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Electronically Monitored Medication Adherence Predicts Hospitalization
in Heart Failure Patients

Abstract
Background: Hospitalization contributes enormously to health care costs associated with heart failure. Many
investigators have attempted to predict hospitalization in these patients. None of these models has been highly
effective in prediction, suggesting that important risk factors remain unidentified.

Purpose: To assess prospectively collected medication adherence, objectively measured by the Medication
Event Monitoring System, as a predictor of hospitalization in heart failure patients.

Materials and methods: We used recently developed adaptive modeling methods to describe patterns of
medication adherence in a sample of heart failure patients, and tested the hypothesis that poor medication
adherence as determined by adaptive methods was a significant predictor of hospitalization within 6 months.

Results: Medication adherence was the best predictor of hospitalization. Besides two dimensions of poor
adherence (adherence pattern type and low percentage of prescribed doses taken), four other single factors
predicted hospitalization: low hemoglobin, depressed ejection fraction, New York Heart Association class IV,
and 12 or more medications taken daily. Seven interactions increased the predictive capability of the model:
1) pattern of poor adherence type and lower score on the Letter–Number Sequencing test, a measure of short-
term memory; 2) higher number of comorbid conditions and higher number of daily medications; 3) higher
blood urea nitrogen and lower percentage of prescribed doses taken; 4) lower hemoglobin and much worse
perceived health compared to last year; 5) older age and lower score on the Telephone Interview of Cognitive
Status; 6) higher body mass index and lower hemoglobin; and 7) lower ejection fraction and higher fatigue.
Patients with none of these seven interactions had a hospitalization rate of 9.7%. For those with five of these
interaction risk factors, 100% were hospitalized. The C-index (the area under the receiver-operating
characteristics [ROC] curve) for the model based on the seven interactions was 0.83, indicating excellent
discrimination.

Conclusion: Medication adherence adds important new information to the list of variables previously shown
to predict hospitalization in adults with heart failure.
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Background: Hospitalization contributes enormously to health care costs associated with heart 

failure. Many investigators have attempted to predict hospitalization in these patients. None 

of these models has been highly effective in prediction, suggesting that important risk factors 

remain unidentified.

Purpose: To assess prospectively collected medication adherence, objectively measured by 

the Medication Event Monitoring System, as a predictor of hospitalization in heart failure 

patients.

Materials and methods: We used recently developed adaptive modeling methods to describe 

patterns of medication adherence in a sample of heart failure patients, and tested the hypothesis 

that poor medication adherence as determined by adaptive methods was a significant predictor 

of hospitalization within 6 months.

Results: Medication adherence was the best predictor of hospitalization. Besides two 

dimensions of poor adherence (adherence pattern type and low percentage of prescribed doses 

taken), four other single factors predicted hospitalization: low hemoglobin, depressed ejection 

fraction, New York Heart Association class IV, and 12 or more medications taken daily. Seven 

interactions increased the predictive capability of the model: 1) pattern of poor adherence type 

and lower score on the Letter–Number Sequencing test, a measure of short-term memory; 

2) higher number of comorbid conditions and higher number of daily medications; 3) higher 

blood urea nitrogen and lower percentage of prescribed doses taken; 4) lower hemoglobin 

and much worse perceived health compared to last year; 5) older age and lower score on the 

Telephone Interview of Cognitive Status; 6) higher body mass index and lower hemoglobin; and 

7) lower ejection fraction and higher fatigue. Patients with none of these seven interactions had 

a hospitalization rate of 9.7%. For those with five of these interaction risk factors, 100% were 

hospitalized. The C-index (the area under the receiver-operating characteristics [ROC] curve) 

for the model based on the seven interactions was 0.83, indicating excellent discrimination.

Conclusion: Medication adherence adds important new information to the list of variables 

previously shown to predict hospitalization in adults with heart failure.

Keywords: heart failure, outcomes, hospitalization, patient compliance, medication 

adherence, self-care

Introduction
Heart failure (HF) is the most prevalent and fastest-growing cardiovascular disease 

worldwide.1 In the US among those 80 years of age and older, almost 12% of men 

and women have HF, and the prevalence is projected to increase by 25% by 2030.1 

Outcomes associated with HF include poor quality of life, high mortality, and frequent 

hospitalizations that contribute enormously to health care costs.1
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In 2010, the Patient Protection and Affordable Care Act 

was enacted to address the rising costs of health care in 

the US.2 In 2012, value-based purchasing was introduced, 

and hospitals began being financially spurred to produce 

quality outcomes while reducing inappropriate spending. 

Specifically, the Centers for Medicare and Medicaid Services 

Readmissions Reduction Program financially penalizes 

health care systems when the 30-day all-cause readmis-

sion rates for Medicare patients are higher than expected in 

particular diagnostic categories. HF is one of the targeted 

diagnoses, so efforts to identify modifiable factors predicting 

HF hospitalizations are increasingly important.

Numerous investigators have attempted to predict hos-

pitalization in adults with HF. In a recent review, Giamouzis 

et al2 summarized risk factors for hospitalization as sociode-

mographic, clinical, blood and other test results, comorbidity 

burden, and cardiovascular, noncardiovascular, quality of life, 

psychosocial, and disease-management factors.2 Others have 

attempted to synthesize these results by developing models 

that can be used to predict hospitalization risk.3–9 None of 

these models has been highly effective in prediction. The 

C-index (the area under the receiver-operating characteristics 

[ROC] curve) in the various studies ranged from 0.57 to 0.74, 

suggesting that important risk factors remain unidentified. 

The purpose of this study was to assess medication adher-

ence as a predictor of hospitalization in adults with HF in 

conjunction with other possible predictors.

Poor medication adherence is ubiquitous in chronically 

ill patient populations.10 In a review of medication adherence 

in HF, Wu et al11 noted that most investigators have found 

nonadherence rates of 40%–60% of HF patients. Prior studies 

have demonstrated that disease-management interventions 

emphasizing evidence-based medications can decrease hos-

pitalization rates,12 but few studies have addressed the risk 

of hospitalization associated with medication nonadherence 

in adults with HF. The few studies that have been done sug-

gest that hospitalization rates are higher when medication 

adherence is poor.13–16 These studies are limited, however, to 

retrospective analyses of such electronic data as pharmacy 

records.

In this study, we describe patterns of prospectively 

collected, objectively measured medication adherence in a 

sample of HF patients and test the hypothesis that medica-

tion adherence is a significant predictor of hospitalization 

within 6 months. This approach addresses several important 

gaps in the literature. First, collecting the data prospectively 

negates the need for decision rules regarding the coding of 

electronic data. Second, medication adherence was measured 

objectively with the Medication Event Monitoring System 

(MEMS®) (Aardex; MW Healthcare, Richmond, VA, USA), 

which is more accurate than self-reported medication-

adherence data. Third, we used a statistical approach17,18 that 

allowed us to utilize more fully these medication-adherence 

data to characterize patients’ adherence patterns and to 

identify adherence types with similar patterns, rather than 

the usual approach of classifying adherence using an arbi-

trarily devised cutoff (usually .80%).19 Fourth, while these 

methods have been used before to model MEMS adherence 

data for human immunodeficiency virus-positive patients17,20 

and for African-American patients with hypertension,21 

they have not been used before with adherence data from 

HF patients.

Materials and methods
This was a planned analysis of longitudinal data from a pro-

spective cohort study of a consecutive sample of 280 adults 

with HF. Subjects were enrolled from three outpatient settings 

in the northeastern US. Institutional review board approval 

was obtained at each site, and all participants gave informed 

consent. Data were collected between 2007 and 2009. A 

detailed description of study methods has been published 

previously.22

Patients with a confirmed diagnosis of chronic HF were 

enrolled, regardless of etiology or ejection fraction. Inclusion 

criteria addressed the ability to participate (eg, vision, 

hearing, English literacy, and cognition).15 Cognition was 

screened using the Telephone Interview of Cognitive Status 

(TICS).23 Exclusion criteria were major depressive illness, 

dementia, renal failure requiring dialysis, or a recent history 

of serious drug or alcohol abuse.

Participants were followed for 6 months, with study visits 

at baseline, 3, and 6 months. Data on self-care and cognition 

were collected at each study visit. Most data were collected 

during home visits by research assistants. Nurses abstracted 

clinical information from medical records. For this analy-

sis, we tested a wide range of demographic, social support, 

clinical, self-care, symptom, and cognition variables, so as 

to add to the knowledge of significant predictors previously 

identified by others.2

The outcome variable of hospitalization was measured 

using the electronic medical record at each participat-

ing institution. In addition, participants were telephoned 

monthly and asked about hospitalizations (and also emer-

gency department visits). Medical records were obtained if 

the visit took place at a hospital outside of the home insti-

tution. In this analysis, all hospitalizations were analyzed, 
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regardless of cause (not including emergency department 

visits).

Measures
MEMS was used to measure medication adherence 

objectively. Our methods for collecting MEMS data are 

described in detail elsewhere;24 the MEMS data were used 

differently in that study. In brief, using a microprocessor in 

the cap, the MEMS® 6 device measures openings that are 

presumed to be for the purpose of removing a pill to take it 

orally. MEMS data were collected on one medication sched-

uled to be taken at fixed times. MEMS data were collected 

over a 6-month interval and downloaded at 3 and 6 months. 

Deviations in use, such as accidental openings, were noted in 

study diaries and used to correct the time-stamped medication 

events stored in the device before analysis. In this study, we 

considered three aspects of adherence based on MEMS data: 

adherence-pattern types, consistency of adherence patterns 

with the prescribed rate, and the percentage of prescribed 

doses taken (PDT). The medication controlled by MEMS did 

not change for any of the patients during the study. For one 

patient, the prescribed rate for the medication controlled by 

MEMS changed during the study. The adherence pattern for 

this patient was adjusted to account for this change.

Demographic variables, such as age, race, and sex were 

collected by self-report. In addition to measuring education 

as the number of years of formal schooling, the American 

National Adult Reading Test (ANART) was administered as 

a test of premorbid intellect.

Social support was measured in multiple ways. Marital 

status was self-reported, as was living alone (yes/no) and the 

overall quality of the support received defined as “emotional 

support, information, material help, errands, etc,” with 

responses ranging from 1 (poor) to 4 (very good). In addi-

tion, support from family, friends, and significant others 

was assessed using the Multidimensional Scale of Perceived 

Social Support (MSPSS).25 Responses range from 1 (very 

strongly disagree) to 7 (very strongly agree), with higher 

scores indicating higher perceptions of support.

Clinical variables included health-related factors, such as 

exercise in the last week, which was assessed by self-report 

with responses of 1 (none) to 4 (more than 3 hours). Body 

mass index (BMI) was calculated from self-reported height 

and measured body weight. Variables abstracted from the 

medical record included months since diagnosed with HF, 

most recent blood urea nitrogen (BUN), creatinine, hemoglo-

bin (Hgb), serum sodium, and ejection fraction. The Charlson 

Comorbidity Index26 was completed based on chart review. 

Any history of sleep apnea, atrial fibrillation, hypertension, 

diabetes, cerebral disease, renal disease, anemia, or pulmo-

nary hypertension was noted. Pulse and systolic and diastolic 

blood pressure were measured during the enrollment visit. 

Treatment quality was rated separately for systolic and dia-

stolic HF, using those treatments advocated in HF clinical 

guidelines (eg, angiotensin-converting enzyme-inhibitor use, 

beta-blocker use) in place at the time.27

Self-care was measured with the Self-Care of HF Index 

(SCHFI), which assesses self-care maintenance, management, 

and confidence.28 Each scale is standardized to a score of 100, 

with higher scores indicating better self-care. Knowledge of 

HF was assessed using the Dutch HF Knowledge Scale29 with 

15 dichotomously scored items; higher scores indicate higher 

knowledge of HF treatment, HF symptoms, and symptom 

recognition. The number of medications taken daily was 

calculated based on a review of medication containers by 

research assistants during home visits.

Symptoms measured by self-report included trouble 

breathing or ankle swelling in the past month (yes/no), gen-

eral health perceptions, rated 1 (excellent) to 5 (poor), and 

health perception compared to 1 year prior, rated 1 (much 

better now than 1 year ago) to 5 (much worse now than 1 year 

ago). Information on functional class was gathered during 

the home visit using a standardized interview. A single car-

diologist scored New York Heart Association (NYHA) class 

in every subject. Fatigue was measured using two items from 

the Kansas City Cardiomyopathy Questionnaire.30 Each item 

is scored 1 to 7; scores were reversed so that higher scores 

indicated more fatigue. Sleepiness was assessed with the 

Stanford Sleepiness Scale31 and the Epworth Sleepiness Scale 

(ESS).32 ESS respondents rate the likelihood of falling asleep 

in eight soporific situations on a scale ranging from 0 (never 

dozing) to 3 (high chance of dozing). ESS scores are summed, 

with higher scores indicating higher sleepiness or categorized 

as sleepy ($11) or not sleepy (,11). Sleep quality was 

assessed with the Pittsburgh Sleep Quality Index.33 A global 

score (0–21 points) is obtained by summing the scale domain 

scores. Higher scores indicate poorer sleep quality; a score 

.5 is categorized as poor sleep. Depression was measured 

using the Patient Health Questionnaire.34 Responses range 

from 0 (not at all) to 3 (nearly every day), with higher scores 

indicating more depression.

A neuropsychological test battery was administered 

to measure simple attention (Psychomotor Vigilance Task 

[PVT]), complex attention (Trail Making Test B), process-

ing speed (Digit Symbol Substitution Test, Trail Making 

Test A), working memory (Probed Recall Memory task), 
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and short-term memory (Letter–Number Sequencing [LNS] 

test).35 Transformed lapses .4.69 on the PVT were scored as 

abnormal.36 Scores on each of the other tests were classified 

based on age-based norms. In addition, the number of tests 

scored as abnormal was used as a summary measure of 

cognitive status. Anyone scoring .1.5 standard deviations 

on two or more of the cognition tests was scored as having 

cognitive decline. Efforts made to compensate for perceived 

memory issues were measured and summarized in the Com-

pensatory Activities Scale.

Data analysis
Other than standard analyses (eg, descriptive statistics), 

analyses were conducted using the adaptive methods of 

Knafl et al.17 These methods were used to characterize adher-

ence patterns for individual patients over their 6 months in 

the study, classify these patterns into adherence types, and 

identify dichotomous risk factors, individually and in com-

bination, for hospitalization.

Likelihood cross-validation
Adaptive methods use a K-fold likelihood cross-validation 

(LCV) approach for evaluating and comparing alternative 

models. Observations (eg, daily MEMS use) are randomly 

partitioned into K disjoint subsets called folds. For a given 

model, the likelihood for the data in each fold is computed 

from model parameter values estimated using the data in the 

other folds. These deleted fold likelihoods are normalized 

by the sample size and multiplied up into the LCV score for 

the model. Larger LCV scores indicate better models for 

the data under analysis. LCV scores can be used for model 

selection in any analysis context where parameter estimation 

is based on maximizing a likelihood or any likelihood-like 

function (eg, a quasi-likelihood). All analyses used 10-fold 

LCV scores.

A larger LCV score does not necessarily mean the 

model is preferable. If the smaller LCV score is not too 

much smaller and the associated model has a simpler 

structure (eg, using an untransformed predictor compared 

to using the log transform of that predictor), then this model 

is preferable as a parsimonious, competitive alternative. 

LCV-ratio tests, analogous to likelihood-ratio tests, can 

be used to assess whether a smaller LCV score is substan-

tially (significantly or distinctly) smaller or not. These are 

χ2-based tests and are expressed in terms of a cutoff for a 

substantial percent decrease in the LCV score. The cutoff 

changes with the sample size (for the formula, see [6] of 

Knafl et al17).

Individual adherence patterns
The study-participation period for each patient was subdi-

vided into equally sized intervals of length at least 3 days 

with no more than 100  intervals. Counts of MEMS cap 

openings and opening rates per day per dose were computed 

for each interval. These counts and rates were modeled using 

Poisson regression models (as is appropriate for such data). 

Both mean adherence and adherence variability based on 

dispersion parameters37 were modeled as possibly nonlinear 

functions of time during study participation. LCV scores 

were based on extended quasi-likelihoods.

The predictors for the Poisson regression models 

were power transforms of time with possibly fractional 

(ie, noninteger) powers, and so these are called fractional poly-

nomial models.38 An adaptive process was used to identify an 

effective set of such power transforms. The adaptive process 

starts from the constant model and systematically expands the 

model, adding in power transforms of time to either the mean 

adherence or dispersion component of the model, continuing 

as long as the LCV score does not decrease by too much (as 

determined by an expansion-stopping tolerance parameter). 

The expanded model is then contracted by removing trans-

forms of time or possibly the intercept term as long as the 

LCV score does not decrease by too much (as determined by a 

contraction-stopping tolerance parameter). The transforms of 

the contracted model determine the adherence pattern under-

lying the data for how both mean adherence and adherence 

variability change over time (examples are given in Figure 1, 

as described in the “Results” section).

Since the prescribed rates were not the same for all 

patients (ranging from one to three doses per day), adherence 

patterns were normalized by the prescribed number of doses 

to be comparable. The ideal adherence pattern is then the 

one with constant mean adherence equal to 1 and constant 

adherence variability equal to 0. A summary measure of how 

consistent the observed adherence pattern is with this ideal 

pattern is calculated for each patient as a percentage, and so 

is called percentage consistency.

Adherence types
Mean adherence and adherence variability were estimated at 

20 proportionally spaced times within each patient’s study 

participation period (5%, 10%, . . . 100%). The 40 vectors 

formed from these two types of estimates were clustered 

into adherence types, ie, sets of patients with similar mean 

adherence and adherence variability over time. A wide 

variety of clustering procedures with varying numbers of 

clusters were considered.17 These were compared using LCV 
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scores based on likelihoods for multivariate normal-mixture 

models (as is appropriate for cluster analyses). The selected 

clustering alternative was the one generating the best score 

among those with at least 5% of the patients in each cluster 

(to avoid sparse clusters). Plots of averages of mean adher-

ence and adherence variability (ie, the centroids) were used 

in interpreting the clusters (see Figure 2, as described in the 

“Results” section).

Identifying risk factors for hospitalization
Potential dichotomous risk factors were identified for 

the dichotomous hospitalization-outcome variable. 
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Figure 1 Sample adherence patterns.
Notes: The raw data are plotted as diamonds. The middle curve is the estimated mean adherence over time while the other curves are unit error bands, ±1 estimated 
standard deviation around mean adherence.
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Most categorical predictors with more than two values were 

reduced to dichotomous predictors expected to be risk factors. 

For example, income level was reduced to not enough as the 

risk factor versus enough or more than enough. Otherwise, 

categorical predictors were represented by multiple dichoto-

mous risk factors. For example, employment status was rep-

resented by being retired versus not and being unemployed 

or disabled versus not. For each continuous and ordinal 

predictor, its observed values were adaptively grouped into 

two subsets of contiguous values. For each observed value 

of the predictor (or a rounded value to reduce the number of 

decimal digits) as a cutoff, LCV scores were computed for 

the model based on the indicator for having values above or 

below the cutoff. When a variable had missing values, these 

were conservatively grouped with the non-risk-factor values 

so that the effect of the associated risk factor held only for 

patients with nonmissing values for the underlying variable. 

The cutoff generating the best LCV score was chosen and the 

risk factor defined in terms of values either above or below 

the cutoff, depending on which of these choices had a posi-

tive effect on the outcome variable, ie, with odds ratio .1. 

To avoid sparse cases, only those cutoffs were considered 

for which at least 5% of the observations fell both above 

and below the cutoff. When a standard cutoff existed for a 

predictor (eg, PVT .4.69), that categorization was consid-

ered as well.

To be consistent with the handling of other predictors, 

adherence type was adaptively reduced to a dichotomous 

risk factor of poor-adherence types versus better-adherence 

types. Models of hospitalization were used for this purpose. 

The decision regarding which adherence types to assign to 

the two alternatives was made adaptively using LCV scores. 

In contrast to the handling of values for continuous and 

ordinal predictors, the alternate adherence types were not 

considered to be ordered.

Data for patients with at least some MEMS data were 

used to model hospitalization in terms of adherence and 

other available risk factors, and so data for patients with no 

MEMS data were missing for these analyses. Only outcome 

means were adaptively modeled and not outcome dispersions, 

using unit dispersions for all models (as for standard logistic 

regression modeling). Bivariate models were generated for 

all potential risk factors. Then, a multiple risk-factor model 

was generated considering only the risk factors with a sig-

nificant (P,0.05) bivariate effect. The adaptive modeling 

process, as used for generating individual patient adherence 

patterns in terms of the single predictor of time, was used 

for this purpose. This multiple risk-factor model provides a 
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parsimonious depiction of the combination of risk factors that 

affect hospitalization. Next, interactions between the poor-

adherence type risk factor with each of the other available 

risk factors were considered by starting with the model based 

on these two risk factors and their interaction and adaptively 

reducing that model to identify cases when an interaction 

term remained in the model. A multiple risk-factor model 

was generated considering these identified interaction effects 

along with the noninteraction risk factors with significant 

individual effects. Finally, an adaptive model was generated 

considering this same set of risk factors as well as possible 

interactions between any two of them to obtain a fuller assess-

ment of interactions between risk factors.

Results
Sample
A total of 280 HF patients participated in the study. Summary 

statistics are presented in Tables 1–6 for available variables 

within the six categories described earlier. For example, 

patients were primarily male (64.3%), white (62.5%), and 

retired (43.9%). Ages ranged from 24 to 89 years with a 

mean of 62.0 (standard deviation =12.5) years, while educa-

tion ranged from 8 to 29 years with mean of 13.9 (standard 

deviation =2.9) years. Over the course of the 6-month study, 

103 (36.8%) of the patients were hospitalized.

Individual patient adherence patterns
MEMS adherence data were available for 218 (77.9%) 

patients. Of these patients, 79 (36.2%) were hospitalized 

Table 1 Summary statistics for available demographic variables

Variable Observed range n (%)a Mean 
(SD)

Employment 
status

Retired 123 (43.9)
Unemployed or disabled 79 (28.2)
Employed (full or part time) 78 (27.9)

Sex Male 180 (64.3)
Female 100 (35.7)

Income Do not have enough 45 (16.1)
Have enough or more  
than enough

235 (83.9)

Insurance Government or none 155 (55.4)
Commercial or HMO 125 (44.6)

Race Non-white 105 (37.5)
White 175 (62.5)

Age, years 24–89 62.0 (12.5)
ANART score 0–49 29.8 (11.8)
Years of  
education

8–29 13.9 (2.9)

Note: aOut of 280 patients.
Abbreviations: SD, standard deviation; HMO, health maintenance organization; 
ANART, American National Adult Reading Test.

Table 2 Summary statistics for available social support variables

Variable Observed range n (%)a Mean 
(SD)

Living alone Yes 59 (21.1)
No 221 (78.9)

Marital status Single, divorced,  
separated, or widowed

121 (43.2)

Married or partnered 159 (56.8)
Quality of  
support

Satisfactory to good 105 (37.5)
Very good 175 (62.5)

MSPSS score 14–84 72.6 (11.5)

Note: aOut of 280 patients.
Abbreviations: SD, standard deviation; MSPSS, Multidimensional Scale of Perceived 
Social Support.

Table 3 Summary statistics for available clinical variables

Variable Observed 
range

n (%)a Mean 
(SD)

Exercise None 57 (20.4)
Some 223 (79.6)

Adherence to treatment 
guidelines

0.00–1.00 0.8 (0.2)

Body mass index 15.0–67.0 30.9 (7.9)
Blood urea nitrogen 6–97 25.4 (15.1)
Charlson total 1–11 2.8 (1.7)
Comorbidities 0–9 3.1 (2.1)
Creatinine 0.5–3.4 1.3 (0.6)
Diastolic blood pressure 45–103 69.0 (11.2)
Ejection fraction 5–80 35.4 (17.0)
Hemoglobin 7.9–18.4 13.0 (1.8)
Months since heart  
failure diagnosis

0–508 73.4 (71.1)

Pulse 42–100 69.7 (11.4)
Serum sodium 131–146 139.0 (4.0)
Systolic blood pressure 80–176 116.1 (18.4)

Note: aOut of 280 patients.
Abbreviation: SD, standard deviation.

Table 4 Summary statistics for available self-care variables

Variable Observed 
range

n (%) Mean 
(SD)

MEMS data availablea No 62 (22.1)
Yes 218 (77.9)

Adherence typeb Poor 63 (28.9)
Better 155 (77.5)

Prescribed rate for medication  
controlled by MEMSb

2–3 133 (61.0)
1 85 (39.0)

DHFKS score 7–15 11.7 (1.7)
SCHFI self-care confidence 42–100 75.8 (14.4)
SCHFI self-care maintenance 32–92 66.8 (11.9)
SCHFI self-care management 29–100 67.4 (18.7)
Total medications 1–25 9.9 (4.0)
Consistency, % 0.1–93.9 47.6 (34.8)
Prescribed doses taken, % 5.8–100 71.1 (25.9)

Notes: aOut of 280 patients; bout of 218 patients with available MEMS data.
Abbreviations: SD, standard deviation; DHFKS, Dutch Heart Failure Knowledge 
Scale; MEMS, Medication Event Monitoring System; SCHFI, Self-Care of Heart 
Failure Index.
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during the study. Hospitalization rates were not significantly 

different for patients with no MEMS data versus some MEMS 

data (χ2[1]=0.13, P=0.722).

Figure 1 contains plots of adherence patterns for seven 

exemplar patients. The y-axis of these plots is openings 

per day per dose with an ideal value of 1, while the x-axis 

is cumulative days of study participation. The raw data 

are plotted as diamonds. The middle curve is the esti-

mated mean adherence over time, while the other curves 

are unit error bands, ±1 estimated standard deviation (as 

extended to account for nonlinear dispersion) around mean 

adherence.

Patient 1 had mean adherence close to the prescribed 

rate with small variability, which was 93.4% consistent with 

adherence at the prescribed rate. Patient 2’s mean adherence 

was close to the prescribed rate, with small variability up 

to about 120 days of study participation. After that, mean 

adherence decreased somewhat with increased variability 

for 79.9% consistency with the prescribed rate. Patient 3 

had deteriorating mean adherence from about the prescribed 

rate to around half the prescribed rate, with low variability 

and 61.7% consistency. Patient 4’s mean adherence was 

close to the prescribed rate, with small variability up to 

about 150 days of study participation, after which adherence 

dropped to essentially zero for 40.0% consistency. Patient 5 

had relatively consistent mean adherence at around half 

the prescribed rate, with moderate variability and 15.5% 

consistency. Patient 6’s mean adherence started at about 

the prescribed rate and decreased to zero by about 90 days 

of study participation, with variability decreasing for a 

while and then increasing. After that, adherence remained 

at zero. This pattern was only 1.0% consistent with pre-

scribed adherence. In contrast, the PDT for this patient was 

48.9%, suggesting that the patient was adherent at around 

half the prescribed rate. The plot indicates that patient 6 

was adherent around the prescribed rate for about half the 

time and zero adherent the rest of the time, resulting in a 

percentage PDT close to 50%, but never around 50% at 

any time. In cases like this, percentage PDT provides a 

misleading assessment of adherence, since it is based on 

an assumption of constant adherence over time. Patient 7 

had mean adherence starting around half the prescribed rate 

and deteriorating quickly to nearly zero, with low variability 

and 0.1% consistency.

Adherence types
Cluster analysis identified seven adherence types. Figure 2 

contains plots of averages of mean adherence and of adher-

ence variability for patients in the seven clusters. These plots 

were used to generate the interpretations of the adherence 

types given in Table 7. The clusters were numbered so that 

averages of percentage consistency and percentage PDT 

decreased. Consequently, cluster 1 corresponded to the 

best adherence type, with mean adherence consistently 

very close to the prescribed rate and adherence variability 

consistently low. Cluster 7 corresponded to the worst adher-

ence type, with mean adherence starting at about half the 

prescribed rate and moderate adherence variability, then 

deteriorating quickly to low, not too much above zero mean 

adherence and adherence variability. The adherence patterns 

of patients 1–7 were allocated to clusters 1–7, respectively. 

The individual patterns of Figure 1 are only similar to the 

Table 5 Summary statistics for available symptom variables

Variable Observed range n (%)a Mean (SD)

General health 
perception

Poor 37 (13.2)
Fair to excellent 243 (86.8)

Health compared to  
a year ago

Much worse now  
than a year ago

24 (8.6)

Not much worse  
now than a year ago

256 (91.4)

Trouble breathing or  
ankle swelling within  
past month

Yes 125 (44.6)
No 155 (55.4)

NYHA class IV 50 (17.9)
I–III 230 (82.1)

Fatigue 2–13 6.5 (3.2)
SSS score 1–6 2.3 (1.2)
ESS score 0–23 7.0 (4.6)
PSQI global score 0–19 7.2 (4.1)
PHQ total 0–18 4.4 (3.6)

Note: aOut of 280 patients.
Abbreviations: SD, standard deviation; ESS, Epworth Sleepiness Scale; NYHA, 
New York Heart Association; PHQ, Patient Health Questionnaire; PSQI, 
Pittsburgh Sleep Quality Index; SSS, Stanford Sleepiness Scale.

Table 6 Summary statistics for available cognition variables

Variable Observed range Mean (SD)

CAS score 0–23 9.2 (4.4)
DSST score 11–96 53.4 (17.5)
LNS score 1–20 8.7 (3.5)
PMR score 0–4 2.0 (1.2)
PVT lapses 0–79 8.5 (13.1)
TICS score 26–40 33.6 (3.1)
TMTA score 14–120 43.8 (22.3)
TMTB score 8–300 111.2 (59.1)
Dimensions cognitively impaired 0–5 1.7 (1.0)

Abbreviations: SD, standard deviation; CAS, Compensatory Activities Score; 
DSST, Digit Symbol Substitution Test; LNS, Letter–Number Sequencing; 
PMR, Probed Memory Recall; PVT, Psychomotor Vigilance Task; TICS, Telephone 
Interview for Cognitive Status; TMTA, Trail Making Test A; TMTB, Trail 
Making Test B.
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associated plots of Figure  2  since these latter plots are 

based on averages.

Risk factors for hospitalization
The adaptively generated dichotomous risk factor based 

on the seven adherence types for predicting hospitaliza-

tion was the poor-adherence type, consisting of clus-

ters 4, 6, and 7, versus better adherence, consisting of 

clusters 1–3 and 5. Table 8 presents results for characterizing 

hospitalization, considering the variables of Tables  1–6. 

Individual risk-factor analyses identified 21  significant 

(P,0.05) risk factors for hospitalization: two demographic, 

zero  social support, seven clinical, f ive self-care, six 

symptom, and one cognition. The cutoff for a substantial 

percentage decrease in LCV scores for a sample of size 218 

is 0.68%. The percentage decrease exceeded this cutoff for 

16 (76.2%) of the 21 variables (LCV scores not reported), 

indicating that LCV ratio tests are more conservative than 

Table 7 Description of adherence types

Cluster n % Adherence types Average % 
consistency

Average % prescribed 
doses takenMean adherence Adherence variability

1 72 33.0 High Low 84.8 96.0
2 30 13.8 High to moderately high Low to high 64.9 88.2
3 24 11.0 Moderately high to moderate Moderate 49.6 71.7
4 18 8.3 High to zero later Moderate to zero 30.3 70.1
5 29 13.3 Below moderate to above  

moderate and then to  
below moderate

Moderate to moderately  
high and then to  
moderate

15.8 45.6

6 29 13.3 High to zero earlier High to zero 4.1 44.9
7 16 7.3 Moderate to low Moderate to low 2.7 5.8
Total 218 100

Table 8 Significant individual risk factors for hospitalization

Variable type Variable Risk factor At-risk group, n (%)a P-value OR 95% CI

Demographic Age, years $74 vs ,74 41 (18.8) 0.029 2.15 1.08–4.29
ANART score #34 vs .34 123 (56.4) 0.017 2.01 1.13–3.57

Social support –
Clinical Body mass index $41 vs ,41 27 (12.4) 0.029 2.48 1.10–5.61

Blood urea nitrogenb $21 vs ,21 or missing 115 (52.8) 0.040 1.81 1.03–3.17
Charlson total $3 vs ,3 100 (45.9) 0.006 2.19 1.25–3.85
Comorbidities $2 vs ,2 161 (73.9) 0.016 2.35 1.18–4.71
Creatinine $0.98 vs ,0.98 or missing 146 (67.0) 0.035 1.95 1.05–3.62
Ejection fraction #30 vs .30 or missing 105 (48.2) 0.026 1.89 1.08–3.31
Hemoglobin #14.1 vs .14.1 or missing 149 (68.3) 0.003 2.71 1.40–5.23

Self-care Adherence type Poor vs better 63 (28.9) ,0.001 3.47 1.89–6.39
SCHFI self-care management #92 vs .92 or missingc 89 (40.8) 0.027 1.88 1.07–3.30
Total medications $12 vs ,12 71 (32.6) ,0.001 3.25 1.80–5.89
Consistency, % #1 vs .1 29 (13.3) 0.001 3.61 1.76–7.40
Prescribed doses taken, % #44 vs .44 38 (17.4) ,0.001 3.90 1.88–8.10

Symptom Trouble breathing or ankle  
swelling within past month

Yes vs no 94 (43.1) 0.025 1.90 1.09–3.32

General health perception Poor vs fair to excellent 24 (11.0) 0.002 4.16 1.69–10.23
Health compared to a year ago Much worse now than  

a year ago vs not much  
worse now than a year ago

130 (59.6) 0.049 1.79 1.00–3.20

NYHA class IV vs I–III 41 (18.8) 0.001 3.13 1.56–6.29
Fatigue $6 vs ,6 132 (60.6) 0.009 2.21 1.22–4.01
PHQ total $12 vs ,12 12 (5.5) 0.034 3.80 1.11–13.1

Cognition TICS score #29 vs .29 36 (16.5) 0.014 3.26 1.27–8.17

Notes: aOut of 218 patients with some Medication Event Monitoring System data; bthe adaptive classification is equivalent to the standard classification of .20 vs #20; 
cpatients with missing SCHFI self care management score were the ones who did not have trouble breathing or ankle swelling.
Abbreviations: OR, odds ratio; CI, confidence interval; ANART, American National Adult Reading Test; NYHA, New York Heart Association; PHQ, Patient Health 
Questionnaire; SCHFI, Self-Care of Heart Failure Index; TICS, Telephone Interview for Cognitive Status; vs, versus.
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tests for zero coefficients, and so are similar to multiple-

comparison approaches. All standard classifications except 

the one for BUN were nonsignificant, but this was equivalent 

to the adaptive BUN classification.

Results for the adaptive multiple risk-factor model gen-

erated considering the 21 significant risk factors of Table 8 

are reported in Table  9. This model had five risk factors: 

lower Hgb, lower ejection fraction, poor adherence type, 

higher total number of prescribed medications, and NYHA 

class IV. The model had two clinical, two self-care, and 

one symptom risk factors, and no demographic, social sup-

port, or cognition risk factors. The LCV score was 0.56979. 

In contrast, the best individual risk-factor model based on 

poor MEMS adherence had an LCV score of 0.53527, with 

substantial percentage decrease of 6.06%, indicating that the 

multiple risk-factor model substantially improved on each 

of the individual risk-factor models.

Interactions with poor-adherence type were identified for 

three risk factors: poor-adherence type with lower ANART 

score (#34, 32 [14.7%] patients), with higher MSPSS score 

($54, 59 [27.1%] patients), and with lower LNS score 

(#8, 41 [18.8%] patients). The percentage decrease in LCV 

score for the model based on the poor-adherence type was 

insubstantial at 0.35% for the second of these interactions 

(with MSPSS score), but was substantial at 1.35% for the 

first and at 1.68% for the third.

The adaptive multiple risk-factor model generated con-

sidering these three interactions and the 21 significant risk 

factors of Table 8 included the single interaction between the 

poor-adherence type and lower LNS score. It also included 

the same four nonadherence risk factors from the nonin-

teraction model of Table 9. The LCV score was 0.58318, 

which was a substantial improvement on the noninteraction 

multiple risk-factor model with percentage decrease in the 

LCV score of 2.30%.

The adaptive model considering pair-wise interactions is 

described in Table 10 and included seven interactions (and 

no noninteraction risk factors):

1.	 poor-adherence type and lower LNS score

2.	 higher number of comorbid conditions and higher number 

of medications

3.	 higher BUN and lower percentage PDT

Table 10 Multiple risk-factor interaction model for hospitalization

Interaction term 1 Interaction term 2 At-risk group,  
n (%)a

P-value OR 95% CI

Variable Risk factor Variable Risk factor

Adherence type Poor vs better LNS score #8 vs .8 or missing 32 (14.7) ,0.001 6.40 2.30–17.8
Comorbidities $2 vs ,2 Total medications $12 vs ,12 64 (29.4) 0.001 3.46 1.68–7.11
Blood urea  
nitrogen

$21 vs ,21 Prescribed doses 
taken, %

#44 vs .44 21 (9.6) 0.035 4.29 1.14–16.2

Hemoglobin #14.1 vs .14.1  
or missing

Health compared  
to a year ago

Much worse now  
than a year ago vs  
not much worse  
now than a year ago

89 (40.8) 0.009 2.51 1.26–4.99

Age $74 vs ,74 TICS score #29 vs .29 11 (5.0) 0.008 11.70 1.92–71.7
Body mass index $41 vs ,41 or missing Hemoglobin #14.1 vs .14.1 or missing 23 (10.6) 0.003 5.08 1.77–14.6
Ejection fraction #30 vs .30 or missing Fatigue $6 vs ,6 62 (28.4) 0.008 2.80 1.31–5.96

Note: aOut of 218 patients with some Medication Event Monitoring System data.
Abbreviations: OR, odds ratio; CI, confidence interval; LNS, Letter–Number Sequencing; TICS, Telephone Interview for Cognitive Status; vs, versus.

Table 9 Multiple risk-factor model for hospitalization

Variable type Variable Risk factor At-risk group, n (%)a P-value OR 95% CI

Demographic –
Social support –
Clinical Hemoglobin #14.1 vs .14.1 or missing 149 (68.3) 0.008 2.74 1.30–5.80

Ejection fraction #30 vs .30 or missing 105 (48.2) 0.010 2.39 1.24–4.62
Self-care Adherence type Poor vs better 63 (28.9) ,0.001 3.41 1.74–6.68

Total medications $12 vs ,12 71 (32.6) 0.003 2.71 1.41–5.20
Symptom NYHA class IV vs I–III 41 (18.8) 0.005 3.22 1.43–7.22
Cognition –

Note: aOut of 218 patients with some Medication Event Monitoring System data.
Abbreviations: OR, odds ratio; CI, confidence interval; NYHA, New York Heart Association; vs, versus.
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4.	 lower Hgb and much worse perceived health now com-

pared to last year

5.	 older age and lower TICS score

6.	 higher BMI and lower Hgb

7.	 lower ejection fraction and higher fatigue.

The C-index for this model was 0.83 (values between 0.8 to 

0.9 are considered to provide excellent discrimination39).

To assess the possibility of collinearity between these 

seven interactions, we computed logistic regression models 

predicting each of these seven interactions as a function of the 

other six. The largest Nagelkerke R2 value for these models 

was 9.5%, indicating that collinearity was not a problem for 

the seven-interaction model.

Patients had zero to five of these risk factors. Of the 62, 

63, 59, 19, eleven, and four patients with zero to five of these 

interaction risk factors, respectively, the percentage hospital-

ized was 9.7%, 19.1%, 54.2%, 79.0%, 90.9%, and 100%. 

The hospitalization risk index model based on the count 

of the number of these risk factors as the only predictor of 

hospitalization had an LCV score of 0.61594, which provided 

a substantial improvement over the seven-interaction model, 

with percentage decrease in the LCV score of 1.18%. This 

model has a C-index of 0.82. As an example, using a cutoff 

of 0.5 for generating predictions (ie, predictions based on 

maximum likelihood), the sensitivity is 77.2% and the speci-

ficity 77.0%, and so well balanced.

Discussion
In this prospective study, we confirmed that both a poor 

type of medication adherence pattern and a low percentage 

of prescribed doses taken were important predictors of hos-

pitalization in adults with HF. In addition, we identified low 

Hgb, depressed ejection fraction, NYHA class IV, and taking 

12 or more medications daily as risk factors for hospitaliza-

tion. When interactions were considered, seven combinations 

of factors increased the predictive capability of the model: 

1) poor-adherence type and lower score on a test of short-

term memory, 2) higher number of comorbid conditions and 

higher number of daily medications, 3) poor kidney function 

(higher BUN) and lower percentage prescribed doses taken, 

4) lower Hgb and perceptions of poor health, 5) older age 

and lower score on the TICS, 6) higher BMI and lower Hgb, 

and 7) lower ejection fraction and higher fatigue. Patients 

with none of these seven interactions were unlikely to be 

hospitalized, but all of those with five of the seven interac-

tion risk factors were hospitalized over the 6-month period.

A pattern of poor medication adherence and taking a 

low percentage of prescribed doses were both associated 

with hospitalization in this sample. These results are consis-

tent with prior research,13,14,40,41 but those studies measured 

adherence using administrative claims data or retrospective 

review of hospital records, so the pattern of adherence and the 

percentage of doses taken could only be inferred. What this 

study adds is the prospective analysis of individual patterns of 

medication-taking behavior in relation to hospitalization.

An important factor interacting with a poor medication-

adherence type was impaired cognition. Cognitive deficits 

occur in a significant proportion of adults with chronic HF,42 

including deficits in memory.43 Prospective memory has 

been demonstrated to be related to medication adherence.44 

Although short-term memory as measured by the LNS and 

prospective memory are related, prospective memory is 

more encompassing, referring specifically to the ability to 

remember to do something in the future.44 As taking medi-

cation on a schedule requires that patients remember to do 

so, this result suggests that HF patients who have not com-

pensated for poor memory with a strategy to assist them to 

remember medications are at increased risk of hospitalization. 

One physiologic factor known to be associated with impaired 

cognition is poor kidney function.45 In this study, higher BUN 

levels interacted with taking a lower percentage of prescribed 

medication doses to predict hospitalization. A memory device 

to facilitate adherence may be particularly important in HF 

patients with impaired kidney function.

We found that patients taking multiple daily medications 

were likely to be hospitalized, perhaps because they were not 

taking their medications as prescribed.46 This was especially 

true in patients with more comorbid illnesses, where the 

number of medications and comorbid illnesses interacted to 

predict hospitalizations. This result is not surprising, consid-

ering the profile of those individuals with multiple chronic 

conditions who are taking numerous medications. Illness 

symptoms and medication side effects can be expected to 

make routine medication adherence challenging.47

Low Hgb, low ejection fraction, and poor functional 

status all predicted hospitalization. Previous investigators 

have identified a wide variety of clinical factors associated 

with hospitalization, including anemia.48 Although correc-

tion of anemia has been shown to slow the progression of 

HF and reduce hospitalization rates,49 more than one-third 

of the participants in our study were anemic using the World 

Health Organization definitions of ,13% for men and ,12% 

for women. Correction of anemia with subcutaneous eryth-

ropoietin is advocated in clinical guidelines and covered 

in the US by Medicare,50 but expense still may be limiting 

its widespread use. Low Hgb interacted with self-reported 
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perceptions of poor health, suggesting that those patients 

who were anemic were symptomatic enough to label them-

selves as getting worse over time. Low Hgb also interacted 

with high BMI, as might be expected for two conditions 

that cause high output failure. Depressed ejection fraction 

and poor NYHA functional class were both independently 

associated with hospitalization, as has been shown by other 

investigators.2

Limitations of this study include the relatively small 

sample size, compared to epidemiologic studies conducted 

with thousands of respondents, collected from a single region 

in the US. Participants were younger and better educated than 

other community samples. Strengths include the prospective 

design, the objective measurement of medication adherence, 

and the sophisticated statistical approach that accounted for 

general nonlinear adherence trajectories rather than simply 

categorizing adherence using the .80% cutoff in percent-

age PDT used by most prior investigators. This nuanced 

approach to understanding medication-adherence patterns 

provides important insights into patient behavior that cannot 

be discerned from epidemiologic research.

Future research is needed to identify predictors of non-

adherence. The World Health Organization adherence model 

suggests that socioeconomic, condition, therapy, patient, and 

health care-system dimensions contribute to nonadherence,51 

and further research is needed to explore these dimensions. 

Efforts to identify the strategies used by HF patients to 

remember medications is needed. Finally, it will be important 

to include cost in future studies, because Sokol et al40 demon-

strated that although nonadherence was associated with higher 

hospitalization risk in HF patients, there were no differences 

in costs compared to those who were more adherent.
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