 

in vivo, there are often mixed results; as the protein can be degraded and tissue regeneration is 

inconsistent.19  Several factors effect BMP function in vivo.  The osteoinductive protein must 
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remain at the defect site for time enough to allow for the migration of tissue forming cells to the 

site, and their subsequent proliferation and differentiation.2  The mode of delivery of BMP is 

critical for its action.  Thus, there has been extensive investigation into the optimal delivery 

system and carrier for these proteins to the site of bone regeneration.  

 It is widely agreed that delivery systems for rhBMP-2 should be relatively easy and cost-

effective to manufacture, with the ability to be sterilized for in vivo use.20  The delivery system 

should be reliable and consistent in form, yet also malleable—with the capacity to be shaped to 

fit a wide variety of craniofacial defects.6  They should be porous, allowing the infiltration of 

mesenchymal cells and blood vessels; yet they should also be mechanically stable, with the 

ability to withstand compressive and tensile forces.20  The rate of resorption of the carrier itself 

should aim to mirror the rate of formation of the new bony tissue.  In addition, the rate of 

osseoregeneration should not be effected by inflammatory or foreign material reactions to the 

carrier substance itself.12   

 The biologic action of BMPs can be shaped by their carrier and the manner in which they 

are delivered.  The carrier has the ability to alter the local retention of the protein, the release 

kinetics and mechanism of release, and the overall dose of the protein necessary for 

osteoinduction and bone formation.2   

Site of action: 

 Most critically, the carrier should stabilize the protein, retaining it in place at the site of 

intended bone formation.  If delivered systemically, rhBMP-2 is rapidly cleared from the 

bloodstream; therefore, delivery of BMP directly to the site of desired bone formation, and in a  
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carrier that maintains adequate protein levels, is imperative.2  Early studies illustrated that a 

significantly larger percentage of the delivered dose of BMP is retained at the delivery site when 

the protein is administered in a gelatin or collagen-like substance as compared to in a purely 

soluble form.21  By retaining the protein at the delivery site, the pharmacokinetics of BMPs can 

be altered: Chen and Mooney7 note that delivery methods successful in sequestering growth 

factors at the site of action result in enhanced bone formation and require an overall lower dose 

of the growth factor. 

rhBMP-2 Release kinetics: 

 Much investigation has looked into the optimal release kinetic profile for rhBMP-2; yet 

there does not appear to be a clear consensus as to one particular profile that consistently leads to 

enhanced bone formation.  Studies have indicated that the extremes of protein release are not 

ideal: i.e. bolus delivery or incredibly low level, slow release do not improve results.20  In fact, 

much work has suggested that combining an initial burst release—in order to bring in necessary 

cell mediators and trigger vasculogenesis—with a slower, long-term delivery of the growth 

factor can lead to increased osteogenesis.22 

 Determining an ideal release kinetic profile is further complicated by the fact that in vivo 

factors can alter the functioning the growth factor and its delivery system.  Release kinetics are 

affected by the anatomical site of application.  As Geiger et al.20 suggest, when rhBMP-2 is 

delivered to a less vascularized area, diffusion of the protein away from that area might succeed 

the body’s ability to bring in the cytokines and cells necessary to commence bone formation.  

Thus, such situations would benefit from slower, more sustained release of the growth factor.  
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Different animal species — with variations in size and metabolism — might also require 

different release profiles of protein to best enhance bone formation.6   

 Release kinetics are difficult to monitor, particularly in vivo.  When delivered, the growth 

factors are subject to several biochemical factors that are not necessarily present in vitro.  For 

instance, bodily fluids, local proteins and enzymes, temperature, and pH can all affect the 

kinetics of release of rhBMP-2, as well as its subsequent bioactivity.2 

  

Protein dosage/concentration:  

 As suggested above, due to the inconsistent release profiles of rhBMPs, when used 

clinically, they are often delivered in supraphysiologic doses.  This ensures that a critical 

threshold of protein is isolated at the implant site and is maintained there for a sufficient period 

of time — this is, after all, the main role of growth factor delivery systems.2  Delivery systems 

that have the capacity to control protein release have the potential to decrease the overall dose of 

BMP necessary for bone regeneration at a defect site.10  Studies have indicated that by 

implementing a long-term, slow release delivery system, therapeutic results are enhanced, 

compared to a similar dose administered via short-term delivery.10, 23  A lower dose of BMP 

would lead to not only decreased overall cost, but also potentially fewer adverse side effects 

from the delivery of excessive amounts of the growth factor.   

Delivery systems for rhBMP-2:  

 With the aforementioned attributes as guidelines, many attempts have been made to 

engineer delivery systems for the optimal, sustained-release delivery of rhBMP-2.  In this 
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section, we briefly review of some of the material types and attempts that have been made for the 

sustained delivery of rhBMP-2.  There are four major categories of materials that have been 

examined for their use in drug delivery, each with their own associated advantages and 

disadvantages.2, 4, 6  They include natural polymers, inorganic materials, synthetic polymers, and 

composites of these. 

1) Natural polymers: 

 This category includes materials such as collagen (sponges, gels, demineralized bone 

matrix, or films), fibrin, chitosan, or hyaluronic acid.  Due to their animal sources, they tend to be 

biocompatible and naturally resorbable, and have the potential to naturally bind to certain growth 

factors.6  There are, however, potential issues including lack of availability and sourcing, 

difficulty in sterilization, and the potential for disease transmission.24  Several studies have 

investigated the use of such materials in the delivery of rhBMP-2.19-21 

 As suggested above, it has been suggested that collagen sponges are effective at 

sequestering rhBMP-2 at the defect site.  A 1998 study conducted by Hollinger et al.21 compared 

various treatment modalities for critical sized defects in the radii of rabbits: autograft, collagen 

sponge alone, rhBMP-2 soaked collagen sponge, or no treatment.  They concluded that 

delivering rhBMP-2 with a collagen sponge produced indistinct results from the autograft group, 

and improved results compared to collagen alone or no treatment at all.  The study utilized a 

large, 35 ug, dose of rhBMP-2 for the defect repair.21  A review of the use of collagen sponges 

for the delivery of rhBMP-2 references several similar studies that conclude that rhBMP-2 

delivered in a collagen carrier can be efficacious in bone formation.20  The authors note that 
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collagen sponges have the ability to elevate local levels of the protein at the defect site, 

compared to rhBMP-2 delivered alone in a liquid buffer.  Yet it is noted that estimates illustrate 

that 30% of the protein delivered in such collagen sponges is lost shortly after implantation.20  

Another group of investigators concluded that a gel combining heparin and chitosan for 

rhBMP-2 delivery in intramuscular injections in rats resulted in improved bone formation, when 

compared to rhBMP-2 implanted with type I collagen.19 

2) Inorganic materials: 

 Inorganic materials, such as calcium phosphate cements and ceramics, tend to have the 

structure most similar to that of bone.6, 24  Examples of such materials that have been used for 

rhBMP-2 carriers include hydroxyapatite (HAP) and beta tricalcium phosphate (β-TCP).  As they 

have a bone-like structure, they tend to be osteoconductive, providing a scaffold upon which 

bone formation can occur.  However, this structure can also render them brittle, with a limited 

potential for malleability.6  Porous HAP alone as a carrier for rhBMP-2 has illustrated limited 

potential for bone induction; partially, because the HAP itself does not resorb in a timely fashion.

25 

 With numerous advantages, β-TCP is promising for its use in the delivery of rhBMP-2.  

The ceramic material can be fabricated into three-dimensional scaffolds to fit defect sites; and its 

porous structure allows for the introduction of cells or other tissue-modifying factors.26, 27  In a 

study evaluating HAP versus β-TCP for the delivery of BMP-2, the β-TCP/BMP-2 system 

proved more effective at bone induction over a range of protein doses in a rat model.  Moreover, 

the authors noted that the retention of BMP-2 inside the scaffold was enhanced in the β-TCP 
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group compared to HAP/BMP-2 samples, suggesting an improved slow release delivery with the 

use of β-TCP.28 

  

3) Synthetic materials: 

 Unlike natural polymers, synthetic polymers do not require purification and do not pose a 

threat of disease transmission.  The most widely investigated material in this group are the 

poly(α-hydroxy acids), a class of synthetics composed of several polymers including 

poly(lactide) (PLA), poly(glycolide) (PLG), and the copolymer of these two monomers, 

poly(DL-lactide-co-glycolide) (PLGA).  Poly(α-hydroxy acids) are approved by the FDA, and 

are a common component of resorbable surgical sutures.29  Via hydrolysis, the polymers degrade 

into the component monomers.  Through various modes of processing, these synthetic materials 

can be formed into filaments, scaffolds, or microcapsules into which a growth factor, such as 

BMP-2, can be incorporated.10, 24, 30  RhBMP-2 is then released by diffusion through the polymer, 

or by polymer degradation;7 thus, providing slow, controlled growth factor release.  The greatest 

disadvantage of this group lies in the acidic byproducts released after hydrolysis.  The resultant 

decrease in pH has the potential to alter normal wound healing; and if the byproducts are not 

efficiently cleared, an inflammatory response can result.6   

 Poly(α-hydroxy acids) have been implicated for the the sustained delivery of BMP-2 and 

other growth factors.10, 31, 32  A 2010 study conducted by La et al.10 compared short-term versus 

long-term delivery of BMP-2 in mouse clavarial defects over a range of doses from 0 ug to 3 ug.  

In the short term delivery group, BMP-2 was suspended in a fibrin gel, while the long-term 

delivery system consisted of heparin-conjugated PLGA nanospheres suspended in a fibrin gel 
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that was loaded with BMP-2.  Electrostatic interactions between BMP-2 and heparin helped to 

maintain a local concentration of growth factor as well as control its slow release.  The authors 

concluded that long term delivery, with the incorporation of heparin-conjugated PLGA 

nanospheres, resulted in enhanced ossification at a lower dose of BMP-2 compared to the short-

term delivery samples.10  This study, among others,10, 31, 32 illustrates the successful delivery of 

BMP-2 at a sustained rate, utilizing a PLGA carrier.   

4) Composites: 

 Lastly, it has been the aim of some to attempt to combine components from the above 

groups in order to harness the advantages brought about by each material alone.   

  

 In the current paper, we discuss the delivery of rhBMP-2 in PLGA microcapsules.  

Microcapsules have the ability to provide sustained, slow release of proteins, growth factors, or 

drugs.7, 33  The goal of our work is to investigate a slow release delivery of the growth factor, 

with the hope of limiting the aforementioned side effect profile of rhBMP-2, and improving 

BMP-derived bone formation.  Previous work has concluded that rhBMP-2, encapsulated in 

PLGA microspheres, is efficacious for the sustained delivery of the protein.23, 32-34  In particular, 

work from our laboratory has evaluated the use of rhBMP-2/PLGA microcapsules in two in vivo 

models.  Wink et al.23 compared the delivery of rhBMP-2/PLGA microspheres and free rhBMP-2 

in subcutaneous injection implants in mice.  It was concluded that the sustained delivery of 

rhBMP-2 with PLGA microspheres reduced the effective dose of the growth factor required for 

ectopic ossification.  In a subsequent experiment, the same rhBMP-2/PLGA microcapsules were 
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investigated for the repair of a critical sized cranial defect in a rabbit model.35  Treatment groups 

consisted of no implant for repair, an empty collagen scaffold, a collagen scaffold loaded with 

free rhBMP-2, or a collagen scaffold loaded with rhBMP-2/PLGA microcapsules.  Again, the 

authors were able to conclude that the delivery of rhBMP-2/PLGA microcapsules resulted in 

improved bone formation, with greater volume and surface area, and effectively lowered the dose 

of rhBMP-2 required for bone formation, compared to other groups.35  

 The subject of protein encapsulation for the application or drug or growth factor delivery 

has been an area of extensive investigation.  Typically, encapsulation occurs through the 

formation of emulsions.  An emulsion results from the combination of two or more immiscible 

liquids that, due to their hydrophobic properties, create small, individual droplets.36  Emulsions 

can be oil-in-water (o/w), water-in-oil (w/o), or a combination of the above.  In the case of PLGA 

microcapsules, a water in oil in water (w/o/w) double emulsion is created to encapsulate 

rhBMP-2 in a PLGA shell.36  Conventionally, as in the studies described above, proteins have 

been encapsulated for delivery using a solvent extraction/evaporation method to create the 

double emulsion, resulting in a poly-disperse microcapsule sample.34, 37  Additionally, when 

proteins are encapsulated in such a manner, protein can capsulation efficiency is low, with often 

excessive protein loss.38, 39 

 Attempts have been made to improve upon the conventional encapsulation method, 

particularly by the application of microfluidics.23, 36, 40  Microfluidics involves the generation of 

one microcapsule at a time using a glass capillary device, thus producing monodisperse particles 

similar in size and shape, each fabricated in an identical fashion.36, 41, 42  The emulsions are 

created when a hydrophobic inner phase, containing a protein for encapsulation, is combined 
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with a hydrophobic middle phase (PLGA), all within a hydrophilic outer phase.  When the 

solvent from the middle phase evaporates, monodisperse microcapsules result.41  When proteins 

are encapsulated, there is virtually no loss of the inner layer protein.36, 43  

  

Scaffolds for rhBMP-2 delivery: 

 As noted above, ideal bone graft materials are malleable and have the ability to maintain 

the shape of the defect site.  For this reason, scaffold apparatuses are a key component in bone 

tissue engineering — providing an osteoconductive component.  Such materials provide an 

artificial matrix around which bone formation can occur.26, 44  Scaffolds not only provide a 

physical framework, but also encourage the proliferation and differentiation of tissue-forming 

cells; therefore, they are typically porous with a rough surface in order to encourage cell 

attachment.26  Three-dimensional pores throughout a scaffold allow for blood vessel infiltration, 

and the subsequent ingrown of new cells, nutrients, and tissues.45  Sharaf et al.46 describe the 

application of 3D printed poly(ε-caprolactone)(PCL) and beta tricalcium phosphate (β-TCP) 

scaffolds for their use in bone tissue engineering.  In an in vitro study, they concluded that PCL/

β-TCP scaffolds with smaller pore sizes produced increased infiltration and proliferation of bone 

marrow-derived progenitor cells, and enhanced new collagenous tissue formation.46 

Conclusion 

 The application of rhBMP-2 for bone tissue engineering holds great promise for 

researchers and clinicians in both the medical and dental fields.  It has clearly been demonstrated 

that the sustained, long-term release of the proteins can lead to improved ossification, owing 
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particularly to the rapid metabolism of the biologically active growth factor when it is delivered 

alone in solution.  Clinically, however, extreme, supraphysiologic doses of the protein are still 

being delivered to patients regularly, leading to instances of erratic, ectopic bone formation, and 

even life-threatening side effects.  Delivery systems for rhBMP-2 have been investigated 

extensively; yet still, further exploration into the best means of protein delivery — in order to 

curb the side effect profile and improve the quality of the bone generated — is warranted.   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