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Bismuth Alloys

Abstract

The many-body empirical potentials that describe atomic interactions in the copper-bismuth system were
constructed using both experimental data and physical quantities obtained by ab initio full-potential linear
muffin-tin orbital calculations for a metastable Cu3Bi compound. These potentials were then used to calculate
the structure of a grain boundary in copper containing bismuth, which was at the same time studied by high-
resolution electron microscopy (HREM). Excellent agreement between the calculated and observed
structures is shown by comparing a through-focal series of observed and calculated images. This agreement
validates the constructed potentials, which can be used with a high confidence to investigate the structure and
properties of other grain boundaries in this alloy system. Furthermore, this study shows, that HREM
combined with computer modeling employing realistic empirical potentials can decipher with great accuracy
the structure of boundaries containing multiple atomic species.
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Interatomic forces and atomic structure of grain boundaries in copper-bismuth alloys
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The many-body empirical potentials that describe atomic interactions in the copper-bismuth system
were constructed using both experimental data and physical quantities obtained by ab initio full-
potential linear muffin-tin orbital calculations for a metastable Cu;Bi compound. These potentials were
then used to calculate the structure of a grain boundary in copper containing bismuth, which was at the
same time studied by high-resolution electron microscopy (HREM). Excellent agreement between the
calculated and observed structures is shown by comparing a through-focal series of observed and calcu-
lated images. This agreement validates the constructed potentials, which can be used with a high
confidence to investigate the structure and properties of other grain boundaries in this alloy system.
Furthermore, this study shows, that HREM combined with computer modeling employing realistic
empirical potentials can decipher with great accuracy the structure of boundaries containing multiple

atomic species.

I. INTRODUCTION

The atomic structure of grain boundaries in metallic
materials is the key to the microscopic understanding of a
wide variety of their physical and mechanical properties.
This is particularly important in alloys. For example, in
pure metals, with the exception of iridium,! grain boun-
daries are not susceptible to cracking. On the other
hand, grain boundaries in some intermetallic compounds
appear to be intrinsically brittle (see, e.g., Refs. 2 and 3),
while in disordered alloys segregation of impurities and
alloying elements to grain boundaries is the principal
reason for grain boundary brittleness (see, for example,
Ref. 4).

A very suitable model material for investigation of the
segregation and embrittlement phenomena is the copper-
bismuth system. Although the solubility of bismuth is
rather low, it has been demonstrated that the strong in-
tergranular embrittlement of this alloy is associated with
segregation rather than precipitation of bismuth at grain
boundaries.>® A remarkable phenomenon observed in
this system is the segregation-induced faceting’ ~'° which
was shown to be a reversible transformation driven by ad-
dition or removal of bismuth.® During aging at tempera-
tures below 700°C a saturation level of bismuth in grain
boundaries is reached before faceting occurs and the
bismuth concentration in the boundaries then remains
approximately the same after faceting has fully
developed.® This behavior changes abruptly in a very nar-
row range of temperatures, 700°C—-720°C, above which
desegregation occurs. This abrupt segregation-
desegregation behavior cannot be explained using stan-
dard equilibrium thermodynamics theories without as-
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suming an unreasonably large bismuth-bismuth interac-
tion.” To elucidate these phenomena we need to under-
stand the atomic structures of grain boundaries with
segregated bismuth as well as the facets which develop as
the result of segregation.

Until recently the principal experimental sources of in-
formation about the interfacial atomic structure were
macroscopic analyses, such as the examination of inter-
granular fracture surfaces, and mesoscopic observations,
for example, electron microscopic studies of grain bound-
ary dislocations. For some special grain boundaries x-ray
diffraction was utilized to extract more detailed structur-
al information!"!? but the determination of exact atomic
positions is not unambiguous.

However, in the last few years, high-resolution electron
microscopy (HREM) has been developing rapidly and
this technique can provide direct information on the
structure of material volumes of atomic dimensions. In
fact, from the systematic variation of the image contrast
with defocus, information on both the positions and iden-
tities of the atoms can be extracted.'>!* Notwithstand-
ing, an abiding interpretation of the HREM images can
only be made if a physically reliable model of the studied
structure is established and a direct comparison of ob-
served images with images evaluated theoretically on the
basis of this model performed. Recently, such studies
have been made, for example, for boundaries in pure
aluminum.'>!® For a binary alloy such an analysis was
accomplished by the present authors who investigated
the structure of the (111)/(111) symmetrical tilt grain
boundary corresponding to the £=3 misorientation (in
the notation of the coincidence site lattice) formed in a
copper-bismuth alloy by the reversible faceting which
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was induced by the segregation of bismuth.!’

The computer modeling of atomic structures of grain
boundaries has usually been made using empirical pair
and, more recently, many-body (embedded atom type) in-
teratomic potentials to describe the total energy of the
system as a function of atomic positions.’*"2° These po-
tentials are generally fitted to reproduce a variety of ex-
perimental data for the material studied. Exceptions are
fully self-consistent ab initio calculations of the structure
and energy of (001) twist boundaries in germanium,?!
tight-binding calculations of grain boundaries in sil-
icon??2 and calculations utilizing first principles pair po-
tentials, for example, the potential for aluminum derived
on the basis of the pseudopotential theory.!> Although
calculations employing empirical potentials are most reli-
able when studying generic features common to whole
classes of materials,?®?* they have also been successful in
revealing properties specific to certain materials, for ex-
ample, surface reconstructions in noble metals.?>?® Re-
cently, quite reliable many-body potentials have also been
constructed for binary alloys of noble metals?’ and for the
nickel-aluminum alloys.?®?° However, construction of
empirical potentials for binary alloys is frequently hin-
dered by insufficient experimental data needed for fitting
of the potential parameters. This is particularly so when
the system studied forms no ordered alloys or compounds
and possesses a low solubility. This is the situation en-
countered in the case of the copper-bismuth alloy for
which the only experimental data available is the enthal-
py of mixing for the liquid copper-bismuth solution at
1200 K.*

In this paper we first present the construction of the
many-body empirical potentials for copper-bismuth al-
loys. The proposition here is to use several quantities cal-
culated using an ab initio method within the local-density
approximation for a conjectural L1, Cu;Bi compound
when fitting the potentials. The validity of the construct-
ed many-body potentials is then assessed by comparison
with additional ab initio calculations. However, the most
important demonstration of their applicability is provid-
ed by the analysis of the atomic structure of the above
mentioned 2=3 (111)/(111) grain boundary facet con-
taining a high concentration of bismuth. The latter
represents the second part of the paper which is devoted
to the detailed structural examination of this boundary
which combines HREM and computer modeling and
leads to an excellent agreement between the experiment
and the theory.

II. MANY-BODY POTENTIALS
FOR COPPER-BISMUTH ALLOYS

The potentials describing atomic interactions were con-
structed employing the Finnis-Sinclair scheme!® modified
for alloys.?”?® In this approach the total energy of the
system of NV atoms is written as

N
E=3 EVSS

i=1 j¢1

\/PS , (1a)

where
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= 3 Ps5,(Ry (1b)
JFi

Suffices i and j refer to individual atoms and the suffices
S; and S refer to the species of the atoms involved. Both
V and ® are empirically fitted pair potentials and summa-
tion over j extends over those neighbors of the atom i for
which R;; is within the cut-off radii of these potentials.
The first term is a sum of pair-potential interactions and
the second term the many-body attractive part of the
cohesive energy. The square root dependence of the
latter term is justified when developing this scheme from
a tight-binding approach which incorporates orbital
charge conservation at individual atoms and utilizes the
approximation of the second moment of the density of
states; the potentials & are then identified with the
squares of the corresponding hopping integrals.!% 3!

For the binary systems the pair potentials constituting
the semiempirical scheme proposed by Ackland and Vi-
tek?’ are denoted V4, Vg, Vg, D, 4, Ppp, and D 4p.
Functions V 4 4, Vg, ® , 4, and ®z5 were taken to be the
same as those for pure elements. The function ® ,, was
chosen as a geometrical mean of ® ,, and ® g, which is
congruent with its interpretation in terms of hopping in-
tegrals. Hence, only the pair potential ¥V ,; was fitted to
alloy properties. However, in the present paper we not
only fit the potential V' g; but also rescale the potentials
Vgipi and ®p;; when fitting the alloy properties as de-
scribed below.

In order to be consistent with the functional forms
used for the pure elements,* we employed cubic splines
for V 45 so that the functions which make up the present
model are

V4a(R;;) E ad  H(r " —R,)(r*—R;)®,
@, ,(R 2 AMHREA—R)(RAA—R,;) (2)
VAB(Rij): kzlakAB (rkAB—'Rij)(rkAB_R,’j)3 >

where H (x) is the Heaviside step function. Vyzp and ®gp
have, of course, the same form as V g, and <I> Ag: For
copper and bismuth the parameters a4, 4;44,r24, and

RA* are summarized in Table I and parameters a B
and rUBi are presented in Table I1. The fitting procedure

through which these potential parameters were deter-
mined is discussed below.

The many-body potentials can conveniently be visual-
ized using the effective pair potentials.!” The original
definition was for pure elements but generalization to
binary alloys is straightforward and the effective pair po-
tentials for species S| and S, can be written as

cSl cSl
Vsisz(R)_ — t+——

Vs, Ve,

Vs sZ(R) q)S]SZ(R)

(3)

where ¢s, and cg are concentrations of species S, and
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TABLE 1. Potential parameters for V ,, and ® ,, for copper and bismuth; a; and A, arein eV and
r, and R, in units of the lamce parameter a. a =3.615 A for copper, a =3.800 A for pure bismuth in

the bee form and a =

=3.565 A for the scaled Bi-Bi potentials used in Cu-Bi alloys.

Copper Bismuth Copper Bismuth
a, 61.735259 0.000 000 r 1.225 1.250
a, —108.184 679 —58.981927 r, 1.202 1.200
a, 57.000 539 125.198 490 r3 1.154 1.150
a, —12.887966 —94.793 563 ry 1.050 1.050
as 39.163 819 96.254010 rs 0.866 0.900
a 0.000 000 30.792 014 3 0.707 0.866
A, 10.037 183 7.512 826 R, 1.225 1.250
A, 17.063 633 —9.795798 R, 0.990 1.050

S, respectively, and pgl and pgz are evaluated for a refer-

ence structure. The physical meaning of this potential is
that it describes the atomic interactions when the second
and higher derivatives of the many-body attractive part
can be neglected. The latter assumption applies if the
density of the structure studied does not differ appreci-
ably from the density of the reference structure. In the
following we use the effective pair potentials to display
the constructed many-body potentials.

A. Potentials for pure copper

The detailed explanation of the method of construction
of Finnis-Sinclair potentials for pure elements can be
found in Refs. 19 and 32. The potentials for copper used
in the present study are very similar to those developed in
Ref. 32 but they have been modified so as to eliminate the
“bump” in the pair potential, V,¢,, between second and
third neighbors.?”?® Both V¢, and ®c,c, are cut off at
the third nearest-neighbor separation and the pair poten-
tial Vycu, is purely repulsive. These potentials repro-
duce the equilibrium lattice parameter a, cohesive energy,

E_, elastic moduli C,i, Cy3, and Cyy, the vacancy forma-
tion energy, E/, and the 1/6(112) /(111) stacking fault
energy, V- All these quantities are summarlzed in Table
III. The effective pair potential, V& . = for which the
reference structure is the ideal fcc lattice is shown in Fig.
1.

B. Potentials for pure bismuth

At room temperature and atmospheric pressure
bismuth crystallizes in a body-centered trigonal structure
with a trigonal angle of 57°.> This phase is semimetallic
and so the essential assumption for the construction of
the many-body potentials defined by Egs. (1a) and (1b),
charge conservation at individual atoms, may not be val-

TABLF; II. Potential parameters for V,g;; a, are in eV/A?3
and r; in A.

a —0.046 488 " 4.800
a, 0.375487 I 3.920
a, 5.748 289 rs 2.800

id.3! However, we are not interested in using this poten-
tial for studies of pure bismuth but for defect calculations
in copper-bismuth alloys at bismuth concentrations well
below 50%. In these alloys bismuth is effectively subject
to a very high pressure owing to much smaller volume
per atom in copper than in bismuth. At the pressure of
90 kbar the trigonal bismuth transforms into a metallic
body-centered-cubic structure.3* Hence, many-body po-
tentials of the type used here are a valid approximation
for the description of atomic interactions in this high
pressure form of bismuth. However, the only directly
measured quantity for bcc bismuth is the lattice parame-
ter** while the cohesive energy and elastic constants have
only been measured for the trigonal phase.’>3° We es-
timated, therefore, the cohesive energy and elastic moduli
of the cubic phase on the basis of the corresponding
quantities of the trigonal phase.

For materials which may possess different structures at
different pressures the transition pressure can be deter-
mined from the common tangent of the dependences of
the cohesive energy on volume for the alternative struc-
tures (see, for example, Ref. 36). In order to estimate the
cohesive energy for bcc bismuth we inverted this pro-
cedure. Experimental values of the lattice parameters are
known for both the trigonal and bcc high pressure phase
of bismuth; they are 4.749 A and 3.8 A respectively. The
cohesive energy of the trigonal bismuth is E/=2.173 eV
and the pressure at which the transformation occurs,
identified with the slope of the common tangent, is p =90
kbar. Following the common tangent construction the
cohesive energy of the bcc phase may be estimated as
E.=E!—p(V,—V,.), where V, and V. are volumes

TABLE III. The quantities fitted by potentials for pure

copper and bcc bismuth.
Copper Bismuth

E. (eV) 3.518 1.75

a (A) 3.615 3.800
C. (eV/A?Y) 1.684 0.390
C,, (eV/A?) 1.214 0.132
Cu (eV/A?) 0.754 0.064

E/ (eV) 1.17 0.7
y (mJm~?) 30—50
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FIG. 1. Effective pair potentials for the copper-bismuth sys-
tem.

per atom in the trigonal and bcc phase, respectively. The
calculated value of E, which has been used when fitting
the potentials for bismuth, is presented in Table III. A
small error arises from the fact that the common tangent
does not pass through the minima of the cohesive energy
vs volume curves but in the present case this error is
smaller than the uncertainties in the experimental values
of E! and p.

There is no analogous procedure which could be em-
ployed to determine with some confidence the elastic
moduli of the bcc phase on the basis of those for the tri-
gonal phase. However, in the body-centered-trigonal
bismuth the trigonal angle is 57° and if it were 60° the
structure would be simple cubic. This suggests that the
deviation from the cubic symmetry is only small. Indeed,
when choosing the coordinate system such that its axes
are parallel to the edges of the cube which would result if
the trigonal angle were 60°, the tensor of elastic moduli is
very similar to that of a cubic crystal in the sense that
those elastic moduli which are exactly zero in the cubic
case, are much smaller than those which are nonzero for
the cubic symmetry. Owing to the lack of other guide-
lines, we identified the elastic moduli of bcc bismuth with
the moduli C,;, Cy,, and C4, of the trigonal bismuth in
this coordinate system; they are summarized in Table III.

Finally, the vacancy formation energy was used as a
fitting parameter when constructing the many-body po-
tentials for pure metals. In the case of bismuth this has
not been measured for either trigonal or bcc structure.
However, in many metallic systems the vacancy forma-
tion energy is close to one third of the cohesive energy
and thus we took Evf =E_/3; this is the value given in
Table III. The fitting of the potentials Vg, and Pg;p;,
which are cut-off between the second and third nearest-
neighbor separation, was then performed in the same way
as in the case of Cu and other pure elements.’> The
effective pair potential Vs, for which the reference
structure is the bcc lattice of bismuth, is shown in Fig. 2
by the solid curve. Using this potential we calculated the
cohesive energies of the following structures: fcc, hcp
with the ideal c /a ratio, simple cubic, simple hexagonal,
diamond, graphite, and A 15 lattice. In each case the cor-
responding lattice parameter was found by mini-
mizing the energy at the external pressure of 90 kbar.
For all these structures the cohesive energy was found to

MIN YAN et al. 47

25 30 35 40 45 50
r (A)

FIG. 2. Effective pair potentials for bismuth. The solid curve
corresponds to the original potentials for bcc bismuth and the
dashed curve to the scaled potential used in the case of the
copper-bismuth alloys.

be lower than for the bcc phase and thus the constructed
potential, indeed, prefers the bcc structure over a number
of other alternatives.

C. Potentials for alloys

Since copper and bismuth do not form any ordered
structures and the solubility of bismuth in copper is very
low [about 0.003 at. % at 800°C (Ref. 37)], there are vir-
tually no experimental data to be fitted for the copper-
bismuth system. Attempts to construct potentials for
this system have been made in the past but met only with
a limited success. For example, Maeda, Vitek, and Sut-
ton®® took the measured enthalpy of mixing in the liquid
solution®® to be the same in the solid solution and as-
sumed that the average atomic volume follows Vegard’s
law. In order to obtain more reliable fitting parameters
we calculated the total energy of a metastable L1,, fcc
based, Cu;Bi compound as a function of the volume per
atom and as a function of the applied tetragonal and tri-
gonal shear strains. These calculations, described in
more detail in Appendix A, were performed using the
all-electron self-consistent full-potential linear-muffin-
tin-orbital method within the local-density approxima-
tion.3>* As a result we obtained the equilibrium lattice
parameter, the bulk modulus, the tetragonal shear
modulus G =21(C;;—C,,) and the trigonal shear
modulus C,, for this metastable compound. These calcu-
lated quantities, which are summarized in Table IV, were
then used as “empirical” data.

In the present scheme the equilibrium condition
dE /d =0, where  is the volume of the unit cell, leads
to the equation

2 S |Vis, (Ry)— =0, @)

i=1j#i

55, (Rip) |R

\/s

where the summation over i includes four atoms of the
unit cell of the L1, structure and the summation over j
extends over all the neighbors interacting with the atom
i. The bulk modulus B = —Q(d?E /d Q?) is then
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TABLE IV. The lattice parameter, @, bulk modulus, B, and shear moduli, G and C,,, calculated for
metastable Cu;Bi and CuBi compounds using the ab initio method and constructed many-body poten-
tials, respectively.
Cu;Bi in the L1, structure CuBi in the B2 structure
Ab initio Present Ab initio Present
calculation potentials calculation potentials
a (Az 3.909 3.909 3.410 3.440
B (eV/AY) 0.743 0.743 0.619 0.368
G (eV/AY) 0.144 0.144 0.115 —0.050
Cy (eV/A3) 0.324 0.442 0.125 0.252
L Vs (Ry)——Vig (Ry)— —— |®% s (R,)— -4 ¢ (R,) | |R2
Q i§1 jéi 5,8, Rij R; 5,8, i 5,8, ij R; ] ij
> <1>S S (R;;)R; (5)
v AT
and the tetragonal and trigonal shear moduli are
6=-L 3|3 [vys Ry -1 ——Vis (R;)— DY (R;)— P s (R;)
16Q = i [} RU \/PS Rij ij
Xii'(Xii—Yii') 2 X,%(_Yz
> @ (R S @5 (Ry) ©)
Rj 2\/Ps j#i o) R k=i K R
and
C44=—1—é S |Vils, (Ry) == Vs, (Ry)—— = |® s (R;)— =~ 5 (R,)
s 2|2 R R, Vs, | 5T Ry
2y2
Xij Yij 1

R 13' 2\/Ps

JFi

where X;; and Y;; are x and y components of the vector
connecting atoms / and j in the cube coordinate system.
The fitting of the potential parameters then proceeded

as follows. As explained above, in the present scheme

q)CuBi(Rij )= ‘/q)CuCu(Rij )(DBiBi(Rij ). (8)

In the first approximation the Cu-Cu and Bi-Bi potentials
were taken as those constructed for pure elements and
thus at this stage only the parameters of the potential
Vcupi Were determined so as to fit the data for the alloy.
The cut-off radius, »$"B, was fixed at a value between the
third and fourth nearest-neighbor separation in the
copper lattice so that the ranges of Cu-Cu and Cu-Bi in-
teractions are similar. Two of the coefficients aF"Bi for

X;Y,
Z(DSS(RU

the potential V.5 were then determined for chosen
values of rC"Bl such that Egs. (4) and (5) were satisfied
precisely, fitting thus exactly the lattice parameter and
the bulk modulus of the theoretical Cu;Bi compound.
The third coefficient could be determined by fitting the
cohesive energy of this compound using Eq. (1a). Howev-
er, while the cohesive energy is also determined in ab ini-
tio calculations, its absolute value is notoriously impre-
cise in the framework of the local-density approximation
and, therefore, it was not utilized in the fitting procedure.
Instead, this coefficient was determined so as to repro-
duce the enthalpy of mixing for the liquid copper-
bismuth solution at 1200 K, which was measured by
Lomov and Krestovnikov,*° as precisely as possible. The
latter part of the fitting utilized a Monte Carlo simulation
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which is described in more detail in Appendix B.

In the second step new values of the parameters B
were chosen and the Bi-Bi potentials scaled such that the
equilibrium lattice parameter of the bcc bismuth is small-
er than originally. This scaling corresponds to rigidly
shifting the potentials Vp;;, and ®p;p;, towards smaller
values of 7, as demonstrated in Fig. 2 by the scaled
effective pair potential Vs (dashed curve). Physically,
the scaling leads to a reduction of the size of the bismuth
atoms which will be smaller when embedded in copper
than in the pure form. The Cu-Cu potentials were not
changed. This fitting procedure was then repeated for
several different values of the parameters rg"®' and
several different scalings of the bismuth potentials, until
the best fit was attained not only for the enthalpy of mix-
ing but also for the shear moduli G and C,,. The Bi-Bi
potentials used in the semiempirical scheme for Cu-Bi al-
loys are then the scaled potentials for which the best fit
was achieved; they correspond to the lattice parameter of
bee bismuth ag;=3.565 A. The corresponding effective
pair potentials V& o (the reference structure the ideal L1,
Cu,Bi structure) and Vg, for the scaled potentials (the
reference structure the bec lattice) are shown in Fig. 1.

A test of the constructed many-body potentials was
performed by comparing the equilibrium lattice parame-
ter and bulk and shear moduli of CuBi in the metastable
B2, bce based, structure, calculated using the potentials,
with those evaluated ab initio, employing the same
method as for the L1, Cu;Bi. The latter calculations are
again described in more detail in Appendix A. In the
case of the B2 structure the equilibrium condition and
the bulk and shear moduli are again given by Egs. (5)—(7)
but the summation over i extends now over two atoms of
the unit cell of this structure. The results of both ab ini-
tio and many-body potential calculations are summarized
in Table IV. It is seen that the lattice parameter of the
B2 phase evaluated ab initio is well approximated by that
calculated using the many-body potentials. Thus the
volume per atom is well reproduced even for this high
concentration of bismuth. However, the bulk and trigo-
nal shear moduli are reproduced only within a factor of 2
and the tetragonal shear modulus is negative for the case
of the many-body potentials, indicating that the B2 struc-
ture is in this scheme unstable with respect to the tetrago-
nal shear deformation. Nonetheless, considering the very
low solubility of bismuth in copper, concentration of
bismuth as high as that encountered in the case of the B2
alloy is unlikely to be found either in the bulk or in the
vicinity of extended defects such as interfaces. Hence,
the constructed potentials are suitable for atomistic stud-
ies of extended defects in copper-bismuth alloys provided
the concentration of bismuth is well below 50% although
it can be close to or in excess of 25%. However, the ulti-
mate test of the potentials is a comparison of calculated
and observed structures; one such study combining calcu-
lations and HREM is presented in the following section.

III. ATOMIC STRUCTURE OF THE
==3(111)(11T) TILT BOUNDARY

As mentioned in the Introduction, segregation-induced
faceting of grain boundaries is a common phenomenon in
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copper-bismuth alloys.”®1° This process is reversible
in that the loss of bismuth from the boundaries results
in a defaceting reaction!® In pure copper the
2=3(111)/(111) symmetrical tilt boundaries with the
rotation axis [110] and misorientation 70.53° are the
coherent twin boundaries. Upon first examination, it
does not seem likely that bismuth should segregate to
these interfaces. Indeed, previous HREM results show
that no segregation takes place to coherent twins if they
are present in the sample prior to segregation.'*

On the other hand, it was observed that in Cu-Bi alloys
segregation of bismuth induces the formation of
(111)/(111) facets which contain a high concentration of
bismuth.”!® Considering that no direct segregation to
the coherent twin takes place, these observations suggest
that the (111)/(111) facets are formed by the transforma-
tion of other boundaries which already contain bismuth,
in particular general curved boundaries with the £ =3
misorientation. This conclusion agrees with a recent con-
ventional TEM study*! of grain boundary transforma-
tions in this system. In this work it was found that the
initially curved grain boundaries faceted only after
significant aging time and the faceted boundaries between
grains with misorientation = =3 contained a high percen-
tage of (111)/(111) facets.

The above experimental evidence indicates that
segregation-induced faceting in the Cu-Bi system is asso-
ciated with the formation of a new two-dimensional
phase. Hence, the structure of these facets is of principal
interest when studying the segregation-induced transfor-
mations of boundary structures and related effects on
properties such as interfacial cohesion. Fortunately, the
(111)/(111) facets are ideally suited for HREM analysis
since the boundary plane does not deviate from the {111}
plane and it can thus be maintained parallel to the elec-
tron beam. This provides an excellent opportunity to
carry out a combined experimental and theoretical inves-
tigation of their structures and assess at the same time
the validity of the many-body potentials constructed in
this paper. The main results of this study have been re-
ported briefly in Ref. 17 and in this paper we present a
more detailed analysis.

A. Model structure deduced from the HREM study

The HREM analysis has been performed using a JEOL
JEM 4000EX microscope. The sample containing the
above mentioned boundary was tilted such that the elec-
tron beam was aligned along the common crystal direc-
tion for both grains which is the rotation axis [110]. Im-
ages were then recorded at several values of objective lens
defocus. From the systematic variation of the image con-
trast with defocus we can extract information on both the
positions and identities of the atoms.!>!* In general, this
involves an iterative process in which calculated images
of model structures are compared to the experimental im-
ages. When interpreting these images, many model struc-
tures, commensurate with the observed periodicities
within the interface, were first constructed geometrically,
without any consideration of the energy and stability of
these structures. Comparison with the experiment was
then made by calculating images arising from these mod-
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els as a function of defocus using the multislice formal-
ism.*? Material and microscope parameters of the calcu-
lation were determined using the images of the bulk
copper grain away from the boundary for calibration. In
this way, the specimen thickness, microscope focal spread
and beam convergence as well as the defocus correspond-
ing to each image, were determined.

The model structure which led to the best match of
calculated and observed images can be described as fol-
lows.** In the framework of the “ABC” depiction of the
sequence of {111} atomic planes in an fcc crystal, the
>=3(111)/(111) twin in pure copper can be represented
as

A-B-C-A-B—(;T-B-A-C-B-A-C , 9)

where the vertical lines mark the position of the bound-
ary. The reconstructed model structure could be
represented in the same way but in the marked layer C of
(9) one third of the copper atoms are replaced by hexago-
nally arranged Bi atoms. However, the Bi atoms are cen-
tered outside this atomic plane so that a physically more
appropriate representation of the model structure is

4-B-C-A-B-C'iIC(Bi)-B-4-C-B-4 , (10)

where C’ denotes a plane of copper atoms in which one
third of the atoms were replaced by hexagonally arranged
vacancies, and C(Bi) the plane of bismuth atoms posi-
tioned above these vacancies.

B. Simulated structure

The atomistic modeling of the ==3(111)/(111)
boundary in copper bismuth was carried out using the
structure described by (10) as a starting configuration.
The calculation was then carried out as follows. A block
of (copper) atoms, containing the boundary studied was
first constructed geometrically. The boundary region was
then modified by replacing some of the copper atoms by
bismuth atoms so as to form the structure described
above. The relaxation calculation was then performed
using a molecular statics technique in which the total en-
ergy of the block, given by Eq. (1a), has been minimized
with respect to the positions of the individual atoms as
well as with respect to the relative rigid body displace-
ment of the two adjoining grains. This displacement has
components both parallel and perpendicular to the
boundary so that there are neither any tensile nor
compressive stresses normal to the boundary nor shear
stresses parallel to the boundary present in the final
configuration. The displacement perpendicular to the
boundary represents the expansion and thus the calcula-
tion corresponds to relaxation at constant pressure.

In the direction perpendicular to the boundary the
block is effectively infinite but it was found that it was
sufficient to limit the relaxation to twenty two {111} lay-
ers on each side of the boundary. In the directions paral-
lel to the boundary periodic boundary conditions have
been maintained throughout the calculation. The small-
est possible repeat cell of this structure is %[ITO]
X 1[112]. However, reconstructions leading to larger
unit cells may occur, similarly to what has been observed
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in the case of free surfaces.** For this reason calculations
were also carried out for larger repeat cells of the type
n3[110]X m1[112], where n and m are integers. Howev-
er, the same structures were found for n =m =1, n =1,
and m =2 as well as for n =2 and m =4.

The relaxed structure is shown in Fig. 3 where copper
atoms are represented by small circles and the bismuth
atoms by large circles and also distinguished by shading.
In Fig. 3(a) the structure is projected onto the (110) plane
and no distinction is made between atoms belonging to
the six subsequent (110) planes which comprise one re-
peat distance of the unit cell in the [110] direction. In
Fig. 3(b) the structure is projected onto the (111) plane.
For reasons of clarity only one (111) layer of copper
atoms from the lower grain and the bismuth layer adja-

[111]

v

[112]

[110]

v

[112]

FIG. 3. The relaxed structure of the Z=3(111)/(11T1)
boundary containing bismuth. (a) The structure projected onto
the (170) plane. (b) The structure projected onto the (111)
plane.
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cent to it are shown; no atoms belonging to the upper
grain are displayed.

The overall expansion of the bi-crystal, caused by the
rigid body displacement of the two grains across the
boundary, is 1.88 A. This is not far fl‘OIl"l’ one interplanar
spacing of {111} planes in Cu (2.087 A) and thus the
boundary structure can be interpreted to a good approxi-
mation as splitting of one of the {111} planes, C, into
two, C' and C(Bi) planes, containing Cu and Bi, respec-
tively. The boundary is not, therefore, symmetric in the
sense that there is no mirror symmetry across the geo-
metrical boundary plane as it is in the twin boundary in a
pure fcc material. Furthermore, the expansion is not
concentrated only between the layers adjacent to the lay-
er of bismuth but spreads nonuniformly across a number
of {111} layers (=8). In particular, the separation be-
tween the layer of bismuth atoms [ C(Bi)] and the layer of
copper atoms with vacancies (C’) is 1.46 A, while the
separation between the next layer of copper atoms and
the bismuth layer is 2.65 A. Thus, while the bismuth
atoms [i.e., the whole layer C(Bi)] are contracted towards
the plane of copper containing vacancies (C’), the overall
expansion between the copper layer C’ and the copper
layer above the bismuth layer is°2.023 A and, therefore, a
small overall contraction, 0.14 A, must occur in between
copper layers further away from the bismuth layer.

C. Comparison between simulated and observed structures

In order to make a detailed comparison of the calculat-
ed and observed structures, a series of images, corre-
sponding to the same defocus conditions and thickness as
in the HREM study, were calculated for the relaxed
structure using the multislice formalism. The parameters
for the multislice calculation are presented in Table V.
The critical parameters of thickness and defocus were
determined using the images of the copper grains adja-
cent to the boundary for calibration. For the alloy sys-

TABLE V. Material and microscope parameters used in the
image simulations.

Slice dimensions

[112] 443 A
[111] 42.67 A
[170] 128 A
Maximum spatial
frequency in
reciprocal space .
[112] 482 A
[111] 8.00 A !
Thickness 38.34 A
Focal spread 100 A FWHM
Convergence 2 mrad
C; 1 mm
Defocus —316 A, —636 A, —828 A, —1020 A
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tem studied, the assumption that the grains are pure
copper is valid due to the low bulk solubility of bismuth
in copper at 600 °C (Ref. 37) which was the aging temper-
ature; at equilibrium, there should be one bismuth atom

FIG. 4. Experimental (left column) and calculated (right
column) image series with objective lens underfocus increasing
down the figure. The marker represents 15 A.
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for every 2740 copper atoms.

The results of the image simulations are presented in
Fig. 4. In this picture, increasing underfocus (—316 to
—1020 A) runs down the page; the images corresponding
to the calculated structure are in the right column and
the experimental images in the left column. The calculat-
ed images clearly reproduce the systematic contrast
changes in the experimental image. Most importantly,
the periodicities within the boundary plane along the
[112] direction are preserved as is the expansion of the
structure in the [111] direction, perpendicular to the
boundary plane. In the first image, the boundary consists
of a centered row of discrete light contrast with a slight
asymmetry of the contrast of the first pure Cu plane
bounding the interface. In the second image, the bound-
ary appears as a ladder structure with streaking present
between the atom contrast within the interface. In the
third image, the boundary again consists of light contrast
centered in the boundary although it tends to be more
diffuse than in the first image. In the fourth image, it is
seen that the (200) fringes terminate adjacent to dark con-
trast in the boundary.

The degree of match in the image series is strong evi-
dence for the very high accuracy with which the struc-
ture has been predicted theoretically. The contrast clear-
ly reflects the asymmetric nature of the boundary struc-
ture described above. In the images of Fig. 4, the con-
trast above the boundary plane tends to be somewhat
stronger than that below the plane. This contrast is a
Fresnel effect arising from the asymmetrical position of
the bismuth atom plane in the interface. Furthermore,
the total calculated expansion (1.88 ;\), i.e., the relative
displacement of the two grains in the direction perpendic-
ular to the boundary, is within the experimental limits of
the accuracy in the HREM (=0.1 A), in a perfect agree-
ment with the experiment.

IV. DISCUSSION

The results presented here demonstrate that HREM
studies and theoretical structural analyses can be used
synergistically to decipher with a great accuracy the
structure of grain boundaries containing multiple atomic
species. At the same time these results provide a firm evi-
dence that the empirical central force many-body poten-
tials are capable to describe with a sufficient accuracy
atomic interactions even in relatively complex systems
such as Cu-Bi provided an appropriate and sufficient in-
put is used in their construction. For this purpose the
use of self-consistent ab initio electronic structure calcu-
lations to provide ‘“‘empirical” data was of principal
significance since this allows sampling of crystal
configurations which are not attainable experimentally.
This approach was also employed very successfully when
constructing potentials describing the interaction of bo-
ron with nickel and aluminum in the Ni;Al compound.*’

The ab initio calculations were performed using the
all-electron self-consistent full-potential linear-muffin-
tin-orbital method within the local-density approxima-
tion*>*? and the data obtained are the equilibrium lattice
parameter, the bulk modulus and the tetragonal and tri-
gonal shear moduli for metastable Cu;Bi in the L1, struc-
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ture. While the moduli provide important information
on the response of the structure to shear and dilatational
strains, the most important information acquired is the
equilibrium density of the Cu-Bi alloy at bismuth concen-
trations comparable to those found in the boundaries
studied, i.e., the atomic size of bismuth in copper. As
seen from Table IV, the calculated volume per atom in
Cu;Bi is 26% larger than in pure copper and in CuBi
68% larger. If the Vegard’s law is applied then the
volume per atom would be 33% and 66% larger than in
pure copper for Cu;Bi and CuBi, respectively, when us-
ing the bce bismuth as the reference state. Although the
deviation of the calculated atomic volumes from the
Vegard’s law is not very large, if used as a guideline for
fitting the potentials the size of the bismuth atom in
copper would be appreciably overestimated at lower con-
centrations of bismuth. At the same time when studying
segregation and interfacial structures the size effect is a
very important and, possibly, governing parameter.
Hence, the correct estimation of this parameter is the
most significant contribution of the ab initio total energy
calculations performed in this study. Comparison of cal-
culations employing the constructed potentials with addi-
tional ab initio calculations for a metastable B2 CuBi al-
loy shows that these potentials can be employed for a
wide range of bismuth concentrations when considering
the size effect, although shear instabilities might arise at
high bismuth concentrations.

However, the most important test of the applicability
of the constructed potentials is the comparison between
the calculated structure of the ==3(111)/(111) grain
boundary containing bismuth and the HREM observa-
tions. The overall quality of the match between experi-
mental images and images calculated for the relaxed
structure of this boundary is quite remarkable. The
series of images produced via simulation reproduces all
the important features of the experimental images includ-
ing the periodicities of the boundary structure, the rela-
tive rigid-body displacements of the adjoining grains
across the interfaces, in particular the expansion across
the boundary, the systematic changes in contrast with in-
creasing defocus, the termination of lattice fringes at the
interface and even the special Fresnel effects due to the
asymmetrical position of the bismuth atoms within the
interface. There are two features, best seen by comparing
the second images in the series (defocus =—636 A),
which are less pronounced in the simulated images than
in the experimental images.

Firstly, in the second image the contrast in the inter-
face is composed of white dots which are interconnected
by diffuse streaks. These streaks are stronger in the ex-
perimental image than in the simulated image. The most
likely origin of this discrepancy is that the model of the
interface is an ideal periodic boundary in an infinite bi-
crystal while in reality the boundary contains defects or
distortions within the material or due to the intersection
of the interface with the crystal surface. Since each im-
age is a two-dimensional projection of a three-
dimensional structure, any deviations from the model
structure will be integrated through the thickness. The
presence of these defects or distortions could lead to a
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smearing of contrast in the images at certain defocus
values; in fact, it is at this value of objective lens defocus
that the HREM can most sensitively detect local dis-
placements of atoms. [It is important to point out the
variation in the sensitivity of the images to different
features of the structure at different values of the objec-
tive lens defocus. We have found that images at defocus
values near the value for the second image are most sensi-
tive to changes in atom position in which the atoms do
not move as a rigid close-packed plane. This is most like-
ly due to the greater degree to which the displacement of
individual atoms or columns of atoms are reproduced in
the HREM image; this effect has been referred to as local-
ization*® and has been shown to be maximized at defocus
values in this range for nominal atom separations in the
range of 2 A.%” In contrast, images at this defocus value
are not sensitive to rigid shifts in lattice planes, for exam-
ple, the contraction of the bismuth atomic plane (Cy;)
into the adjacent copper plane containing vacancies (C’).
In this case, a greater sensitivity for this structural
feature is seen at defocus values lower and higher than
that of the second image. Therefore, especially for the
case of alloys, cursory observation of a single image or
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even a calculated match to a single experimental image
will not be sufficient to study complex boundary struc-
tures especially when those boundaries contain multiple
atomic species.]

A second aspect of the second experimental image,
which is not fully reproduced in the model calculations,
is that the pairs of white dots within the interface, i.e., C’
and C(Bi) layers, nominally positioned such that the line
connecting them is perpendicular to the interface plane,
are slightly rotated out of this perpendicular alignment;
e.g., the image of the C(Bi) layer is slightly shifted along
the [112] direction away from the C position. This
feature cannot be reproduced by varying the image simu-
lation parameters within the boundary conditions of the
current experiments. A possible origin of this misaligned
contrast was discussed previously by Luzzi.'* If some
bismuth has been lost from the material near the surface,
the interface would be capped by the ideal (111)/(111)
twin structure near the surfaces. This sandwich consist-
ing of ideal twin/interface with Bi/ideal twin would then
be viewed in projection ([110]) in the HREM. With the
constraint that the material away from the interface must
be good bulk copper, the structure would be as follows:

|
Twin near surface: A4-B-C-4-B-C—A—B-4-C-B-4-C-B-4,
Interior: A-B-C-A-B-C'-C(Bi)-B-A-C-B-A-C-B-A,
Twin near surface: A-B-C-A-B—C—A—? -A-C-B-A-C-B-A,

As imaged by the HREM (in [ 110] projection), the three
structures are in perfect registry on both sides of the in-
terface. Within the interface, the C’ defective copper lay-
er remains in registry with the surface twins, e.g., C
above C' above C. However, the C(Bi) layer is now out of
phase with the twinned layers, e.g., 4 above C(Bi) above
A. When viewed in projection along [ 110] direction, the
atoms in these 4 and C layers are displaced with respect
to each other by a /12[112]. Since magnitude of this dis-
placement is well beyond the resolution capabilities of the
HREM, the projected image of the atoms will be shifted
to a position intermediate between the 4 and C positions.
This produces an apparent rotation of the pair of white
dots [C’ and C(Bi)] as seen in the image. It can also be
expected that loss of bismuth near the surface would lead
to structural relaxations at the boundary between the in-
terior and surface layers. These relaxations could lead to
the diffuse imaging effects discussed above which are seen
in the image at this value of defocus.

In spite of the two features of the images discussed
above, the overall quality of the match between experi-
mental images and calculated images of the theoretically
determined relaxed structure of the £=3(111)/(111)
facet containing bismuth, is quite remarkable. This
agreement represents an excellent validation for the con-
structed many-body potentials for the copper-bismuth
system which can now be used with a high confidence to
investigate the structure of those grain boundaries which
are experimentally inaccessible as well as related atomic
level processes such as kinetics of segregation and associ-
ated structural transformations in the boundaries.
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APPENDIX A: METHOD OF CALCULATION OF THE
TOTAL ENERGY AND ELASTIC MODULI

The all-electron self-consistent full-potential linear-
muffin-tin orbital (FP-LMTO) method developed within
the local-density approximation’®*° was used to calculate
the equilibrium lattice parameters, the bulk moduli, the
tetragonal shear moduli, G =1(C;; —C,,) and the trigo-
nal shear moduli, C4, for metastable Cu;Bi in the L1,
structure and CuBi in the B2 structure. In these calcula-
tions the total energy of the system was first evaluated as
a function of the lattice parameter and the equilibrium
lattice parameter ascertained from the minimum of the
energy. The bulk modulus was then found from the
second derivative of the total energy with respect to the
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lattice parameter. Similarly, to evaluate the shear moduli
the total energy was calculated as a function of the corre-
sponding shear distortion and the second derivative
determined the corresponding shear modulus. The
second derivatives of the total energy were evaluated by
numerical differentiation. Both structures studied are
stable with respect to tetragonal and trigonal distortions.
However, their total energy is higher than the weighted
sum of the total energies of pure components, so that
their formation is not energetically favorable and they
are, therefore, metastable structures.

In the FP-LMTO method no assumptions are made
about the potential or charge density and the muffin-tin
geometry is employed only when constructing the basis
functions, the muffin-tin orbitals (MTO’s). For this pur-
pose the space is divided into nonoverlapping muffin-tin
(MT) spheres and the interstitial region. The MTO’s are
then constructed following the scheme proposed by An-
dersen, Jepsen, and Glotzel.*® The total energy function-
al is evaluated for the full charge density and no
spheroidization is introduced. In order to represent
properly the charge density in the interstitial region, the
basis set has to involve more MTO’s than in the standard
LMTO calculations employing the atomic sphere approx-
imation where only MTO’s with zero kinetic energy
(k2=0) are retained.*** The additional MTO’s corre-
spond to negative kinetic energies (k*<0) and the so
called triple-x basis set which includes k*=0 and two
negative values of 2, is usually utilized. The FP-LMTO
method employed in this study comprises an effective nu-
merical treatment of three-center integrals which are re-
duced to a linear combination of two-center integrals.*
The charge density in the interstitial region is represented
by a linear combination of Hankel functions and the
Poisson equation is solved analytically in the interstitial
region; inside the MT sphere it is solved by a straightfor-
ward numerical integration. Thus the calculations are
much faster than in many other full-potential treatments.
This method has recently been applied very successfully
in a variety of studies (for example, Ref. 50).

In the present calculations we used as the basis twenty
two MTQ’s per atom which contain triple-x s and p orbit-
als and double-k d orbitals. The kinetic energies, K2, asso-
ciated with the envelope Hankel functions are not critical
and were taken here as 0.0, —1.0, and —3.0 Ry, respec-
tively. The muffin-tin radii were always chosen to be
1.5% smaller than the radii of touching spheres in order
to prevent overlapping of the spheres when applying
shear strains. In the construction of the MTO basis the
ratio of the muffin-tin radii for copper and bismuth, re-
spectively, was identified with the ratio of the corre-
sponding atomic radii (1.45). The core-electron charge
density was not frozen but recalculated self-consistently
in each iteration.

APPENDIX B: MONTE CARLO EVALUATION
OF THE ENTHALPY OF MIXING

The definition of the enthalpy of mixing of a random
A-B alloy is

AHmiszrand__cAEA_CBEB , (B1)

where E 4 and E? are the cohesive energies of elements A4
and B in their pure states, respectively, ¢, and cp are
their atomic fractions in the solution and E™" is the
cohesive energy of the solution. Since the experimental
value of the enthalpy of mixing is known for the liquid at
1200 K the cohesive energies of copper and bismuth,
entering Eq. (B1), have to correspond to this temperature.
In the case of bismuth the cohesive energy at room tem-
perature is 2.15 eV/atom.’! The change of this energy
with temperature was measured and at 1200 K it de-
creases by 0.38 eV/atom.>° Hence, we take EBi=1.77
eV/atom (the experimental error is +19%). E" is then
taken as the cohesive energy of the supercooled copper
liquid at 1200 K. This energy as well as E™" have been
obtained using the following Monte Carlo (MC) simula-
tion procedure.

The simulation has been conducted at constant temper-
ature, pressure, and total number of atoms. Periodic
boundary conditions have been applied in all three direc-
tions and the repeat cell has been taken as a cube contain-
ing about two thousand atoms. Two types of variations
of the simulated systems are considered in individual MC
steps. The first corresponds to the displacement and/or
interchange of atoms and the second to changing the to-
tal volume of the system which simulates the thermal ex-
pansion. In the single element system the first type of
change is attained by randomly picking an atom in each
MC step and displacing it by a small random amount. In
the alloy two atoms are randomly chosen in each MC
step and are allowed to exchange and randomly displace.
The second type of change allows a small random change
of the volume of the system studied. The decision wheth-
er to accept a given MC step is then made according to
the probability

N
p= 1+A—VV exp(— AE /KT) , (B2)

where AE is the energy change associated with the new
configuration, AV is the change of the total volume of the
system and V its original volume, N is the total number of
atoms in the system, k the Boltzmann constant and 7 the
absolute temperature. About five million MC steps were
always performed in order to obtain equilibrium thermo-
dynamical quantities.

In the case of pure copper a crystal with the fcc struc-
ture was first set up and the MC simulation performed at
1600 K. The equilibrium structure obtained in this way
is a liquid as it should be since copper melts at 1358 K.
Starting from this configuration further MC simulation
has been carried out at 1200 K. The equilibrium state
then represents the supercooled liquid at this temperature
and the cohesive energy of this system, equal to 3.19
eV/atom, was then taken as E in Eq. (B1). To obtain
E™d the MC simulation was carried out for the block
consisting of 78% of copper atoms and 22% of bismuth
atoms. The starting configuration was again an fcc struc-
ture in which 22% of copper atoms were randomly re-
placed by bismuth. The equilibrium configuration ob-
tained by the simulation is a disordered liquid, as expect-
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ed from the copper-bismuth phase diagram. For the po-
tentials constructed here E’a“d?2.81 eV in this disor-
dered liquid phase and thus AH™*=0.068 ¢V. The mea-
sured enthalpy of mixing of the liquid copper-bismuth
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solution at 1200 K is 0.046+0.009 eV/atom.’* While the
match of the calculated and experimental enthalpy of
mixing is not exact it is sufficient considering the uncer-
tainties involved in the experimental value.

*On leave from the Institute of Physical Metallurgy, Czechoslo-
vak Academy of Sciences, Zizkova 22, Brno, Czechoslovakia.

TPresent address: Fritz-Haber-Institut, Faradayweg 4-6, D-1000
Berlin 33, Germany.

tPresent address: Instituto de Fisica de Liquidos y Sistemas
Biologicos (IFLYSIB), C.C. 565, La Plata (1900), Argentina.
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FIG. 4. Experimental (left column) and calculated (right
column) image series with objective lens underfocus increasing
down the figure. The marker represents 15 A.
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