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Abstract

Polyakov's prescription for fermionic closed string amplitudes requires that we integrate over gauge-
inequivalent geometries on a 2D supermanifold. These inequivalent geometries are parametrized by a finite-
dimensional superspace of moduli. This space is described and an integration measure on it is proposed which
comes from gauge-fixing the heterotic string. The measure thus obtained is free of conformal and Lorentz
anomalies and so can be used to compute invariant string amplitudes.
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1. Introduction

In Polyakov's formulation of bosonic string theory [1] one integrates over
string coordinates z* and metrics gmn on the string world sheet M. The path
integral can be given meaning by gauge fixing the symmetry group of the action,
i.e., factoring out the gauge group volume.

The problem with gauge-fixing is that it is not quite complete. Locally on
M one can use the gauge symmetries of the theory to transform any metric to
a standard one [1][2][3]. This is not quite true globally. In general, there is a
finite-dimensional “moduli space,” mod M, of gauge-inequivalent metrics.

Thus, factoring out the gauge group reduces the infinite-dimensional in-
tegral over gnn to a finite-dimensional integral over moduli space [4][5]. The
explicit measure on moduli space needed for the compnutation of closed bosonic
string amplitudes has been derived in [6][7](8]. In the present letter we will con-
sider the analogous problem of integrating over all 2-geometries for a fermionic
string theory. We choose the heterotic string [9] mainly to simplify the equa-
tions; the superstring should be a straightforward extension.

2. Superspace

The dynamical variables and geometry relevant to the heterotic string are
convemiently phrased in terms of a chiral two-dimensional superspace, which
is a modification of the framework studied in |3]{10]. Thus, the dynamical
variables are functions on a superspace with two even coordinates z,7 and
one odd coordinate §. The superspace frame Fj,# is therefore an invertible
3 x 3 graded matrix. Heterotic geometry can be defined by imposing appro-
priate torsion comstraints. If V, = E,MV,, is the covariant derivative and
VaVA = VA +0yVELG (see appendix) then define curvature and torsion
vial [V ,,Vp]=-T,5°Vs+ Rsp - L and impose the minimal constraints

a ra A _ —
T, ®=2ivdy; Tyt =T "=T,"=0 (2.1)

The above constraints together with the Bianchi identities imply that all the
field strengths can be expressed in terms of R,;.
The geometry defined by (2.1) admits three important group actions.

First, the constraints are coordinate and Lorentz invariant. Next, one can

I These conventions agree with {3] but not with [10].
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define super-Weyl transformations [3] §E,,® = wEy®; 6B, T = %u.rEM+ —
jEEMzV+"’ for a scalar superfield parameter w. These also preserve (2.1).

Locally all frames are equivalent under these three group actions. There
are 3 X 3+ 3 = 12 superfield degrees of freedom in the frame and connection.
The seven constraints reduce this to five, corresponding to the 1+ 1+ 3 gauge
degrees of freedom in Weyl, Lorentz, and coordinate transformations.

We can now write an action in superspace which respects these three sym-
metries. Let X* be d scalar superfields neutral under super-Weyl, and let A}*
be 32 spinor superfields, with 6, AT = —%wh“". The action for the matter
fields 1s then

S =[ [((Vo XNV X7 - + ATV AY] (sdet By ) 0 dd (2.2)
M

This is the supergravity version of the sigma-model actions discussed in
[11][12]{13]. It has all the required local symmetries to describe covariantly
*supersymmetric surfaces” in spacetime.

3. Wess-Zumino Gauge

To quantize we need measures on the various field spaces and gauge groups.
The most convenient way to define such measures while preserving as much
symmetry as possible is to put metrics on the various function spaces. In
the heterotic string the existence of only a single odd coordinate & makes it
impossible to find appropriate supersymmetric metrics on the space of frames
and gauge groups. This problem is equally serious in the NSR superstring where
f and § must be given independent spin structures. Thus we will decompose
the superfields in terms of components and put metrics on the component field
spaces. Manifest supersymmetry is lost at this point and will have to be checked
later.

The constrained frame contains ten component fields which can be de-
scribed as gauge transformations away from a gaunge slice. As a first step,
consider a partial gange-fixing to a Wess-Zumino gauge similar to the one in
[3]: We gauge away the O(6°) terms of E,°%, (I, and (E,* ~1). We also
nse super-Weyl transformations to set the spin—% bit of the gravitino to gero.
This intermediate step simplifies the algebra considerably. Since the passage to
WZ gauge does not involve solving any differential equations (unlike e.g. the
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passage to superconformal gauge), we encounter no topological obstructions at
this step and hence no moduli. Since we do not quantize until after making
the restriction, the issue of anomalies in the transformations taking us to Wi
gange will not arise.

These five constraints take the ten components of E down to five compo-
nents, the graviton ¢,,* and gravitino x+. There remain five residual symme-
tries under ordinary Lorents, Weyl, and coordinate transformations. Explicitly

we have

A fem® HiV2XE en® Dxh+ Lwm \ .
By™ = ( /20 0 1 ; (3-1)
Enmanemz
14 = | e™Bne,.* + V20D xT
0

Let X* = y*(o) + 928 (o) be d scalar superfields and Af = f +0F; be
32 spinor superfields. Then the action is

SWZ = f[—ay . ay + ZX;-)(.}azy _'t\/ilA+.DzA+ + -F‘2 _t\/i¢+Dz¢+] Edzo' !
(5.2

where ¢ = dete,,%. The residual symmetries in WZ gauge are:

(a)supergravity: Sy =¢"Xy, SAp = i2etd,y, bxt = 2Dt
2 = iv2etxt, be, =0, §¢t =c'F,
§F =iv2et Dy (3.3)
(b)Weyl: 6y =0, iy = —3why, fe," =we,’, Sxt = —Lwxt,
syt = w%wtﬁ"', §F = —wk.
{c}, (d)coordinate, Lorents: §A, = ™ DpAy — %£A+,
be,™ = —(Dat®)e,™ + PP epa,  etc.

4. Supermoduli

We now ask to what extent further gauge fixing is possible. On M let T,
be the space of tensors t with n lower # indices. We then have the inner product

(45) = [ 4% clg™) 0oy 's(o) (4.1)

4

which we use to define adjoints of the covariant derivatives on M. For example

pi . To — Taaz, and (D(")) =D 2 By the index theorem

dimeker DY — dimckerDY, o = (In]+ (1 —9) (4.2)

where g is the genus of M.

Forg=>1, D!? has no kernel {there are no conformal Killing vectors [5] ) so
(4.2) implies the existence of 3g — 3 complex deformations of ¢,,¥ which cannot
be written as gauge variations {5], and similarly for e,,*. These are called moduls
of the Riemann surface M. Similarly, for g > 1 D‘(. } has no kernel, since the
product of two such conformal Killing spinors would be a conformal KJllmg
vector. Thus there are 29 — 2 complex deformations of a given gravitino x,
which are orthogonal to the image of D(_”, and hence by (3.3} are not gauge.
We will call these “supermoduli.” Since the difference between spin structures
amounts to the multiplication by a flat bundle, the number of supermoduli is
independent of spin structure for g > 1. Hence a slice in complez frame space
transverse to all gauge deformations will be a finite dunensional superspace
with 6g — 6 commuting and 2¢ — 2 anticommuting dimensionas.

For the sphere (g = 0) there are neither moduli nor supermoduli. For the
torus moduli space is 2|0 or 2| 1dimensional, depending on gpin structure. We
will defer discussion of these cases to [14] since they present the added wrinkie

of conformal Killing spinors.

5. Change of Variables

We would now like to consider the string partition function as an integral
over the quotient of fields modulo gauge symmetries, represent this quotient by
a slice, and find the appropriate slice measure. This strategy will work only if
the answer is independent of the slice chosen.

To begin, we need to define more carefully the configuration spa.ce In
Minkowski space the heterotic string contains a Majorana-Weyl gravitino and a
real frame ¢_% on M. In Buclidean space there are no MW spinors; moreover,
the supergravity transformations (3.3) do not preserve reality of the frame,
ez = {¢2)*. We now address each of these problems in turn.

First, consider the quantization of a single MW fermion, with action § =
fed?o$10:6, in Minkowski space. Formally this system has the partition
function [[dé4]e ™ = Pfaff 8., the square root of detd;. We can reproduce

5



this result in Buclidean space if we interpret [d¢| not as the integral over a
real (Grassmann) variable but as a contour integral in the complex ¢4 space.
Which “contour” we choose is refiected in an overall phase.

Sometimes it is useful to define measures using metrics on field space. In
our example we can take ¢ | = fed20¢+(a)¢»+ (o), and using it define
[déy de¢s] by requiring 1 = [[d ¢ d¢%] elle+l* To apply this measure to our
problem, we s:mpiy discard half the degrees of freedom to get [d¢, | and inte-
grate it as above. Similarly any jacobian computed with this complex measure
will be the absolute square of the correct one for [d ¢4 |.

In the heterotic string we thus choose a “contour” for our integral over
the slice. We then get the jacobian for the change to collective coordinates
by working on the tangent space, i.e. small variations of frames, just as in
the bosonic string [6][7]. As in the example above we will work with complex
variations in order to have a metric, thus doubling the effective number of
degrees of freedom. The desired jacobian will then be a square root of the
expression thus obtained, as we discuss in sect. 6.

Specifically, our real slice will be of the form
&7(E), &™) = (6,()" X7 =i, (5.1)

where £ are 6g—6 real coordinates parameterizing a slice for ordinary real moduli
gpace, ¢# are 2g — 2 real Grassmann coordinates, and v, p=1,...2¢g 2
are E—number spinors spanning a subspace of T_3 transverse to gauge d].rectmns
(i.e. to the image of D,(I—I)]. ‘We can and do choose v# independent of ¢*.

Now consider the second problem. We simply define our configuration
space to be the real gauge orbit of the slice. Since we never actually integrate
away from the slice, it does not matter that the supergravity transformations
are complex.

We can express complex deformations §e,™, 6x5 of the geometry in terms
of a complex vector field £%, a supersymmetry parameter et, Weyl and Lorentz
parameters w, £, and moduli §t;,6t;, 6¢. Here de,, which depends on 6¢y, is in-
dependent of §ey, which depends on another variation ét2. Similarly £%, £ are
independent. For example, letting A, = (6¢,"}e,.* and (T7) 0 = (Zrea™)em’s

we have

By = —D & + w — il + 61T,
sy = —Dpt® + 6t5T0, +1v2¢ T, ete.
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Using the fact that the functional determinant for an algebraic change of vari-
ables equals unity [6], it is easy to show that the jacobian we seek is the product
of two simpler ones:

hee = (=D: T3,) (fti);

z

haz \ _ -D. —iv2x§ T, 0 et
bx3 Doxi —3ixiD, 42D, 0 i )| 6t;
be?

The first change of variables can be carried out much as in the bosonic string.
Let SI,, r=1,...3g ~ 3 be golutions to DgS], = 0. Then [7]

[dh,, db,] = det(DPDT D)) det71(S7, §7) et (S, T*)* [d &% d &% d 6ty A6t}

This expression is independent of the choice of basis S". The contribution from
this sector to the heterotic string functional is now the chiral square root

Ji = det D2 det (ST, T*)det~*/2(S7, %) . (5.2)

The contribution from the other sector can be carried out by defining zero
modes of the operator

. —D, -——t'x/ix:’ _{—Ds
92 = (DzX: - %X:Dz +2Dy - +2D, + 0(¢),

the counterpart of @, = —D,. Let $™ denote 3g— 3 solutions to QlS " =0, such
that §" = (( "(‘;) ) + 0(¢)- Let P? be 2g — 2 solutions to the same equation

0
guch that P = ( P;_) + 0(¢), where P? are supermoduli, s.e. solutions to

D,Pf_ =0. Let H (QI} be the graded matrix of inner products of these sero
modes. Then just as before,

2
|J2t2 — _sdet QlQZ sdet *lH(QI) sdet ((Szza Tz!) (-SE«sVz—> )‘ (53)

(Pzz, Tzz) (PE—-s Vs—)

Unlike Jq, this expreasion’s square root is a function of ¢#.
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6. Anomalies
Thus for the higher-loop vacuum to vacuum amplitude W we have

6g—6

r 292 (2)
dt det Dy
w=[ ] S=J] 4¢( yrar—ss det{S™, T* 6.1
/ Ly AL (det‘/‘*(Sr,So) “ )) (6]

_ sdetalz (87,7 (sr,ur’))
xg.\;%ﬁ [sdet},/zH(Ql)Sdet“ ((P"s'—’") (P2, v7) ]

-5 16
{(ilis det’ — V2 (-1)
X (deto D) (M—%frf 3 detg D}, ,

where o labels the spin structures and the phases 145 are needed for {symplec-
tic) modular invariance[9]. Expression (6.1) involves chiral determinants which
we have not yet defined rigorously. Quillen has shown in a different context
that a canonical square root of the nonchiral determinant exists for any genus
[15]. (Such a square root is easy to find for g = 1.} We will not solve here the
important problem of defining J; ,, but we expect that the approach of Quillen
can be generalized to do the job. For the present purposes it suffices to know
that (a) whatever definition we choose for sdet Q1 2, their absolute squares will
be given up to local counterterms by sdet QI[ZQI.Q, which in turn can be de-
fined via heat-kernel regularization, and that {b) any infinitesimal anomalies
in the phase of sdet @y ; will be local on the world sheet. We can then use
consistency conditions? and Alvares’s family index calculation of the Lorentz
and Weyl anomalies [17].

We begin by setting x = 0. Then @, ; become simply covariant derivatives,
Using

bw.1 logdet D™} = 4;—[2 + 3n(n -+ 2)] [ e 1R
™

- %{2 + 3n{n + 2)] f ewR

" (6.2)
z —t

bw,r logdet DY, o) = E[‘—IZ + 3n(n + 2)]| [ e 2R

- 4—;;[2+3n(n+2)]fewR ,

? Somewhat different arguments appear in [16].
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where R is the scalar curvature, one can check that the above combination of
determinants has no anomalies under Weyl and Lorentz (hence gravitational)
transformatjons. It is not entirely obvious that this cancellation will persist
away from x = 0. Nevertheless we will argue that it is true as follows.

First we consider the supersymmetry anomaly. It must at least be globally
Lorents invariant, and also coordinate invariant if we choose to shift the anom-
alies to be strictly Lorentz.? Furthermore, it must be dimensionless. Since x
and €t have mass dimensions :l:% respectively, the only possible terms are

Jexset(ws)?

I extD.etw,

feD.xfD,et
{6.3)
fe D,x;e+wz

Of these, only the first satisfies the consistency condition

[85(F), 85(e)] = b (€) + 6,8 + by (w)

where ¢ = —2iv/2efef, €2 =0, L= iD,¢* w=—1D.&. No linear
combination of the other three terms can satisfy these. Call the first term Ag.

For the various functional determinants sdet O; in (6.1) set 85 logsdetO; =
¢i A5. Then the consistency conditions say

(> e) [eD,(e;‘e;)-R = [6gc + 8y, + by ] Tog [ sdet; -

Evaluating this at x = 0 shows that 3 ¢; = 0. Since the c; are just constants,
the total supersymmetry anomaly cancels even away from x = 0. This in turn
means that we can always gauge away x locally, so that the coordinate, Lorentz,

" and Weyl anomalies all vanish too.

Prior to quantization we shifted the spin-% part of the gravitino, x7, to
gero. Had we not done so we would have retained the supersymmetric partner of
conformal symmetry, gravitino shifts, as a symmetry of the theory. Since in the
nonchiral string the anomaly in gravitino shifts is the supersymmetric partner
of the conformal anomaly [10], we should find no gravitino shift anomaly here

either.

3 If we assume that the local Lorentz anomaly also cancels at x # 0, as
suggested by the family index argument, then we can at once eliminate all but
the first term in (6.3}.



Finally we should verify the consistency of properties {a) and (b} above by

checking that the nonlocal Weyl dependence in the zeroc-mode inner products

cancels that in sdet Q.I,Qz. In isothermal coordinates, where g,q = €2¥,

o ()~ () e

and its adjoint in the component metrics are given by

Qp= e?% - i — z;z;f)
? ¢ J\ =330+ 2uRf 234

ng(e*‘” c_w) (iﬁ?;;)* %((x:)*ai;jan(f:)*)) ,

where £} = e?/2x} is p-independent, so in the basis {6.4) the zero modes §, P

(6-5)

are p-independent too. Since
oo
5 log adet 'QTQ = _5[ s_tr'(e“QTQ) %ﬁ

= str' (26@ 5@) e of _ str! (4599 ) e_EQTQ

(6.6)

36
and @, has no zero modes for ¢ > 1, the combination

sdet Q1 Q2/|sdet H(Q])?

depends only locally on . Under a Weyl transformation of the slice {5.1),
Toa + €2¥T5q, v0; =+ e?v2s. The third determinant in (5.2) and in (5.3)
is Weyl-independent, so the nonlocal Wey! dependence in (6.1) cancels as ex-
pected.

7. Conclusion

We have generalized the analysis of [5][6][7] to give a discussion of super-
moduli in string theory. We have worked out the appropriate integration mea-
sure on the superspace of moduli which remains after gauge fixing the heterotic
string. The general answer is expressed in terms of some functional determi-
nants and the solutions to a zero-mode problem. We have shown that this
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answer is independent of the slice chosen to represent moduli space, 1.e. that
it is free from gauge anomalies, but we have not addressed global anomalies or
modular invariance|18].

In [14] we will discuss the low-genus case, introduce vertex operators, and
compute zero- and cone-loop amplitudes. Much more remains to be done. We
expect that our work will extend to the case with boundaries, and will therefore
yield an off-shell propagator and Green functions as in {19].

We would especially like to thank Orlando Alvarez, who took part in the
initial stages of this research. We are also grateful to Luis Alvarez-Gaumé,
Andrew Cohen, Stephen Della Pietra, Vincent DellaPietra, Dan Freed, Emil
Martinec, Martin Rotek, and Cumrun Vafa for discussions. This work was sup-
ported in part by the National Science Foundation under grants PHY82-15249
and 83-04629, the Harvard Society of Fellows, the Robert A. Welch Foundation,
and the Alfred P. Sloan Foundation.

As this work was being completed we received [20], where supermoduli are
discussed in the context of conformal field theory. It would be interesting to
understand the connection between the two approaches.

Appendix

M is a real 2d riemannian manifold with coordinates ¢™ and Euclidean
metric gmn. The metric defines a complex structure, and we choose complex
coordinates u, @ in which gu, = 0. The tensors of type T form a bundle, and
its square root consists of chiral spinors in a particular spin structure. These
will have coordinate index 6.

We will integrate over frames e® = d3™e¢, ® a = 1,2, chosen such that
e, en" dab = Gmn- Thus letting e, e = \—;-2-(81 + 1e?) we have ¢, = ¢, = 0.
We can then let e," be the square root of ¢, in the chosen spin structure,
and similarly e;". Let o denote either + or —. Thus m = 1,2;u, % 0,8 are
coordinate indices while @ = 1,2; 2z, Z; @ == % are frame indices. The covariant

derivative on M with the usual riemannian spin connection is called D,,.
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We can also construct M, a supermanifold with complex coordinates 8, 0.
For the heterotic string we make no use of . The generic index M can mean
any of m = 1,2; 6. We will also use the dynamical frame E,*, where A can be
2, %, 4. The covariant derivative on superspace is called V.

Finally our Dirac matrices are 75 , = —/2, {*m)f = #+¢; the local Lorentz
generator is L = ¢, LP = L(vs)f. Thus 6 v* =ifv”, etc.
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