

University of Pennsylvania ScholarlyCommons

Protocols and Reports

Browse by Type

11-9-2015

SU-8 Delamination Resistance Study Report

Steven Henry University of Pennsylvania

Eric Johnston University of Pennsylvania

Justin Wen University of Pennsylvania, jwen@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/scn protocols

Henry, Steven; Johnston, Eric; and Wen, Justin, "SU-8 Delamination Resistance Study Report", *Protocols and Reports*. Paper 6. http://repository.upenn.edu/scn_protocols/6

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/scn_protocols/6 For more information, please contact libraryrepository@pobox.upenn.edu.

Keywords

SU-8, Delamination, Microfluidics

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Document No:1007 Revision: 1 Author: Danielle Soberman, Steven Henry SU-8 Delamination Resistance Study Report

SU-8 Delamination Resistance Study Report

Updated on 06/10/2016

Critical Factors

- Best treatments to prevent SU-8 photoresist delamination during development and PDMS casting and • peeling:
 - \circ BOE + Dehydration
 - BOE + SRD (Spin Rinse Dryer) + Dehydration
 - SRD + YES Oven (HMDS Priming)
- Flood exposing a 5um base layer of SU-8 underneath the desired SU-8 feature layer prevents delamination •

Table of Contents

- a. Goal
- b. Results
- c. Materials
- d. Equipment
- e. Protocol

Goal

To test SU-8 resistance to delamination induced by PDMS casting and peeling under various wafer pretreatment conditions

Results

Wafer Treatment	Result	Image	
No Treatment	Delamination	No Image	
5um SU-8 Base Layer	Pass	No Image	
Piranha + SRD + YES	Partial Delamination	Figures 1 & 2	
Piranha + SRD + Dehydration	Delamination	Figure 3	
BOE + SRD + YES	Partial Delamination	Figure 4	
BOE + SRD + Dehydration	Pass	Figure 5	
BOE + YES	Delamination	Figures 7 & 8	
BOE + Dehydration	Pass	Figures 9 & 10	
SRD + YES	Pass	Figure 6	
Surpass + IPA	Delamination	Figures 11 & 12	
Acetone + IPA + Dehydration	Delamination	No Image	
MCC 80/20	Partial Delamination	No Image	

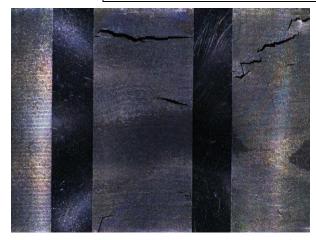


Figure 2: Partial delamination of Piranha + SRD + YES treated wafer, with 10um x 20um features and 40um height.

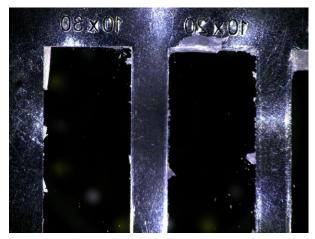


Figure 4: Delamination of Piranha + SRD + Dehydration treated wafer with 10x30um and 10x20um features and 40um height.

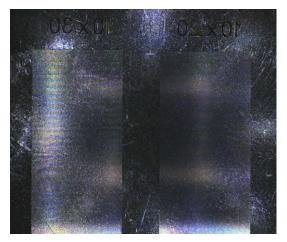


Figure 6: BOE + SRD + Dehydration treated wafer with 10x30um and 10x20um features and 40um height.

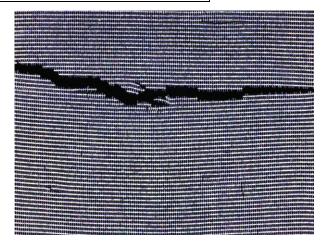


Figure 1: Piranha + SRD + YES treated wafer, 10um x 20um features and 40um height, 40x zoom.

Figure 3: Partial delamination of BOE + SRD + YES treated wafer, with 10um x 15um features and 40um height, 20x zoom.

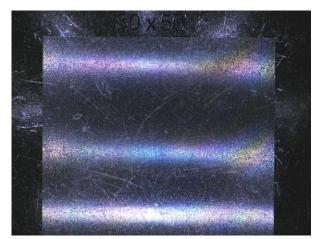


Figure 5: SRD + YES Oven treated wafer with 30x50um features and 40um height.

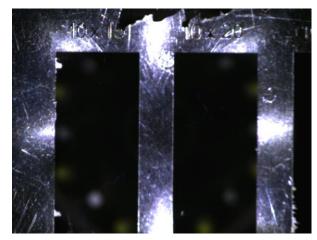


Figure 7: Delamination of BOE + YES oven treated wafer with 10x15um and 10x20um features and 40um height.

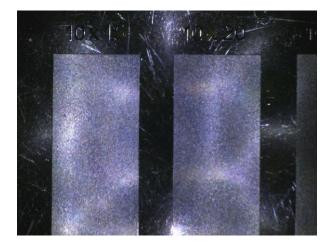


Figure 9: BOE + Dehydration treated wafer with 10x15um and 10x20um features and 40um height.

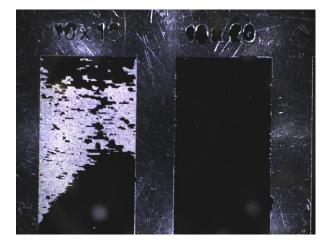


Figure 11: Delamination of Surpass + IPA treated wafer with 10x15um and 10x20um features and 40um height.

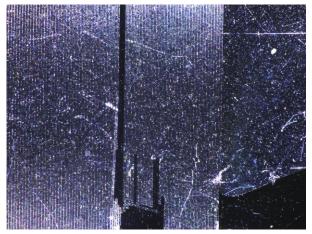


Figure 8: Partial delamination of BOE + YES oven treated wafer with 30x50um features and 40um height.

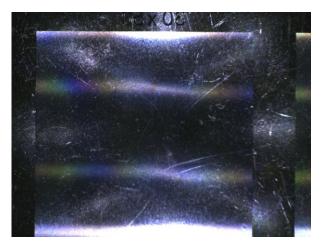


Figure 10: BOE + Dehydration treated wafer with 30x50um features and 40um height.

Figure 12: Delamination of Surpass + IPA treated wafer with 30x50um features and 40um height.

Materials

- SU-8 2005 (produced by thinning SU-8 2050)
- SU-8 2010 (produced by thinning SU-8 2050)
- SU-8 2025 (produced by thinning SU-8 2050)
- SU-8 thinner
- 3 inch diameter silicon wafers
- 4 inch diameter silicon wafers
- Line photomask (transparency film)
- Isopropyl alcohol (IPA)
- Acetone
- MCC 80/20
- Buffered oxide etchant (BOE) in HF hood
- Surpass
- PDMS/PDMS Curing Agent

Equipment

- Laurell spinner
- Hotplate
- YES Oven
- Spin Rinse Dryer (SRD)
- ABM mask aligner
- Vacuum Chamber

Protocol

a. Preparation of SU-8 2005/2010/2025 equivalent from SU-8 2050 stock

- 1. Weigh out SU8-2050
- 2. Calculate weight of thinner to add via:
 - a. $W_{thinner} = [(\% \text{ solids initial } / \% \text{ solids final}) 1]^*W_{resist}$
- 3. Mix with glass stirring rod in beaker for ~ 10 min until homogeneous
- 4. Aliquot using Teflon funnel into resist bottles
- 5. Allow bottles to degas by resting at room temperature overnight
- 6. Long-term storage of bottles in resist cabinet

b. Wafer pretreatments tested

- 1. No treatment (including dehydration)
- 2. Dehydration for at least 10 minutes at 200 $^{\circ}\mathrm{C}$
- 3. Acetone wash + IPA wash + nitrogen blow-dry + minimum 10 min dehydration 200 °C
- 4. $2 \min BOE$ wash + 2 min rinse in overflow bath + nitrogen gun-dry + minimum 10 min dehydration 200 °C
- 5. Dehydration for at least 10 minutes at 200 °C + spinning and flood exposing a base layer of SU-8 of $5\mu m$
- 6. Dehydration for at least 10 minutes at 200 °C + spinning a layer of MCC 80/20 primer (commercially available from MicroChem consisting of 20% HMDS and 80% PM Acetate)

c. MCC 80/20 spinning

- 1. Set spin parameters;
 - a. Vacuum = "req"
 - b. Step 1 of 2: 500 rpm, accel = "100", 30 sec
 - c. Step 2 of 2: 3000 rpm, accel = "300", 30 sec
- 2. Mounted wafer and ensured that it is centered
- 3. Poured MCC 80/20 primer to cover the entire wafer
- 4. Allowed the primer to sit for 10-15 seconds
- 5. Spun the wafer
- 6. Transferred spun wafer to 110 °C hot plate for 2 min bake

d. Resist exposure and development

- 1. Start the ABM UV lamp (channel A). After suitable warm-up period, measured bulb exposure power:
 - a. Using power meter set to channel A, measure power through transparency, glass blank, and Omega Optical filter: 14.2 mW/cm²
 - b. Compute required exposure time: $155 \text{ mJ/cm}^2 / 14.2 \text{ mW/cm}^2 = 10.9 \text{ sec}$
- 2. Mount wafer, photomask and filter
- 3. Contact to glass blank with leveling
- 4. Post-exposure bake:
 - a. 1 min at 65 °C
 - b. 5 min at 95 °C
- 5. Develop in bath of SU-8 developer for 5-10 min with periodic agitation
- 6. Rinse with IPA and acetone and nitrogen blow-dry

e. PDMS Casting and Peeling

- 1. Placed wafers in aluminum foil dishes of appropriate depth
- Mixed ~ 50 g of PDMS at 10:1 base:cure by weight ratio per wafer and degassed under vacuum until clear (~ 45 min)
- 3. Poured PDMS to a depth of 7 mm over each wafer on a level aluminum block
- 4. Transferred block to preheated 100 °C convection oven
- 5. Cured PDMS for 70 min
- 6. Allowed wafers to cool to RT
- 7. Using a new razor blade manually excised PDMS above the SU8 mastered lines and peeled
- 8. Inspected wafer and peeled PDMS for evidence of resist delamination

		Trough Length	Exposure Length		
Wafer Treatment	um	um	8.9 s	10.9 s	12.9 s
No Treatment	25	50	Delamination	Delamination	Pass
	10	50	Delamination	Delamination	Delamination
Dehydration	25	50	Delamination	Delamination	Delamination
	10	50	Delamination	Delamination	Delamination
Acetone+IPA+Dehydration	25	50	Pass	Pass	Pass
	10	50	Delamination	Delamination	Partial Delamination
BOE + Dehydration	25	50	Pass	Pass	Pass
	10	50	Delamination	Partial Delamination	*Partial Delamination

Table 1: 02/10/2014 results of delamination study performed on 1/31/2014 SU8 masters. Study was conducted by casting 10:1 (base:cure by weight) PDMS slabs to a depth of 7 mm and curing at 100 C for 70 min. After wafers cooled to RT, PDMS slabs were manually peeled from the master. Post-peel masters were inspected under an optical microscope for evidence of SU8 delamination. Out of all conditions tested, the BOE pre-treated wafer was the most robust in withstanding PDMS casting.

*Delamination likely due to edge bead and not wafer pretreatment at this location.

	Plateau Length	Trough Length	Delamination Test	
Base Layer Thickness	μm	μm		
5 µm	25	50	Pass	
	10	50	Pass	
10 µm	25	50	Pass	
	10	50	Pass	
27 μm	25	50	Pass	
	10	50	Pass	
Pretreatment				
MCC 80/20	25	50	Partial Delamination	
	10	50	Partial Delamination	

Table 2: Results of delamination study performed on 4/4/2015 and 4/26/2015 SU8 masters. Study was conducted by casting 10:1 (base:cure by weight) PDMS slabs to a depth of 7 mm and curing at 100 C for 70 min. After wafers cooled to RT, PDMS slabs were manually peeled from the master. Post-peel masters were inspected under an optical microscope for evidence of SU8 delamination.