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Spatial Sampling Strategies with Multiple Scientific Frames of Reference

Abstract
We study the spatial sampling strategies employed by field scientists studying aeolian processes, which are
geophysical interactions between wind and terrain. As in geophysical field science in general, observations of
aeolian processes are made and data gathered by carrying instruments to various locations and then deciding
when and where to record a measurement. We focus on this decision-making process. Because sampling is
physically laborious and time consuming, scientists often develop sampling plans in advance of deployment,
i.e., employ an offline decision-making process. However, because of the unpredictable nature of field
conditions, sampling strategies generally have to be updated online. By studying data from a large field
deployment, we show that the offline strategies often consist of sampling along linear segments of physical
space, called transects. We proceed by studying the sampling pattern on individual transects. For a given
transect, we formulate model-based hypotheses that the scientists may be testing and derive sampling
strategies that result in optimal hypothesis tests. Different underlying models lead to qualitatively different
optimal sampling behavior. There is a clear mismatch between our first optimal sampling strategy and
observed behavior, leading us to conjecture about other, more sophisticated hypothesis tests that may be
driving expert decision-making behavior.

For more information: Kod*lab

Keywords
Spatial sampling, frames of reference, representation, scientific decision making

Disciplines
Cognitive Psychology | Electrical and Computer Engineering | Engineering | Geomorphology | Quantitative
Psychology | Soil Science | Systems Engineering

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/ese_papers/784

http://kodlab.seas.upenn.edu/
https://repository.upenn.edu/ese_papers/784?utm_source=repository.upenn.edu%2Fese_papers%2F784&utm_medium=PDF&utm_campaign=PDFCoverPages


Spatial Sampling Strategies with Multiple Scientific Frames of
Reference

Paul B. Reverdy
Department of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, PA 19104

preverdy@seas.upenn.edu

Thomas F. Shipley
Department of Psychology

Temple University
Philadelphia, PA 19122

tshipley@temple.edu

Daniel E. Koditschek
Department of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, PA 19104
kod@seas.upenn.edu

Abstract

We study the spatial sampling strategies employed by field scientists studying aeolian processes, which are geophysical
interactions between wind and terrain. As in geophysical field science in general, observations of aeolian processes are
made and data gathered by carrying instruments to various locations and then deciding when and where to record a
measurement. We focus on this decision-making process. Because sampling is physically laborious and time consuming,
scientists often develop sampling plans in advance of deployment, i.e., employ an offline decision-making process. How-
ever, because of the unpredictable nature of field conditions, sampling strategies generally have to be updated online. By
studying data from a large field deployment, we show that the offline strategies often consist of sampling along linear
segments of physical space, called transects. We proceed by studying the sampling pattern on individual transects. For
a given transect, we formulate model-based hypotheses that the scientists may be testing and derive sampling strate-
gies that result in optimal hypothesis tests. Different underlying models lead to qualitatively different optimal sampling
behavior. There is a clear mismatch between our first optimal sampling strategy and observed behavior, leading us to
conjecture about other, more sophisticated hypothesis tests that may be driving expert decision-making behavior.
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1 Introduction

Aeolian processes, which couple the geophysical interactions between wind and terrain, are driving forces behind the
production of atmospheric dust, erosion of soils, and the evolution of sand dunes in deserts [6]. These phenomena are
particularly important in agriculture and climate science. Many environmental factors are relevant (wind turbulence,
topography, vegetation, etc.), which leads to complex physics that are difficult to reproduce in the laboratory. Therefore,
studying aeolian processes necessitates field work where scientists make observations and take measurements. There
is growing reason to expect that advances in robotics [4] will soon yield a class of small legged machines capable of
carrying the instruments required for these purposes of aeolian science [8]. This has prompted us to explore the prospects
for developing formal models of the aeolian data collection enterprise such as might better enable human scientists to
usefully direct the activities of such robotic field assistants.

A deep understanding of aeolian processes in the field remains at a relatively early stage of development; scientists have
imprecise priors about what to expect when planning a field campaign. In this situation the ideal measurements would
cover an area of interest at a density that would allow observation of relevant spatial variation at any scale. In the absence
of infinite resources such fine-scale uniform spatial coverage of their area of interest is not practical [1]. Limited field time
and financial resources will determine coverage, so a key decision-making process at the heart of field work is deciding
how to allocate a limited sampling budget.

In this paper we consider sampling location data from an ongoing large-scale field campaign in Oceano, California [7].
The Oceano Dunes state park, located on the coast between Santa Barbara and San Luis Obispo, is open to the public for
riding all-terrain vehicles (ATVs), which produce atmospheric dust. The field campaign was sponsored by the local air
quality board in response to complaints about how ATV-generated dust was affecting local air quality. Scientists from
the Desert Research Institute (DRI) were commissioned to study the processes by which dust was being generated and
possible policies designed to mitigate the dust production [7, Appendix B].

The area of interest covered approximately 15 km2, and the initial August 2013 field campaign gathered 360 samples (969
samples total over the six field campaigns in the data set). If the scientists had aimed for uniform coverage on a grid
in August 2013 they would have resulted in an inter-sample distance of approximately 200 meters. However, this level
of resolution is insufficient for identifying the role of the geomorphology, as it permits less than one sample per dune,
whose spatial extent is on the order of 200-300 meters. Furthermore, difficulties in traversing the terrain mean that the
identical amount of field resources dedicated to a uniform sampling strategy would likely have achieved fewer than 360
samples with a corresponding further decrease in resolution. Therefore, the decision makers (DMs) decided to focus on
two types of individual transects, which they could sample at a higher spatial frequency. One type was oriented parallel
to the prevailing wind direction (120◦), and the other type was oriented parallel to the shore and thus also to the dune
structures (0◦). These two frames were not orthogonal due to the non-orthogonality of the two relevant orientations
defined by the two physical drivers: wind direction and shore topography.

2 Field data

Figure 1 shows sampling locations from the six field campaigns conducted as part of the DRI Oceano Dunes study
between 2013 and 2016. The data clearly show many linear patterns of sampling locations, which the field scientists
refer to as linear transects. Sampling resources were focused in transects which raises three questions: 1) why were these
orientations selected; 2) why were the transects located where they were; and 3) why was a regular sampling pattern
used on the transects? We conducted interviews with Vicken Etyemezian, one of the senior scientists in charge of the
study, to understand the decision-making process associated with these three questions. The results of the interviews are
as follows.

2.1 Orientation

The initial sampling study in August 2013 was designed to measure baseline information about the rates of dust produc-
tion in different areas in the park. The scientists hypothesized that there would be spatial gradients in the rates of dust
production as measured by the PI-SWERL device [2]. As aeolian processes are driven by the wind, they further hypothe-
sized that the spatial gradients would be strongly oriented along the prevailing wind direction. Therefore, the East-West
transects are oriented along the prevailing wind direction and sampled at an approximately uniform 100 meter spatial
resolution, selected as a compromise between achieving high spatial resolution and covering large amounts of terrain.
The North-South spacing (approximately 300 meters) of these transects reflects an attempt to gather coarse North-South
gradient information, while the transects oriented North-South are designed to more formally capture gradient informa-
tion along a linearly independent direction [1].

1



2.2 Location

The choice of location for transects is influenced by many factors, including the availability of prior meteorological
measurements, land access rights, existence of vegetation, and the difficulty of traversing the physical terrain. The long
2013 transect just south of the center of the figure was designed to provide a baseline measurement of dust production
upwind of the reference point for the air quality district, while the other transects were designed to provide control
information in areas that were off-limits to ATV riding.

2.3 Within-transect sampling

Sampling along a given transect was done approximately every 100 meters by pre-programming GPS coordinates into a
handheld receiver and then attempting to take measurements at the closest-possible location. Sometimes, as can be seen
in the sampling locations at the northern edge of the park, the physical terrain made it difficult to take measurements in
the desired locations.

The spatial frequency of measurement was closely related to the spatial frequency (approximately 200-300 meters) of the
dune field; the resolution was chosen to ensure that there would be several measurements on each dune. In this way,
the scientists hoped to capture spatial gradients that were associated with the dune topography. During a given field
campaign, the sampling strategy was generally held fixed (i.e., the sampling locations were determined before going into
the field). Significant changes to the sampling strategy were only made between field campaigns.Oceano PI-SWERL data

301_Extract_Test_summaries_wit...
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Figure 1: Sampling locations from the six field campaigns associated with the DRI Oceano study, broken out by field
campaign date. Note the clear linear patterns of sampling locations that define transects. Many of the transects have
strong East-West orientations, designed to match the heading of the prevailing winds. Other transects are strongly
North-South, designed to capture gradient information along a direction “orthogonal” to the prevailing wind direction.
Data courtesy of Vicken Etyemezian, Desert Research Institute.

3 Hypothesis testing on a transect

In the previous section we showed that, in this study, the field scientists focused their sampling on linear transects aligned
with two reference frames defined by relevant physical processes. In this section, we consider the problem of deciding

2



where to sample on a given transect. We postulate that the decision-making process is guided by the desire to perform
statistical hypothesis testing on the resulting data and investigate the spatial sampling patterns induced by maximizing
the statistical power of tests associated with two different underlying models of the observed data. By comparing the
induced to the observed sampling patterns, we can begin to probe the types of hypotheses the scientists are implicitly
making about the structure of their data.

We restrict ourselves to a given linear transect of length ` and consider the problem of deciding where to sample on
that interval. Let x ∈ [0, `] represent locations on the transect. We suppose that the scientist is taking measurements of
some quantity whose true value at location x is given by an unknown function f(x). Furthermore, we assume that the
measurement device produces observations

y = f(x) + ε, ε ∼ N (0, σ2) (1)

which are the true function value corrupted by zero-mean Gaussian noise with known variance σ2.

In interviews, Dr. Etyemezian emphasized that a major goal of the sampling project was to determine the extent to which
quantities thought to contribute to dust production varied with different environmental covariates, such as distance from
the ocean (i.e., along a wind-oriented transect) and policy choices, such as whether or not ATV riding was permitted
in a given area. This qualitative question can be cast quantitatively in terms of several different types of statistical
hypothesis tests, including change point detection and tests on the coefficients of linear and nonlinear regressions. The
data produced by the PI-SWERL device is quite noisy, likely because of high local variability in the quantity it is designed
to measure [1]. Therefore, we regard it as unrealistic that a field campaign would be designed to perform a change point
detection, as any true change point would be difficult to detect in the presence of measurement noise.

Having rejected a simple change point detection test, we consider hypothesis testing on the parameters of a regression
model. In the interest of parsimony, we restrict ourselves to linear regression models. As a first hypothesis, suppose that
the decision maker assumes that the unknown function f(x) is linear in x:

f(x) = mx+ b. (2)

When there are N measurements yi made at locations xi for i ∈ {1, . . . , N} fitting the function (2) is an ordinary least
squares (OLS) problem

y = Xβ

where β = [m, b]T and X = [x1, . . . , xN ; 1, . . . , 1]T is the N × 2 matrix of regressors. The qualitative question of whether
or not f varies with x then reduces to the quantitative question of whether or not the slope m is equal to zero.

3.1 Slope test

For the linear model (2), a natural question to ask is the following: is the slope m statistically different from zero? Such
a question can be answered by conducting a hypothesis test on the OLS coefficients. We adopt a frequentist statistical
framework and design a sampling strategy to maximize the statistical power of the frequentist hypothesis test on m, the
slope coefficient.

Assuming that the Gaussian noise ε is independent across observations i, the Gauss-Markov theorem [3] holds and the
estimated regression coefficients β̂ are themselves Gaussian distributed with mean β and variance σ2(XTX)−1:

β̂ ∼ N
(
β, σ2(XTX)−1

)
.

Maximizing the power of the hypothesis test is equivalent to minimizing the variance of the estimator β̂. The matrix
(XTX)−1 can be expressed as

(XTX)−1 =
1

n

1

x2 − x̄2

[
x2 −x̄
−x̄ 1

]
, (3)

where x̄ = 1
N

∑N
i=1 xi and x2 = 1

N

∑N
i=1 x

2
i . A bit of additional algebra then shows that the variance of β̂2, the estimator

of the slope coefficient m, is given by σ2
β2

= 1/
∑
i(xi− x̄)2, which is the inverse of the moment of inertia of the points xi.

The solution to the problem of maximizing the moment of inertia
∑
i(xi − x̄)2 on the interval [0, `] is simple: pick N/2

points at either end of the interval. Clearly, the uniform spatial sampling observed in the field is inconsistent with this
solution, so we reject the hypothesis that the scientists are performing a simple slope test and seek a more sophisticated
sampling criterion.

3.2 Fourier analysis

Having rejected the simple slope test we consider a more complex hypothesis test arising from linear regression. In
conversation, the scientists implied that they first wanted to eliminate the possibility that there was more complex spatial
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behavior before testing the hypothesis that a linear model fit had zero slope, as the dune topography suggests that there
may be some spatially-periodic variation in the measured variables. OLS tools can again be helpful here in the form of
Fourier analysis. This is equivalent to assuming the following model for f(x):

f(x) =

M∑
k=1

ak cos

(
2πkx

N

)
+

M∑
k=1

bk sin

(
2πkx

N

)
. (4)

Suppose that we have N uniformly-spaced samples at xi = iλ, i ∈ {0, 1, . . . , N − 1}, where λ = `/(N − 1) is the spatial
frequency. The well-known Nyquist sampling condition implies that we must have M < N/2, which provides an upper
bound on the spatial frequencies that can be captured with a given sampling strategy: effectively, with a sampling
frequency of λ, the highest spatial frequency that can be captured is λ/2.

Denote by yi, i ∈ {0, 1, . . . , N − 1} the N measurements of f(x) taken at xi = iλ, i ∈ {0, 1, . . . , N − 1}. Then the OLS
estimators for the amplitudes ak and bk are the discrete Fourier transform coefficients

âk =
2

N

N−1∑
i=0

yi cos

(
2πki

N

)
, b̂k =

2

N

N−1∑
i=0

yi sin

(
2πki

N

)
and the covariance matrix is C = 2σ2

N I2M , which permits hypothesis testing [5, Section 4.4].

The primary experimental design decision to be made in this context is the selection of the sampling spatial frequency
λ, which determines the highest spatial frequency detectable in the model. Thus, the choice of sub-dune-length-scale
spatial sampling is consistent with a desire to measure spatial processes on the order of the dune length scale. Further
careful investigation would be required to verify the extent to which the spatial sampling frequency is greater than twice
the dune length scale, as required by the Nyquist criterion.

4 Conclusion

We investigated the spatial sampling behavior exhibited by scientists conducting research in the field. Records of field
campaigns and personal interviews show that sampling tended to be performed along linear segments called transects
and that these transects were oriented to coincide with physical drivers of the processes under study, namely the pre-
vailing wind direction and the shoreline. We postulated that the pattern of sampling within a given transect could reveal
implicit assumptions that the scientists made about the spatial structure of the scientific phenomena.

We formulated statistical hypothesis tests that might be driving the sampling behavior and considered the spatial pattern
of sampling that would maximize the statistical power of the associated hypothesis test. There was a clear qualitative
difference between the observed sampling behavior and that associated with a simple slope test, so we rejected that
model and considered a Fourier series model. Maximizing the statistical power of a test associated with the coefficients
of the Fourier series results in a regular pattern of sampling that is qualitatively similar to the observed pattern. Ongoing
work will further investigate the degree to which the sampling behavior under the Fourier series model matches the
observed behavior. We will conduct interviews to discover if this quantitative representation is consistent with the
scientists’ implicit assumptions about spatial structure and introduce other candidate models as may be suggested by
the comparisons.
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