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Analytic Environment-Dependent Tight-Binding Bond Integrals:
Application to MMoSoSii22

Abstract
We present the first derivation of explicit analytic expressions for the environmental dependence of the σ, π,
and δ bond integrals within the orthogonal two-center tight-binding approximation by using the recently
developed bond-order potential theory to invert the nonorthogonality matrix. We illustrate the power of this
new formalism by showing that it not only captures the transferability of the bond integrals between
elemental bcc Mo and Si and binary C11b MoSi2 but also predicts the absence of any discontinuity between
first and second nearest neighbors for the ddσ bond integral even though large discontinuities exist for ppσ,
ppπ, and ddπ.
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Analytic Environment-Dependent Tight-Binding Bond Integrals: Application to MoSi2

D. Nguyen-Manh,1 D. G. Pettifor,1 and V. Vitek2

1Department of Materials, University of Oxford, Oxford, Parks Road, OX1 3PH, United Kingdom
2Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272

(Received 31 January 2000)

We present the first derivation of explicit analytic expressions for the environmental dependence of the
s, p, and d bond integrals within the orthogonal two-center tight-binding approximation by using the
recently developed bond-order potential theory to invert the nonorthogonality matrix. We illustrate
the power of this new formalism by showing that it not only captures the transferability of the bond
integrals between elemental bcc Mo and Si and binary C11b MoSi2 but also predicts the absence of any
discontinuity between first and second nearest neighbors for the dds bond integral even though large
discontinuities exist for pps, ppp, and ddp.

PACS numbers: 71.15.Fv, 71.20.Be, 71.20.Lp

The past decade has witnessed an explosion in the
number of applications of the tight-binding (TB) model
to simulating the structural and cohesive properties of
materials [1]. This is due to the TB model being the
simplest scheme that includes correctly the underlying
quantum mechanical character of the covalent bond.
However, although the semiempirical TB method is 2
to 3 orders of magnitude faster than ab initio density
functional methods, it suffers from the uncertainty of how
best to choose the TB parameters that enter the scheme. In
particular, it is now realized that an orthogonal TB model,
which is robust and transferable to various different
situations, requires the two-center TB parameters [2] to be
environment dependent [3–13]. This unfortunately leads
to the introduction of many additional fitting parameters,
so that the application of an environmentally dependent
TB method to multicomponent systems becomes formi-
dable. Thus, to date no applications have been made in
technologically important areas such as the CVD growth
of diamond films or the mechanical properties of high-
temperature intermetallics.

In this Letter, we show that it is possible to derive an
analytic expression for this environmental dependence by
starting from the nonorthogonal two-center TB representa-
tion and using our recently developed bond-order potential
(BOP) theory [14] to invert the nonorthogonality matrix.
We will see that the angular character of the bond that
is being screened plays a key role in the functional form
of the resultant environmental dependence. We will illus-
trate the technique by considering the transferability of the
bond integrals between elemental bcc Mo and Si and bi-
nary MoSi2, the latter being an important high-temperature
intermetallic [15].

The most successful ad hoc scheme for introducing envi-
ronmental dependence into the TB parameters is that of the
Ames group [10–13]. They write the screened two-center
bond integrals between a given pair of atoms i and j, a
distance Rij apart, in the form

b̃
ij
ll0t � bll0t�kRij� �1 2 S

ij
ll0t� , (1)

where the screening function S
ij
ll0t is a hyperbolic tangent

with argument j
ij
ll0t given by

j
ij
ll0t � All0t

X
kfii,j

exp

∑
2lll0t

µ
Rik 1 Rkj

Rij

∂hll0t
∏

, (2)

with l, l0 � s, p, or d, t � s, p , or d, and A, l, and
h as fitting parameters. b�kRij� represents the two-cen-
ter bond integral between orbitals on sites i and j that
have already been renormalized [16] or contracted [17]
by the presence of their surrounding neighbors so that k

is not a constant but is dependent on the local atomic
density or effective coordination about the bond. The
screening function S ij represents the fact that the bond-
ing between a given pair of atoms i and j is weakened by
the presence of a third atom k in their vicinity. It accounts
for the large discontinuity that is observed in the fitted sss

bond integral curve between first and second nearest neigh-
bors in elemental bcc molybdenum [11]. By a careful fit-
ting of parameters, the Ames group were able to reproduce
the electronic structure and binding energy curves of C and
Si over a wide range of coordinations [10,12]. However,
although this TB parametrization has been highly success-
ful in modeling elemental systems such as self-diffusion on
silicon surfaces [12] or laser ablation of diamond surfaces
[13], it has not been extended to multicomponent systems
due to the rapid increase in the number of ad hoc fitting
parameters.

We will, therefore, derive the analytic form of the
screening function by starting from the nonorthogonal
two-center TB representation. Its secular equation takes
the form

�H 2 enS�cn � 0 , (3)

where S is the nonorthogonality matrix with components
S

mn
iL,jL0 � �imlm j jnl0m0�. m and n label the chemical

species at sites i and j, respectively, and lm, l0m0 denote
real cubic harmonics. We can think of the orbitals jiml�
and j jnl0� as already having been renormalized by their
local environment [9,16,17] but we will not consider this
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effect explicitly in this Letter. Within the two-center ap-
proximation the elements of the Hamiltonian matrix H
can be written in terms of the fundamental two-center
bond integrals and the usual Slater-Koster angular func-
tions [2]. The bond integrals take the physically transpar-
ent form b

mn
ll0t � �imltj 1

2 �Vm
i 1 Vn

j �jjnl0t� provided that
the zero of energy is chosen as the average on-site energy
1
2 �Hmm

il,il 1 Hnn
jl0,jl0� [3,18], where V

m
i and Vn

j are the atomic
potentials at sites i and j, respectively.

The orthogonal two-center TB secular equation, there-
fore, can be written in the form

�S21H 2 enI�cn � 0 , (4)

where I is the unit matrix. In general, S21H is not Hermi-
tian [19] but for real matrix elements it can be expressed
as the sum of symmetric and antisymmetric contributions

S21H �
1
2 �S21H 1 HS21� 1

1
2 �S21H 2 HS21� .

(5)

For s valent systems, if we make the common Wolfsberg-
Helmholtz approximation that bsss � 2ASsss [18] and
assume that all sites have the same on-site energy, then
SH � HS and the antisymmetric contribution vanishes.
We will assume that this is true in general, so that our
orthogonal two-center TB secular equation is given by

�H̃ 2 enI�cn � 0 , (6)

where our screened Hamiltonian matrix H̃ �
1
2 �S21H 1

HS21� is symmetric [20].
In this Letter, we are interested in the environmental

dependence of the intersite bond integrals. Within the
tight-binding bond model [21] the on-site energies are ad-
justed self-consistently for local charge neutrality (as is
appropriate for metallic systems such as the molybdenum
silicides), and the on-site nonorthogonality shifts are in-
corporated into the repulsive term to the binding energy
[9,17]. These will be discussed elsewhere [22]. By writ-
ing S � I 1 O where O is the overlap matrix, the intersite
screened Hamiltonian matrix elements can be written as

H̃i,j � Hi,j��I 1 O�21
i,i 1 �I 1 O�21

j,j ��2

1
X0

k�Hi,k�I 1 O�21
k,j 1 �I 1 O�21

i,k Hk,j��2 ,

(7)

where, for compactness, L, L0, and L00 have been absorbed
into i, j, and k and the chemical species labels m and
n have been omitted. The prime in the summation de-
notes summing over all atomic sites k fi i fi j. We have
neglected terms involving differences in the on-site en-
ergies E

m
l . However, these are expected to be small for

the molybdenum silicides since for MoSi2, ESi
p 2 EMo

d �
1.7 eV compared to a pd bandwidth of 18 eV.

The elements of the inverse matrix �I 1 O�21 may be
obtained directly from our recently developed BOP theory

[14]. This expresses the elements of the Green’s func-
tion matrix G�E� � �EI 2 H�21 in a rapidly convergent
real-space manner by imposing the physical constraint that
at any level of approximation the poles of the intersite
Green’s function Gij are the same as those of the average
on-site Green’s function �1�2� �Gii 1 Gjj�. Putting [23]
E � 1 and H � 2O within this constrained BOP formal-
ism to three-levels of Lanczos recursion [14], we find that
the inverse matrix elements can be written as

��I 1 O�21
i,i 1 �I 1 O�21

j,j ��2 � 1 1 �m2 2 m3�

� det�I 1 O�L 3 (8)

and

�I 1 O�21
i,j � �2Oi,j 1

X0

k Oi,kOk,j�� det�I 1 O�L 3 .

(9)

The average pth moment, mp � �1�2� �mi
p 1 m

j
p�, can

be expressed in terms of all of the self-returning paths of
length p that start and end on atom i and atom j, respec-
tively, since mk

p � �kjÔpjk�, where Ô is the overlap op-
erator. As might be expected for the inverse of a matrix,
the denominator in Eqs. (8) and (9) is just the determinant
of the nonorthogonality matrix with respect to the appro-
priate Lanczos basis [14]. It takes the form

det�I 1 O�L 3 � 1 1 O2
i,j 2 2m2 1 m3 , (10)

where the label L 3 reminds us that we have evaluated
the determinant to three levels within the constrained BOP
formalism [24]. We will see later in Fig. 1 that working
to three levels is sufficient for an accurate representation
of the screened bond integrals. We must stress, however,
that the above approximation is exact for the inversion
of 3 3 3 matrices such as would arise for the three-atom
s-valent trimer, for example. The corresponding Löwdin
expansion [4], on the other hand, would have replaced the
determinant in the denominator of Eqs. (8) and (9) by unity
which, for most materials, is a poor approximation as the
overlap integrals are not small.

The screening function in Eq. (1) may now be obtained
explicitly by substituting Eqs. (8) and (9) into Eq. (7) and
by using the rotation matrices for the s, p, and d orbitals.
We find

S
ij
ll0t �

�cij
1 �ll0t 2 �m2�ll0t 1 �m3�ll0t

1 1 O2
ll0t�Rij� 2 2�m2�ll0t 1 �m3�ll0t

, (11)

where the ith atom second-moment contribution is

�mi
2�ll0t � O2

ll0t�Rij� 1
X

kfii,j

��1 1 dt0��2�O2
lss�Rik�g2

lt�ujik�

and the ith atom third-moment contribution is

�mi
3�ll0t �

X
kfii,j

�1 1 dt0�O3
ikjiglt�ujik�gl0t�2uijk� ,
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with O3
ikji � Olss�Rik�Osl0s�Rkj�Ol0ls�Rji�. ujik is the

angle between bond ij and ik. The angular functions are
defined by g0s�u� � 1; g1s�u� � cosu, g1p �u� � sinu;

g2s�u� � �1�4� �1 1 3 cos2u�, g2p�u� � �
p

3�2� sin2u,
g2d�u� � �

p
3�4� �1 2 cos2u�. c

ij
1 is the interference

contribution linking orbitals jimlt� and j jnl0t�, namely,

�cij
1 �ll0t �

X
kfii,j

��1 1 dt0��4� � �blss�Rik�Osl0s�Rkj� 1 Olss�Rik�bsl0s�Rkj��glt�ujik�gl0t�2uijk�

2 �blss�Rik�Osls�Rki�Oll0t�Rij�g2
lt�ujik�

1 Oll0t�Rij�Ol0ss�Rjk�bsl0s�Rkj�g2
l0t�uijk��	�bll0t�Rij� .

We see that for the sss bond c
ij
1 is not too dissimilar in

form to that suggested by the Ames group in Eq. (2). Our
expression for the screening function has been evaluated
by assuming that the screening of the ij bonds is carried
out via the valence s orbitals on the neighboring sites k.
This has been shown to be a good approximation within
screened (LMTO) theory, where the valence p and d con-
tributions to the screening are found to be much weaker
than the s [4]. We have also neglected all four-body con-
tributions to Eq. (11). In addition, we have assumed that
the determinants entering the off-diagonal ik and kj ele-
ments in Eq. (7) are the same as that of the ij bond in
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FIG. 1. The s and p bond integrals within elemental bcc
Mo and bcc Si and within binary C11b MoSi2. The analytic
unscreened (solid curves) and screened results for the C11b
structure (dashed curves) and bcc structure (dotted curves) are
plotted. The numerical screened LMTO values are presented by
the circles and squares for the C11b and bcc structures, respec-
tively. (1) and (2) label the first and second nearest neighbor
curves, respectively.

whose screening we are interested in. The determinants
in the denominator of the elements of the inverse matrix
would, of course, be identical if all of the nonvanishing
terms within the Lanczos-type BOP expansion had been
retained [14].

Equation (11) is the key result of this Letter. It is ex-
act for the s valent dimer and trimer. For the dimer there
are no three-membered ring contributions so that S �
2b2

1��1 2 b2
1� where b2

1 � O2. Therefore b̃sss�bsss �
1��1 2 O2� . 1; i.e., within the orthogonal TB represen-
tation we find antiscreening of the original bond integral.
For the equilateral trimer, it follows from Eqs. (1) and (11)
that b̃sss�bsss � 1��1 1 O 2 2O2� so that the effective
bond integral is screened provided O , 1�2.

The power of this novel analytic screening function will
be demonstrated by considering the environmental depen-
dence of the bond integrals in elemental bcc Mo, model
bcc Si, and the binary bcc-related C11b MoSi2. In particu-
lar, we are interested in the behavior of the bond integrals
between the valence p orbitals on Si and the d orbitals on
Mo because the TB pd bond model has been shown to pro-
vide an excellent description of the structural trends within
the transitional metal-sp valent binary compounds [25],
the defect energetics of the titanium aluminides [6], and the
key bonding behavior in the molybdenum silicides [26,27].
The points in Fig. 1 show the numerical values for the ap-
propriate s and p bond integrals. They were computed
by solving Dyson’s equation in real space for the screened
LMTO structure constants within the short-range (as, ap ,
ad) representation [4] that leads to vanishing bond inte-
grals at third nearest neighbors and beyond. The points
corresponding to the first and second nearest neighbors
were obtained at (0.9, 1.0, 1.1)V0, where V0 is the equi-
librium volume. These numerical points illustrate two im-
portant features of the environmental dependence of the
bond integrals. First, we see that there is a large discon-
tinuity between the first and second nearest neighbors for
the pps, ppp , and ddp bond integrals, but that this dis-
continuity is absent for dds. Second, we see that there is
a noticeable environmental dependence in the behavior of
the first nearest neighbor ppp bond integral in going from
elemental bcc Si to binary C11b MoSi2.

Both of these features are contained within our an-
alytic screening function. For simplicity [28] we have
taken b

mn
ll0t�Rij� � A

mn
ll0t exp�2l

mn
ll0tRij� and O

mn
ll0t �

2b
mn
ll0t�jAmn

ll0t j and assumed that they cut off before the
third neighbors. The values of A and l were obtained
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by fitting the first and second nearest neighbor screened
LMTO points. The resultant unscreened bond inte-
grals b are shown by the solid curves in Fig. 1 with
appropriate values of A and l recorded above each
panel. The corresponding s-valent screening overlap
integrals have exponents l

MoMo
sds � 0.602, lSiSi

sps � 0.626,
l

MoSi
dss � 0.690, lSiMo

pss � 0.395. As expected, the dd
bond integrals have approximately the same exponents
with the ratio As:Ap :Ad � 26.0:3.6:20.8 being close to
that of the canonical ratio As :Ap :Ad � 26:4:21 [4].

The screened analytic curves in Fig. 1 reproduce the
numerical screened LMTO values very well. In particular,
they display the large discontinuity between the first
and second nearest neighbors in pps, ppp, and ddp ,
whereas they display no discontinuity in dds. This behav-
ior can be traced directly to the angular dependence of the
screening function which is absent in the empirical form
of Eq. (2). The bcc lattice (and the closely related C11b

lattice) have nearest neighbor bond angles of cos21�1�
p

3�
so that g2s � �1�4� �1 1 3 cos 2u� vanishes identically,
causing the surrounding neighbors to leave the dds bond
unscreened. On the other hand, the second nearest neigh-
bor ddp bond is heavily screened, both its magnitude and
slope being reduced by a factor of 3. This is critical for the
behavior of the second nearest neighbor force constants
and removes the problem of the unstable T2 phonon mode
at the N point that is found in most two-center TB fits. For
the case of bcc Mo, by using unscreened bonding integrals
we find that vN �T2� � 1.0 THz, vN �T1� � 6.3 THz,
vN �L� � 5.2 THz [29], whereas within the present for-
malism the corresponding values of 3.6, 5.9, and 8.3 THz
are consistent with the experimental values of 4.5, 5.8,
and 8.1 THz, respectively [22].

In conclusion, we have derived an explicit expression
for the screening function that reflects the environmental
dependence of the two-center s, p , and d bond integrals
within an orthogonal TB representation. This provides the
first reliable method for predicting the analytic behavior
of transferable TB bond integrals and will help extend the
accuracy and applicability of the TB model to technologi-
cally important multicomponent systems.
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