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Using SMS Text Messaging to Assess Moderators of Smoking Reduction:
Validating a New Tool for Ecological Measurement of Health Behaviors

Abstract
Objective: Understanding the psychological processes that contribute to smoking reduction will yield
population health benefits. Negative mood may moderate smoking lapse during cessation, but this
relationship has been difficult to measure in ongoing daily experience. We used a novel form of ecological
momentary assessment to test a self-control model of negative mood and craving leading to smoking lapse.

Design: We validated short message service (SMS) text as a user-friendly and low-cost option for ecologically
measuring real-time health behaviors. We sent text messages to cigarette smokers attempting to quit eight
times daily for the first 21 days of cessation (N-obs = 3,811).

Main outcome measures: Approximately every two hours, we assessed cigarette count, mood, and cravings,
and examined between- and within-day patterns and time-lagged relationships among these variables. Exhaled
carbon monoxide was assessed pre- and posttreatment.

Results: Negative mood and craving predicted smoking two hours later, but craving mediated the
mood–smoking relationship. Also, this mediation relationship predicted smoking over the next two, but not
four, hours.

Conclusion: Results clarify conflicting previous findings on the relation between affect and smoking, validate
a new low-cost and user-friendly method for collecting fine-grained health behavior assessments, and
emphasize the importance of rapid, real-time measurement of smoking moderators.

Keywords
smoking cessation, self-control, ecological momentary assessment, text messaging, craving

Disciplines
Analytical, Diagnostic and Therapeutic Techniques and Equipment | Communication | Health Information
Technology | Mental and Social Health | Psychiatry and Psychology | Social and Behavioral Sciences |
Substance Abuse and Addiction

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/asc_papers/430

http://repository.upenn.edu/asc_papers/430?utm_source=repository.upenn.edu%2Fasc_papers%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages


Using SMS Text Messaging to Assess Moderators of Smoking
Reduction: Validating a New Tool for Ecological Measurement of
Health Behaviors

Elliot T. Berkman,
Department of Psychology, University of Oregon

Janna Dickenson,
Department of Psychology, University of California, Los Angeles

Emily B. Falk, and
Institute for Social Research/Research Center for Group Dynamics, Departments of
Communication Studies and Psychology, University of Michigan

Matthew D. Lieberman
Department of Psychology, University of California, Los Angeles

Abstract
Objective—Understanding the psychological processes that contribute to smoking reduction will
yield population health benefits. Negative mood may moderate smoking lapse during cessation,
but this relationship has been difficult to measure in ongoing daily experience. We used a novel
form of ecological momentary assessment to test a self-control model of negative mood and
craving leading to smoking lapse.

Design—We validated short message service (SMS) text as a user-friendly and low-cost option
for ecologically measuring real-time health behaviors. We sent text messages to cigarette smokers
attempting to quit eight times daily for the first 21 days of cessation (N-obs = 3,811).

Main outcome measures—Approximately every two hours, we assessed cigarette count,
mood, and cravings, and examined between- and within-day patterns and time-lagged
relationships among these variables. Exhaled carbon monoxide was assessed pre- and
posttreatment.

Results—Negative mood and craving predicted smoking two hours later, but craving mediated
the mood–smoking relationship. Also, this mediation relationship predicted smoking over the next
two, but not four, hours.

Conclusion—Results clarify conflicting previous findings on the relation between affect and
smoking, validate a new low-cost and user-friendly method for collecting fine-grained health
behavior assessments, and emphasize the importance of rapid, real-time measurement of smoking
moderators.
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One of the key issues in studies on cigarette smoking is measuring smoking behavior. The
most common measure of smoking is subjective self-assessment, either through global
reports or time-line follow-back (TLFB). Each of these depends critically on participants’
abilities to accurately remember and recall their own behavior for the course of a day or
several days, and in the case of TLFB, with the help of detailed prompts. Despite their wide
use, these methods have been shown to be inaccurate due to a number of different cognitive
biases (Hammersley, 1994; Shiffman, 2009) For example, cigarette smokers tend to display
a “digit bias,” or “heap” their reports of smoking around particular numbers reflecting the
number of cigarettes per pack or even fractions thereof (e.g., 10 or 20) even though research
finds that no such heaping occurs in actual smoking behavior (Klesges, Debon, & Ray,
1995) Recall of the situational cues for smoking has also been shown to be inaccurate
(Shiffman, 1993). Further, some of these biases may be particularly strong in smokers who
are attempting to quit because the emotional antecedents and consequences of relapse can
potentiate recall bias (Shiffman et al., 1997). These limitations of recall have led to the
consensus that other methods are necessary for accurately assessing smoking and other
health-relevant behaviors across time (Collins & Graham, 2002; Pierce, 2009).

An alternative to retrospective measures is a form of real-time, real-world reporting of
behavior called ecological momentary assessment (EMA). The key features of the EMA
class of methods are (1) data collection in an ecologically valid environment, (2) real-time or
brief interval assessment, and (3) repeated measurements across time and contexts
(Shiffman, Stone, & Hufford, 2008). For example, cigarettes per day can be calculated
without recall using EMA by instructing smokers to push a button on a portable pocket-
sized device each time they smoke. Cigarette counts derived using this method track
biological measures of smoking more reliably than recall methods and do not display digit
bias (Shiffman, 2009).

EMA offers a number of additional advantages for studying smokers, smoking, and smoking
cessation. Smokers may not always be aware of the extent to which factors such as stress,
mood, or urges to smoke impact their smoking (Todd, 2004), and may rely upon heuristics
or lay theory if asked to report on the effects directly (Ross, 1989; Ross & Nisbett, 1991;
Tversky & Kahneman, 1973). In effect, subtle or invisible influences on smoking are less
likely to be noticed or deemed relevant. EMA sidesteps this problem by allowing
researchers to measure potential moderators in real time and calculate their relation to
smoking offline. Indeed, studies on smoking antecedents and consequences that have
compared real-time to retrospective reports have found only a modest relationship between
the two (Delfino, Jamner, & Whalen, 2001; Shapiro, Jamner, Davyov, & James, 2002;
Shiffman et al., 1997). Furthermore, one study found that within-day, but not between-day,
variations in smoking were predictive of success in a cessation attempt (Chandra, Shiffman,
Schafr, Dang, & Shadel, 2007). These studies converge on the observation that EMA is a
valuable tool for identifying important situational moderators of smoking and smoking
cessation that might otherwise go unnoticed, and may also translate to understanding the
process of engaging in other important health behaviors.

Despite its potential benefits, EMA is not yet widely used to study smoking or health-
relevant behaviors because of some practical challenges to its implementation. The primary
drawback is that EMA is expensive, typically requiring the purchase of a handheld data
collection device (palmtop or personal digital assistant) for each participant (Pierce, 2009;
Shiffman et al., 2008). These devices range in cost from around $75 to well over $300, plus
the cost of any software the researcher may want to deploy. There is also an overhead cost in
terms of time to install and configure the software for each study. A second limitation is the
response burden placed on participants, especially considering that more frequent and
closely spaced responses are more statistically reliable than less frequent ones (Collins &
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Graham, 2002). A related challenge for participants is the requirement to carry the data
collection device during waking hours, often for weeks at a time, and the concomitant risk of
missed data when participants forget or choose not to carry the device for a given period.
Finally, there is the risk of lost data when devices are lost or destroyed. Though researchers
have identified ways to minimize some of these concerns (cf. Graham, Taylor, Olchowski,
& Cumsille, 2006; Shiffman et al., 2008), on balance, the drawbacks are still a major
impediment to increased adoption of EMA methods.

A novel way to address several of the remaining disadvantages of EMA is to use short
message service (SMS) text messages for data collection instead of customized hardware.
Text messages are brief (up to 160 character), low-cost (e.g., <$0.01 per message) messages
that can be sent to any SMS-enabled cellular telephone. Using text messages would reduce
costs substantially relative to other EMA devices because many potential research
participants already own SMS-enabled devices. A recent survey found that 86% of people in
the United States have a mobile device and that 91% of those devices are SMS-enabled,
totaling more than 240 million individuals with SMS-enabled phones (Nielsen Mobile,
2010). Participants who do not already own such devices can be provided with prepaid
phones which typically cost $20 or less. Text messages can be purchased in bulk for less
than $0.01 each; at this cost, sampling a participant six times each day for a month and
receiving responses costs less than $5. Moreover, people are increasingly using text
messaging, suggesting that potential subjects are already comfortable with the technology.
The Nielsen Mobile survey (2010) also revealed that the total traffic volume of text
messages has increased by at least 37% every six months since 2003, and the median text
message user sends 200 messages per month. These devices would be ideal for EMA data
collection given their low cost and the fact that most people already own and are
comfortable using them.

Using text messaging for EMA also may reduce participant burden and data loss. Carrying a
cell phone and sending multiple text messages each day has become commonplace in the
U.S., so responding to experimental prompts in this way is likely to require minimal subject
training and burden. Also, personal cell phones that are used for other reasons in addition to
EMA assessment are less likely to be lost or ignored than traditional devices. And critically,
many traditional devices store the data collected during the study to be transferred to the
experimenter at an endpoint session; devices that are lost or damaged during the study result
in data loss for the entire EMA period. Text messaging EMA addresses this problem
because data are transmitted to the experimenter as they are entered. This also allows for
online quality checking of data as it is being collected.

The purpose of the present study is to validate, for the first time, the use of cell phones for
EMA of smoking and smoking antecedents. We do so in the context of the debate regarding
the temporal relations between mood and cravings with cigarette smoking, and particularly
in the early stages of a cessation attempt when relapse is highly likely (al’Absi, Hatsukami,
Davis, & Wittmers, 2004). Studies have investigated the relation between mood, craving,
and smoking during ad libitum smoking and during abstinence, but the relations between
those variables is unknown during the early stages of a quitting attempt when smoking may
be only reduced before individuals during a quit attempt are able to abstain entirely. For
example, some studies of ad libitum smokers suggest that negative mood is prospectively
predictive of smoking (Shapiro et al., 2002; Todd, 2004), whereas others find no prospective
relationship (Shiffman et al., 2002; Shiffman, Paty, Gwaltney, & Dang, 2004). Similarly,
cravings have been shown to precipitate smoking in the following minutes to hours among
non-treatment-seeking smokers (Carter et al., 2008), but not across longer time spans among
ex-smokers (Borland & Blamford, 2005). In terms of cessation, one study found that
increased cravings were protective of relapse in the first two weeks of a quitting attempt, but
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predictive beyond the first two weeks (Herd, Borland, & Hyland, 2009). Based on these
findings, one goal of the present study is to understand the temporal dynamics of how mood
and cravings relate to smoking in the early stages of a cessation attempt. In this phase,
smokers may not be entirely abstinent and might demonstrate a hybrid of characteristics of
ad libitum smokers and of ex-smokers.

It has been suggested that mood and cravings become linked over time as smokers learn that
smoking alleviates negative affect, but it is unclear how this linkage may change in the early
weeks of a cessation attempt when smokers likely still associate mood and cravings but also
are aware of their goal not to smoke (Kassel, Stroud, & Paronis, 2003; Shiffman, et al.,
2007). Identifying the boundary conditions between when and for whom mood and cravings
relate to smoking and to each other is particularly relevant for smokers attempting cessation
(Shiffman et al., 2007; Shiffman & Waters, 2004). To do this, we collected data from
cigarette smokers who were attempting to quit, eight times each day for the first three weeks
following their target quit date. At each time point, approximately every two waking hours,
we assessed smoking lapses, cravings, and mood. The relatively fine-grained sampling rate
allowed us to examine the effects of mood and cravings on smoking behavior both
concurrently and prospectively at a number of prior time points.

Method
Participants

Thirty-one participants (15 female) were recruited from smoking cessation programs in Los
Angeles via flyers and in-person announcements at the orientation session. All participants
were heavy smokers (>10 cigarettes per day, 7 days per week, for at least one year, and
urinary cotinine levels of at least 1000 ng/mL), and were recruited from professionally led
cessation programs (American Lung Association’s Freedom From Smoking program) Aside
from recruitment, there was no association between the cessation programs and the study. In
addition to enrollment in cessation program, quitting intentions were assessed via scores >9
out of 10 on the Contemplation Ladder, a single-item measure of intentions to quit (Biener
& Abrams, 1991), and a cumulative score of at least 18/20 on the Action subscale of the
Readiness to Change Questionnaire (RTQ; Rollnick, Heather, Gold, & Hall, 1992), a 4-item
measure of the “action” stage of change. Participants were excluded if they did not speak
English, consumed more than 10 alcoholic drinks per week, or had any of the following
conditions: dependence on substances other than nicotine, dependence on substances within
one year of the baseline session, neurological or psychiatric disorders, cardiovascular
disease, or pregnancy. Participants varied in age from 28 to 69 (M = 46, SD = 9.7), and had
been smoking from 11 to 53 years (M = 28.4, SD = 2.0). Participants were ethnically
diverse: 52% were Caucasian, 26% Hispanic, 19% African American, and 3% other. They
were compensated $1 for each response returned for a possible total of $168. Of the original
31 participants, one withdrew from participation and three returned fewer than 50% of the
messages, yielding a total of 27 participants in the analyses reported below All participants
provided written informed consent that was approved by the University of California, Los
Angeles Institutional Review Board (IRB).

Procedure
Phone screening—Following recruitment, participants were contacted via phone to
assess intentions to quit with the Contemplation Ladder and RTQ, exclusion criteria, and
targeted quit date (TQD). For qualifying participants, a baseline laboratory session was
scheduled at least one day prior to the TQD.
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Baseline session—Participants came into the lab for a baseline session at least one day
prior to their quit date. Following written informed consent, smoking status was confirmed
with urinary cotinine (Accutest NicAlert strips; JANT Pharmacal Corp., Encino, CA,
U.S.A.), and baseline exhaled carbon monoxide (CO) was measured (Microsmokerlyzer;
Bedfont Scientific Ltd., Kent, U.K.). Participants were also screened for amphetamines,
cocaine, marijuana, opiates, and PCP with a urine test (Syva RapidTest d.a.u. 5; Dade
Behring Inc., Cupertino, CA, U.S.A.). Participants completed measures of demographics,
smoking history, waking hours, nicotine dependence (Fagerström Test of Nicotine
Dependence, FTND; Heatherton, Kozlowski, Frecker, & Fagerström, 1991), smoking urges
(Questionnaire on Smoking Urges, QSU; Tiffany & Drobes, 1991), reasons for quitting
(Reasons for Quitting Questionnaire, RFQ; Curry, Wagner, & Grothaus, 1990), and several
other questionnaires not relevant to the hypotheses tested here. Participants who did not
have or preferred not to use their own cell phones (N = 11) were provided with and
instructed to use a prepaid phone. Finally, participants were instructed in the use of SMS
text messages to receive and respond to prompts, and successfully received and completed a
practice prompt.

Ecological momentary assessment—Participants received prompts via text message
eight times per day for 21 consecutive days beginning the day prior to their quit date. The
first text prompt on each day was sent 15 minutes after morning rise, the last prompt was
sent 15 minutes before bedtime, and the other six were spaced evenly throughout the day.
Rise and bedtimes were adjusted for each participant separately for weekdays and weekends
based on baseline reports of wake time and sleep time. The interprompt interval varied
across subjects between 1 hour 50 minutes and 2 hours 25 minutes.

At each prompt, participants responded to three questions: “How many cigarettes have you
smoked since the previous signal?” (numerical response), “How much are you craving a
cigarette right now?” (0 = Not at all, 1 = A little, 2 = Somewhat, 3 = A lot, 4 = Extremely),
and “Overall, how is your mood right now?” (0 = Extremely negative, 1 = Somewhat
negative, 2 = Neutral, 3 = Somewhat positive, 4 = Extremely positive). Participants
responded to all three questions with a single text message back to the experimenters using
an alphanumeric response code. For example, “0s1c2m” would indicate that the subject has
smoked 0 cigarettes, was a “1” on the craving scale, and a “2” on the mood scale. Errors
were handled in the following manner. A typo (e.g., replacing “r” with “s”) was assumed if
the other two letters were correct. For example, the code “2r1c3m” was recoded as
“2s1c3m”. If two or more letters were incorrect, or if there were repeated letters in the code,
the response was treated as missing data. Uninterpretable data was relatively uncommon:
there were 9 instances of responses with exactly one typo that was replaced, and 11
instances of uninterpretable data that was treated as missing (~0.3%).

Participants could silence or disable their phones at their discretion. In the event that they
were unable to respond to a prompt before the arrival of the subsequent prompt, they were
instructed to respond only to the most recent prompt. In other words, participants had
roughly two hours to respond to each prompt. Participants were sent a reminder text
message or received a phone call if their response rate dropped below 50% for a 24-hr
period.

The text message prompts were sent and received through an automated web-based service
(RedOxygen Pty. Ltd., Brisbane, Queensland, Australia). Records including the timestamp
and content of each message that was sent and received were downloaded from the
RedOxygen website.
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Endpoint session—An endpoint session was scheduled within seven days of the end of
the 21-day EMA period. At this time, exhaled CO was reassessed along with nicotine
dependence (FTND), smoking urges (QSU), and withdrawal symptoms (Shiffman-Jarvik
Withdrawal Scale, SJWS; Shiffman & Jarvik, 1976). Participants were compensated $1 for
each text message response (M = $141, SD = $38).

Data Analysis Strategy
Multilevel linear modeling was used to address the nested nature of the data (HLM 6;
Scientific Software International, Lincolnwood, IL, U.S.A.; Raudenbush, Bryk, Cheong, &
Congdon, 2004). Specifically, a three-level model was constructed with time points (level-1)
nested within days (level-2) nested within participants (level-3). This model allowed us to
examine changes in smoking across as well as within days. We examined linear and
quadratic slopes of smoking across and within days, as well as patterns of mood and
cravings predicting smoking prospectively and concurrently within days. The primary
dependent measure of smoking was non-normally distributed because it was reported as a
count at each time point with an expected mode of zero. Accordingly, we used a Poisson
model with a log link function at the first level that assumes the data are Poisson distributed.
All parameters are reported in log-expected likelihood units. Time-series data often violates
the assumption of sphericity among the dependent measures. To test for this, we used the
Hierarchical Multivariate Linear Modeling module of HLM6 to run a nested set of models.
The most unrestricted model allowed for all separate variances and covariances within the 8
× 8 within-day variance-covariance matrix, and more restrictive variance structures such as
identical variances but unique covariances were nested within that model. Deviance change
tests suggested that sphericity was met within-days. Nonetheless, we used robust estimates
of standard errors (Zeger, Liang, & Albert, 1988) with the assumption of overdispersion to
conservatively guard against violations of normality and sphericity.

Results
Response Rate

Participants responded to 84% of the prompts on average (SD = 22%, 95% CI = 76–92%),
corresponding to more than six out of eight responses per day. These rates are similar to
other experiments (e.g., Shiffman et al., 2007, 86% in a 2-min time window and Shapiro et
al., 2002, 65% in a 5-min window). Of these responses, 80% were sent within 23 minutes,
and 60% were sent within 5 minutes. One participant was excluded for responding to fewer
than 50% of the signals; all other participants responded to at least 100 of the 168 prompts
(59%). Within participants, a day was excluded for analysis if it contained fewer than four
responses. In total, 90 days were excluded, averaging 3.33 per participant. There were a total
of 3,811 level-1 observations, 477 level-2 observations, and 27 level-3 observations.

Correlations Among Global Self-report, EMA Self-report, and CO
The correlations among the three measures of smoking (log-transformed global self-report,
log-transformed ecological momentary assessment self-report, and exhaled carbon
monoxide) are shown in Table 1. The correlations between global self-reports of smoking
and exhaled CO were .38 and .39 at baseline and endpoint, respectively (both ps < .05). The
correlation between calculated total smoking on the last day of EMA (log-transformed) and
endpoint CO was .50 (p < .01; Figure 1). Endpoint global self-reported smoking and EMA-
calculated smoking for the last day were correlated .90 (p < .01), and the means differed by
0.98 cigarettes, with global higher than EMA. Consistent with a change in smoking, there
were no significant correlations between any of the baseline and any of the endpoint
measures.
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Smoking Change From Baseline to Endpoint
Participants reported smoking 20.2 cigarettes per day (SD = 9.4) at the baseline and 5.2
cigarettes per day (SD = 5.4) at the endpoint (change M = 15.0, SE = 1.97, t(26) = 7.62, p < .
01). Nicotine dependence and urges also decreased significantly (see Table 2). Expired CO
was marginally reduced, t(26) = 1.94, p = .06 (see Table 2), suggesting a reduction in
smoking but not complete abstinence. Twelve others abstained for at least one day, nine
abstained for two or more days, and eight abstained for three or more days. Only three
participants reported remaining abstinent from cigarettes for the duration of the study, and
the results reported below remain unchanged if those subjects are excluded from the
analyses. In other words, this sample may be characterized as smokers who have reduced
their intake as part of a cessation attempt but who are not entirely abstinent. The relatively
high rate of lapse is common for smokers in the early weeks of a quitting attempt (Shiffman
et al., 2007). As such, this sample represents an ideal opportunity to examine the temporal
relations among craving, mood, and smoking in the hybrid stage between ad libitum
smoking and cessation (i.e., complete abstinence).

Smoking Patterns Across Days
The trends in smoking and cravings across days are shown in Figure 2. All results are
reported in log-expectation units because a Poisson-link function was used to adjust for he
non-normal zero-mode nature of the data. Smoking decreased linearly over time (log-
expectation γ = −.04, SE = .011, t(474) = 3.45, p < .01), translating to a 4% reduction in
smoking each day. Similarly, cravings also decreased linearly over time (γ = −.02, SE = .
008, t(474) = 2.40, p < .02), translating to a reduction of .02 in cravings (rated on a 5-point
scale) each day and more than a half point in the first month. There was no quadratic trend
in smoking or cravings when the linear trend was included in the models. In contrast, there
was neither a linear nor quadratic trend in mood between days (ps ns).

Next, we examined the day-to-day prospective and concurrent relationship between mood
and cravings with smoking, controlling for the linear effect across days and nicotine
dependence at baseline. Based on the studies reviewed above, we did not expect time-lagged
relationships from day to day between mood and smoking. Consistent with this, we found no
association between average daily mood and average daily smoking, nor a prospective
relationship between average smoking on one day and average mood the next or vice versa.
Also consistent with previous studies regarding the early weeks of cessation, average
cravings each day related to less average smoking on the subsequent day (log-expectation γ
= −.21, SE = .084, t(473) = 2.50, p < .01), translating to a 17% reduction in average smoking
rate on days following those with cravings 1 point above the mean, for individuals at the
mean of nicotine dependence. This effect remained significant when controlling for average
smoking on the concurrent day, thus cannot be explained by concurrent cravings causing
increased smoking on one day and consequently a satiety effect on the following day. In
fact, when added to the model, average smoking on one day related to increased smoking on
the next day (log-expectation γ = .27, SE = .12, t(472) = 2.26, p < .05), and the craving to
subsequent smoking relationship remained significantly negative.

Smoking Patterns Within Days
The final set of analyses concerned the patterns of smoking from prompt to prompt within
each day. Each of the analyses reported below controls for the linear decline in smoking
across days as well as baseline nicotine dependence across individuals to isolate within-
person variability in smoking lapses (Gwaltney, Shiffman, Balabnis, & Paty, 2005).

There were small but significant trends in smoking and mood within days. Participants
smoked less in the morning than in the afternoon and evening, resulting in a negative
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quadratic (but not linear) pattern (log-expectation γ = −.02, SE = .0088, t(3077) = 2.26, p < .
03). Also, there was a significant and positive linear trend in mood across time (γ = .018, SE
= .0075, t(3086) = 2.39, p < .02), relating to an increase of 0.02 points in mood (on the 5-
point scale) approximately every 2 hours, or .14 points between morning rise and bedtime,
and no significant quadratic trend. There was no significant within-day linear or quadratic
trend in craving, possibly relating to a mixture of time-of-day smoking profiles in the
diverse community sample (Chandra et al., 2007) or to the fact that smokers in the sample
appear to be transitioning from heavy smokers to lighter smokers, and these groups have
been shown to have distinct daily patterns of smoking (Shiffman & Paty, 2006). In light of
the significant trend in smoking across time points within days, all subsequent analyses
control for the quadratic effect of time on smoking.

To examine the effect of mood on smoking across time, smoking at time i was
simultaneously predicted by concurrent mood (time i) and previous mood (time i − 1),
controlling for the average quadratic within-day trend of smoking (at level 1), the linear
trend across days (at level 2), and nicotine dependence (at level 3). In this model, prior
negative mood related to increased smoking (log-expectation γ = −.05, SE = .018, t(476) =
2.84, p < .01), equivalent to a 4.5% increase in smoking for each point decrease on the 5-
point mood scale (Figure 3a). Neither concurrent mood nor mood from more than one time
point prior (i.e., time i − 2, i − 3, or i − 4) was related to smoking.1

A second model was constructed to examine the relation between concurrent and previous
cravings on smoking. As with the model for mood, this model included nicotine dependence
and the quadratic within-day and linear between-day trends as covariates Consistent with the
idea that cravings prompts smoking and that smoking satisfies immediate cravings, when
both concurrent and prior cravings were entered simultaneously, prior cravings were
positively related to concurrent smoking (log-expectation γ = .20, SE = .022, t(476) = 8.78, p
< .01; Figure 3b), which was negatively related to concurrent cravings (log-expectation γ =
−.05, SE = .021, t(476) = 2.31, p < .03). In other words, for each point increase in the 5-
point craving scale at time i, smoking was expected to increase by 22% at time i + 1, and for
each cigarette smoked concurrent cravings were reduced by 0.14 points. As with mood,
craving from time i − 2 was not related to smoking at time i.

Based on the suggestion that smokers associate cravings with negative moods because of
reinforcement (Kassel et al., 2003), and given that both craving and negative mood at time i
− 1 were related to smoking at time i, we ran a final model predicting smoking prospectively
from both prior mood and prior craving, controlling for concurrent craving and mood. In this
model, prior craving remained significant (log-expectation γ = .23, SE = .024, t(476) = 9.47,
p < .01), and the effect of prior mood was not different from zero (log-expectation γ = −.
002, SE = .028, p ns) Together with a significant negative relationship between concurrent
mood and craving (γ = −.30, SE = .073, t(476) = 4.10, p < .01), this model suggests the
possibility that prior craving statistically mediates the relationship between prior mood and
smoking A significant Sobel test of mediation confirmed that prior craving fully mediated
the effect of prior mood on smoking (z = 3.79, p < .01; Figure 4).

Discussion
This is the first study to capitalize on the massive popularity of text messaging to obtain
real-world, real-time, longitudinal assessments of an important health behavior—smoking
cessation. We prompted participants to report on their smoking, mood, and craving eight

1To examine the relationship between smoking and mood at time i, an identical model was run excluding mood at time i − 1. Smoking
related positively, though marginally (p = .10) to concurrently reported negative mood (γ = −.03, SE = .017, t(476) = 1.63, p < .10).
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times each day for a period of 21 days. Most of our participants received these prompts on
their own SMS-enabled cellular telephones, most of which were already equipped with
“unlimited” monthly text messaging plans, minimizing the cost for both hardware and
messaging. At 84%, response rates were comparable to those obtained using PDAs
employing more elaborate and denser sampling schemes (Shapiro et al., 2002), and attrition
was low (13%), suggesting that participants had little difficulty in receiving and responding
to prompts using text messaging.

As expected, we found the relationship of craving and mood to smoking to be dependent on
the time scale of the measurement. For example, higher cravings on one day related to less
smoking on the next day, but higher cravings at one time point within a day related to more
smoking at the next time point. Also, mood and craving predicted smoking roughly two, but
not four, hours later. This pattern is in line with prior work showing that affect impacts
smoking lapse on a fine-grained time scale within days but not between days (Shiffman &
Waters, 2004). The emerging picture that smoking lapse is highly sensitive to fluctuating
intrapersonal and contextual influences underscores the utility of EMA for studying smoking
cessation.

We examined the within-day relationship among smoking, craving, and mood to capture
some of the dynamic hour-by-hour processes that occur during a quit attempt. Negative
mood was not associated with concurrent smoking, but was instead predictive of smoking at
the subsequent time point. This pattern is consistent with the idea that during cessation,
smoking does not immediately reduce negative mood but smokers continue to smoke in
response to negative mood because they believe that it does (Kassel et al., 2003). In further
support of this view, negative mood showed a strong concurrent relationship with craving.
However, though smoking does not relate to mood, we found that smoking was related to
diminished cravings, and, perhaps as a result, cravings were associated with subsequent
smoking within days.

Many of the intraday results are encompassed within a mediation model whereby craving
mediates the prospective relationship between mood and smoking. Increases in negative
mood were concurrently associated with increases in craving, which was in turn associated
with subsequent smoking. Identifying this pattern helps to clarify the often inconsistent and
perplexing relationship between mood and smoking (Kassel et al., 2003; Shiffman et al.,
2007), and suggests that craving may be a better point of intervention for cessation than
mood.

It may seem counterintuitive that daily average craving relates negatively to smoking on the
next day. In other words, on average across all participants and across all pairs of days,
higher cravings on one day relate to reduced smoking on the next, and lower cravings on one
day relate to increased smoking the next. This effect was previously found to be unique to
the first few weeks of a cessation attempt (Herd et al., 2009), suggesting that smokers are
initially able to resist cravings but may fatigue over time (Shiffman & Waters, 2004).
Another important factor in breaking the craving–smoking link is self-efficacy, which has
been shown to improve with successful relapse prevention early in a cessation attempt, and
is linked to regulating cravings (Borland & Blamford, 2005). Successfully resisting cravings
on one day may lead to increased self-efficacy and thus less smoking the following day.
Though this was the pattern for the duration of the present study, it is possible that this
pattern would have reversed if we had observed our sample at a different period of time
(e.g., 4–8 weeks following cessation). Also, it is interesting to note that the relationship
between craving and smoking is different between days than it is within days. In addition to
suggesting that there are different mechanisms behind the craving–smoking relationship that
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vary by time scale, this finding further underscores the importance of examining both
within- and between-day variability in outcomes during smoking cessation.

One limitation of the present study is the lack of comparison groups. It would have
improved the study if there were a group of smokers that received text messages but not
about smoking, and another group that received no text messages. These groups would have
helped isolate the effects of repeatedly considering one’s own experience during a cessation
attempt and of repeatedly sending text messages throughout the day, respectively. However,
there are reasons to believe that these effects would be minimal. Several other EMA studies
have found no reactivity effects between groups of do and do not receive prompts
throughout the day (Hufford & Shields, 2002; Hufford, Shields, Shiffman, Paty, &
Balabanis, 2002; Stone et al., 2003), and if anything, text messaging is likely to be less
disruptive than assessments using an unfamiliar device. In fact, it has become normative to
send and receive at least eight text messages among people who have cell phones (Nielsen
Mobile, 2010), suggesting that our participants were already accustomed to attending to text
messages repeatedly throughout the day. Further, the use of HLM controls for day- and
person-level effects to isolate within-day sources of variance. It seems unlikely that any
methodological effects would change so rapidly within days. Regardless, the reactance
effects of this new technology remain unknown and an important target for future studies.

It is important to note that the findings reported here might be limited to a particular phase in
smoking cessation: one in which smokers are actively attempting to quit but are not
abstinent from smoking. This phase is distinct from ad libitum smoking because participants
have reduced intake, and also distinct from smoking lapse because participants continue
(reduced) smoking. For many smokers, this phase seems to serve as an intermediate or
transition phase between ad libitum smoking and complete abstinence (e.g. see high relapse
rates before abstinence in Shiffman et al., 2007) This phase may be exactly when
participants begin to alter the habitual associations between mood/craving and smoking as
they to transition from ad libitum to ex-smokers. This would partially explain the
inconsistent results among studies examining the early phases of quitting. If this is the case,
this early transition phase might prove to be an important area for further study. For
example, it seems likely that some patterns in the craving–mood–smoking relationship could
be more or less predictive of subsequent prolonged abstinence.

To the extent that text messaging can be used in studies on smoking and smoking cessation,
it is important to note some of its limitations. First, the present paradigm required
participants to recall smoking across the past two hours and sometimes more if a signal was
missed. Future studies should capitalize even further on the benefits of text messaging to
reduce memory biases by increasing the frequency of assessments. And second, user input is
somewhat limited compared to other electronic methods (e.g., email or web), which restricts
the complexity of survey items. These weaknesses only highlight the areas where text
messaging is strongest: high-frequency responses to simple questions. As such, smoking is
an ideal candidate for text messaging-based studies.

Future studies can also build on the current study by developing cessation interventions that
use text messaging. As this study and others have documented, the proximal predictors of
relapse are not necessarily major life events but instead small within-day fluctuations in the
social environment and the intrapsychic milieu (e.g., Borland & Blamford, 2005; Shiffman
et al., 2007). Furthermore, there is growing consensus on the efficacy of tailored
interventions for smoking cessation (Chua, Liberzon, Welsh, & Strecher, 2009; Dijkstra,
2005; Strecher, 1999; Strecher, Shiffman, & West, 2006), and two studies have already
successfully used text messaging for smoking cessation intervention, showing a twofold
increase in self-reported quit rates across six weeks (Free et al., 2009; Rodgers et al., 2005).
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Text messaging may be an ideal delivery mechanism for tailored interventions because it is
low-cost, most people already possess the existing hardware, and the messages can be
delivered near-instantaneously into real-world situations. For example, participants’ daily
fluctuations in mood and craving could be measured for a week before the cessation attempt;
then during cessation, tailored messages could be sent automatically at times each day when
cravings were known to be high. We believe that the current study demonstrates the utility
of text messaging for smoking cessation and other health research and interventions more
broadly, and anticipate that future work will capitalize on the unique potential of this
growing technology.
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Figure 1.
The natural-log relationship between EMA-calculated smoking on Day 21 and exhaled CO
at the endpoint assessment approximately one week later. The logarithmic relationship is
significant (F1,24= 8.00, p < .01), and corresponds to a significant linear correlation between
log-transformed EMA-calculated smoking and CO (r = .50, p < .01).
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Figure 2.
Plot of mean smoking (in number of cigarettes) and mean cravings (from 0–4) at each time
point across days. Error bars represent 95% confidence interval.
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Figure 3.
The relationship between prior mood (A) and prior cravings (B) on concurrent smoking,
controlling for the quadratic trend within days, the linear effect between days, and baseline
nicotine dependence. (A) Mood at time i − 1 predicting smoking at time i, controlling for
time i mood, is a significant predictor of smoking (log-expectation γ = −.05, t(476) = 2.84, p
< .01). A one-point decrease on the 5-point mood scale (i.e., more negative mood) related to
4.5% increase in smoking at the following time point. (B) Craving at time i − 1 predicting
smoking at time i, controlling for time i craving, is a significant predictor of smoking (log-
expectation γ = .20, t(476) = 8.78, p < .01). A one-point increase on the 5-point craving
scale (i.e., higher cravings) related to 22% increase in smoking at the following time point.
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Figure 4.
Craving mediates the within-day relationship between negative mood and smoking.
Negative mood relates to increased smoking at the following time point (Figure 4a), as does
craving (Figure 4b). Negative mood is also associated with craving concurrently (γ = −.30,
t(476) = 4.10, p < .01). When entered simultaneously, prior craving significantly relates to
smoking (log-expectation γ = .23, t(476) = 9.47, p < .01) but prior mood does not (p ns),
suggesting full mediation (Sobel’s z = 3.79, p < .01).
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Table 1

Correlations Among Global Self-reports, EMA, and Exhaled CO Measures of Smoking

Measure 1 2 3 4

Global smoking self-report of # cigarettes smoked (ln)

 1. Baseline —

 2. Endpoint .01 —

EMA calculation of # cigarettes smoked (ln)

 3. Last day .02 .90** —

Exhaled CO ppm

 4. Baseline .38* −.13 —

 5. Endpoint .09 .39* .50** .14

Note. N = 27. Global and EMA self-reports of smoking have been normalized with a natural log (ln) transformation. CO = carbon monoxide; EMA
= ecological momentary assessment.

*
p < .05.

**
p < .01.
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Table 2

Change From Baseline to Endpoint on Smoking-Related Measures: Mean (SD)

Measure Baseline Endpoint Change

Global smoking self-report (# cigarettes smoked) 20.24 (9.36) 5.17 (5.45) 15.07* (10.28)

Exhaled CO (ppm CO) 18.93 (11.65) 13.44 (10.89) 5.49+ (14.70)

FTND (out of 10) 6.37 (2.04) 2.63 (2.62) 3.74* (2.49)

Smoking urges (positive) (1–7 scale) 4.82 (1.18) 2.54 (1.57) 2.28* (1.50)

Smoking urges (negative) (1–7 scale) 3.24 (1.21) 2.00 (0.97) 1.24* (1.35)

Note. N = 27.

+
 p = .06.

*
p < .01.
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