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Bosonization in Arbitrary Genus

Abstract
The equivalence is proved between fermionic and scalar field theories on Riemann surfaces of arbitrary
topology. The effects of global topology include a modification of the bosonic action.
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We prove the equivalence between fermionic and scalar field theories on Riemann

surfaces of arbitrary topology. The effects of global topology include a modification of the

bosonic action.

Fermi-Bose equivalence has recently played an important role in several aspects of

string theory. For example, bosonization figures prominently in the light-cone gauge proof

of the equivalence of the Neveu-Schwarz-Ramond and Green-Schwarz formulations of the

superstring[1]. Bosonization also plays a key role in understanding the spacetime gauge

symmetries of the heterotic string [2]. Finally, bosonization is an important tool in the

discussion of the spacetime supersymmetry of the superstring, via the fermion vertex op-

erators [3] [4].

Most analyses of bosonization have concerned themselves with properties local on the

world sheet of a two-dimensional field theory. While for many applications this suffices, one

* Present Address: Ecole Normale Supérieure, 45 Rue d’Ulm, 75230 Paris Cedex 05, France.



would also like to know how the global topology of a compact Euclidean surface modifies

the procedure. On an arbitrary Riemann surface Σ, however, one faces the complication

that not all background field configurations on the world sheet are gauge-equivalent, unlike

the situation on the sphere or the plane. The space of inequivalent metrics on Σ is called

the moduli space M of Σ.

Recently it has become clear that physicists can use the rich and beautiful structure of

M to gain insight into problems of 2d field theory such as bosonization. Most importantly,

M is a complex space, so that methods from algebraic geometry become applicable. The

exact link between field theory and complex geometry comes from a remarkable theorem

of D. Quillen[5][6], which we use. Quillen’s theorem describes the determinant of a family

of wave operators in complex-analytic terms. His result was later generalized by Belavin

and Knizhnik to include families parametrized by M, the case of interest in string theory

[7][8][9] [10] [11]. On the other hand, it has been known for some time that the work of

Quillen is closely related to Faltings’ work on Arakelov geometry[12]. Faltings describes the

bundles in which the determinants live in an inductive way, building them up from simpler

ones. It has been suggested that some combination of Quillen’s and Faltings’ approaches

would be of use in string theory[8].

In this letter we will use just such a combination to prove bosonization formulæ on

Riemann surfaces of arbitrary genus. Our results are more general than the simple spin-

1/2 answer described in[13]. Similar results have been obtained by E. Martinec[14]. One

can see that such an approach could well lead to bosonization by examining the recent

formulation of the string integrand given by [15]. Manin’s formula is strongly reminiscent

of bosonization. For example it contains the exponential of the Green function which we

would expect from correlation functions of the form 〈eϕ eϕ〉; these look like the insertions

of fields needed to soak up zero modes in a fermionic system with an index.

In the following we will describe what bosonization says about the partition function of

a generalized ghost system. (The method extends to give similar formulæ for the correlation

functions.) In particular, the answers we will work out necessarily involve some new global

terms in the bosonic action. We will then sketch a mathematical proof that this action is in

fact correct, deferring the details to a later publication. The insertion of fields mentioned

above correspond precisely to the insertion of points used by Faltings to build up arbitrary-

spin determinant bundles. We think this is a very pleasant interaction of mathematics and

physics, one which is likely to yield further results about two-dimensional field theory in

the future.



We will now outline the bosonization procedure for a first order Fermi system of weight

λ [3][4]. Thus we consider two anticommuting fields b, c on Σ, where b is a λ-form, and c

is a (1 − λ)-form with action Sbc =
∫
b∂c, where ∂ is the Dolbeault operator coupled to

L2−2λ, a power of a spin bundle L. The ghost number current has an anomaly given by

k = (2λ − 1)(g − 1) so that we must insert the appropriate number of b and c fields into

the partition function to obtain a nonvanishing path integral. On a higher genus Riemann

surface we require no insertions for λ = 1
2 ; g insertions of b and one insertion of c for λ = 1;

and k insertions of b for λ > 1. Thus, denoting by ωi and by ψi a basis of holomorphic

1-forms and λ-forms respectively we obtain for the partition functions with fields inserted

at points Pi:

Zbc
λ= 1

2

= det∂
†

L∂L

Zbc
λ=1 ≡

∣∣∣∣
∫
[db][dc]

g∏

i=1

b(Pi)c(Q)e−Sbc

∣∣∣∣
2

=
detωi(Pj) ∧ detωi(Pj)

det〈ωi|ωj〉

(
det′ −∇2

∫ √
g

)

Zbc
λ ≡

∣∣∣∣
∫
[db][dc]

k∏

i=1

b(Pi)e
−Sbc

∣∣∣∣
2

=
detψi(Pj) ∧ detψi(Pj)

det〈ψi|ψj〉
det∂

†

L2−2λ∂L2−2λ

(1)

Since we have inserted fields b which are differential forms, the partition functions should

be regarded as (k, k)-forms on Σk.

Bosonization is the statement that the above first order field theories can be replaced

by equivalent scalar field theories. It was shown in [3][4] that the local properties of the

weight λ system are reproduced by a scalar action which is a sum of the usual action

S1 = 4πi
∫
∂φ∂φ and an anomaly term S2

S[φ] = S1 + S2 ≡ S1 + 4πi

∫
Rφ (2)

The second term accounts for the local anomaly in the ghost number current. To account

for global properties we will need to consider “instanton” configurations which wind ni

times around the ai-cycle and mj-times around the bj-cycle (fig.1). The solution to the

equations of motion in the (~n ~m)-sector can be expressed in terms of holomorphic differ-

entials as: dφnm = (m−Ωn)(Ω−Ω)−1ω + c.c. where Ω is the period matrix. To evaluate

the Rφ term we must define the multiple-valued field φ by choosing a system of curves

intersecting in a single point R (fig.1). Such a choice lets us cut open the surface to obtain

a polygon Σc. We must also choose a basepoint P0; then φ =
∫ P

P0
dφ is well-defined on Σc.



Let us now investigate the dependence of the action on the various choices we have

made. First, a change of basepoint shifts φ, and therefore S, by a constant. This is simply

a reflection of the (integrated) U(1) anomaly and is compensated by the the bosonized

insertions that soak up zero modes. Next, let us consider the dependence on the curves

ai, bi chosen to represent the homology basis. If we view φnm as a discontinuous function

on Σ, then deforming a cycle through the discontinuity produces a change in the action.

For example consider the two choices of representatives for the al cycle in fig. 2. If φ has

a winding number around bl then there is a discrepancy in the actions because

∫

Σ̃c

Rφ−
∫

Σc

Rφ =

∫

bl

dφ

∫

D

R (3)

where D is the region bounded by ãl and al. Thus, in the instanton sectors the anomaly

term is not well-defined. We may compensate for this by adding a term to the action so

that

S2 = 4πi

∫

Σc

Rφ−
∫

bk

dφf [ak] +

∫

ak

dφf [bk] (4)

where f is any functional of the curves such that if ãk is homologous to ak then f [ãk] −
f [ak] = 4πi

∫
D
R where D is the region enclosed by the two curves. By a similar argument

the action S2 is independent of the choice of the intersection point R.

One natural choice of f may be described as follows. The metric on a holomorphic

line bundle L is specified (up to a constant) by the curvature. We may then choose the

unique holomorphic connection compatible with that curvature and compute the holonomy

about a curve γ which we denote by h[γ;L]. Thus, when bosonizing a weight λ system in a

background with curvature R we have f [al] = h[al;L
2−2λ]+vl and f [bl] = h[bl;L

2−2λ]+wl

where v and w are constants which will be determined momentarily.

The action should also be independent of the choice of homology basis, i.e., it should

be modular invariant. It is easy to check that if the parameters v, w in the action are

independent of marking then we can have modular invariance only if v = w = 0. The

change of S2[φnm] under a change of marking is not obvious and requires a computation.

We will establish modular invariance for one particular metric, then since S2 is conformally

invariant the action will then be basis-independent for all metrics. A natural metric is the

Arakelov metric [16] [12] which is defined up to a constant by specifying the curvature of

the holomorphic line bundle L2−2λ by R = k i
2gω

i(ImΩ)−1
ij ω

j ≡ kµ. Note that
∫
µ = 1.

Every metric is gauge-equivalent to a single Arakelov metric. We will see that the choice

of the Arakelov metric is is particularly convenient for both physics and mathematics.



To write the answer we must parametrize line bundles of a given degree. Since the

difference of two bundles of the same degree is a flat bundle we may choose a fiducial spin

structure L and parametrize bundles of degree (2 − 2λ)(g − 1) by L2−2λ ⊗ Fθ1,θ2
where

Fθ1,θ2
is the holomorphic flat bundle with holonomy θ1, θ2 around the a, b cycles [17] [9].

We will choose L to be the spin bundle corresponding to the (marking-dependent) vector

of Riemann constants ∆. 1 This parametrization is particularly natural when considering

functional determinants of ∂ operators because of the Riemann vanishing theorem [18] [9].

For the bundle L2−2λ ⊗ Fθ1,θ2
one can show that

S2[φnm] = 4πi

[
(m− Ωn)(Ω− Ω)−1((2λ− 1)∆ + θ1 +Ωθ2) + c.c.

]
(5)

Using the transformation law of ∆ under a change of marking one can show that exp −
(S1 + S2) is invariant up to a change of sign, reflecting a global anomaly. This sign may

be cancelled by adding a third term to the action given by the product of the winding

numbers S3 = 4πi
∫
ak
dφ

∫
bk
dφ = 4πin ·m. Thus if we choose the action S = S1 +S2 +S3

then e−S is independent of all choices and is the correct action corresponding to the weight

λ system.

To complete the Fermi-Bose correspondence we must express the Fermi fields b, c in

terms of the Bose field φ. In the Lagrangian formulation this is accomplished by

b = (dz)λNz(e
4πiφ+)

c = (dz)1−λNz(e
−4πiφ+)

(6)

where φ+ =
∫ P

P0
∂φ is the right-moving part of φ; the factor of 4πi is determined by

demanding that the expressions on the right hand side have the correct conformal weight,

and the normal ordering prescription Nz cancels the coordinate-dependence so that b, c

are well-defined differential forms. We may now evaluate the Gaussian path integral with

insertions by introducing Arakelov’s Green function [12] which satisfies ∂∂logG(P,Q) =

iπµ(P )− iπδ(P,Q) and
∫
µlogG(·, Q) = 0. The normal-ordering of the Green functions at

coincident points is fixed by the requirement that the expression be coordinate independent

and finite:

: logG(P, P ) := lim
Q→P

(
logG(Q,P )− 2λlog|z(P )− z(Q)| − (1− 2λ)logd(P,Q)

)
(7)

1 In the following we consider ∆ as a point in the Jacobian.



where d(P,Q) is the invariant distance. The Arakelov metric has the important property

that the normal ordering of the scalar (λ = 0) field gives zero at the coincident points.

In addition to the Gaussian integrals we must sum over instanton sectors. By (6)

we must allow φ to shift by an integer or half-integer about the cycles. Thus the Bose

partition functions are:

ZBose
λ= 1

2

=

(
det′ −∇2

∫ √
g

)− 1
2

Zinst

ZBose
λ=1 =

g∏

i=1

√
−1

2
dzi(Pi) ∧ dzi(Pi)e

:logG(Pi,Pi):

(
det′ −∇2

∫ √
g

)− 1
2

∏
i<j G(Pi, Pj)

2

∏
iG(Pi, Q)2

Zinst

ZBose
λ =

k∏

i=1

(

√
−1

2
)λ(dzi(Pi))

λ ∧ (dzi(Pi))
λe:logG(Pi,Pi):

(
det′ −∇2

∫ √
g

)− 1
2 ∏

i<j

G(Pi, Pj)
2Zinst

(8)

where Zinst denotes the instanton sum. This may be expressed as

Zinst =
∑

n,m∈( 1
2
Z)g

e−S1[φnm]+4πi[(m−Ωn)(Ω−Ω)−1z+c.c.]+4πimn (9)

where z = ∆+θ1+Ωθ2 for a twisted λ = 1
2 system, while z = I[

∑g
i=1 Pi−Q]+∆ for λ = 1

(here I[·] is the Jacobian map, and Pi, Q are the insertion points), and z = I[
∑k

i=1 Pi]+∆

for all other spins. Twists may be included in the latter two systems by adding θ1 + Ωθ2

to z [18][9]. After an application of the Poisson summation formula this sum may be

expressed in terms of a function N [z]:

Zinst = (detImΩ)
1
2N [z] ≡ (detImΩ)

1
2 e−2π(Imz)(ImΩ)−1(Imz)|ϑ(z|Ω)|2 . (10)

where ϑ is the Riemann theta function. Bosonization states that the Fermi and Bose

partition functions are equal. Equating these we obtain the following formulae for the

determinants of the Laplacians for any spin 2:

det∂
†

L∂L =

(
det′ −∇2

∫ √
gdetImΩ

)− 1
2

N [θ1 +Ωθ2] (11a)

(
det′ −∇2

∫ √
gdetImΩ

) 3
2

=

∏
i<j G(Pi, Pj)

2

‖ detωi(Pj) ‖2
N
[
I(
∑g

1 Pi −Q)−∆
]

∏
G(Pi, Q)2

(11b)

det∂
†

L2−2λ∂L2−2λ

det〈ψi|ψj〉
=

(
det′ −∇2

∫ √
gdetImΩ

)− 1
2

∏
i<j G(Pi, Pj)

2

‖ detψi(Pj) ‖2
N
[
I[

k∑

i

Pi]− (2λ− 1)∆
]

(11c)

2 These equalities hold up to a constant which depends only on g and λ.



where in the first formula we have considered a twisted spin bundle, and the notation

‖ detψi(Pj) ‖2 is the ratio of differential forms

detψi(Pj) ∧ detψi(Pj)∏k
i=1(dzi(Pi))

λ ∧ (dzi(Pi))
λe:logG(Pi,Pi):

Actually, bosonization asserts the equality of all the correlation functions of the two

theories. These may be easily computed in using the above rules. We will now justify

our bosonization procedure by describing how the identities (11 )and the equalities of

correlation functions can be proved rigorously à la Faltings.

The spin- 12 partition function, eq. (11a), has already been derived in [9]. We will

give a full proof of it elsewhere[13]. Thus what we would like is to find a mathematical

operation corresponding to the insertion of fields at points Pi. We can then use such an

operation to build up arbitrary spins L2−2λ from the known case L1.

U(1) line bundles on a 2d surface are familiar from the theory of magnetic monopoles,

where Σ is the sphere. The total magnetic charge inside Σ can be found by counting

the net number of string singularities, which are points Pi of Σ. Turning this around,

we can specify the bundle by naming k points P1, . . . , Pk and putting transition functions

exp(i arg z(i)) near each. z(i) is a local coordinate vanishing at Pi. Similarly in the analytic

case we can choose P1, . . . , Pk with transitions simply given by z(i). Let O(P1 + · · ·+ Pk)

denote the resulting line bundle. Clearly its smooth sections can also be viewed as ordinary

functions, possibly with simple poles at {Pi}. In particular the section σ(P ), which equals

one away from P , vanishes at P . We can then put a smooth metric on O(P ) by setting

[12][16]

‖σ(P )‖(Q) = G(P,Q) , (12)

and similarly for O(P1 + · · ·+ Pk).

We can now ask what happens to the fermion determinant when we replace L2−2λ by

L2−2λ ⊗ O(P ). Once we know that, we can apply the operation k times to raise L2−2λ

up to degree g − 1, i.e. to a twisted spin bundle, then apply the known formula. For

conciseness we will only give the answer for λ ≥ 3/2, but the general formula needed to

prove (11) is not much harder.

If λ ≥ 3/2, then ∂̄′ ≡ ∂̄L2−2λ⊗O(P ) and ∂̄ ≡ ∂̄L2−2λ have no zero modes, while ∂̄′† has

exactly one fewer zero mode than ∂̄†. We will denote by χi i = 1, . . . , k − 1 the zero

modes of ∂̄′†, by ψi i = 1, . . . , k − 1 the corresponding zero modes of ∂̄†, and by ψk the



extra mode. There is an Arakelov norm on {ψi}, and the same norm times (12) on {χi}.
With this notation, we get

det∂̄†∂̄

det〈ψi|ψj〉
= Cg,k · det∂̄′†∂̄′

det〈χi|χj〉
· ‖ψk(P )‖2 . (13)

The last factor is defined below (11). The proof of (13) follows lines similar to [13]. In

particular the key step equates the curvatures of two Quillen norms. Since curvature only

determines a norm up to a constant, we have an undetermined Cg,k depending on the

genus and the index. The form of (13) would have been more complicated had we not used

the Arakelov metric slice.

Eq. (13) remains valid when we replace L2−2λ by a more general bundle. Applying

it a second time we get the determinant for L2−2λ ⊗O(P1 +P2) expressed in terms of the

norm ‖ψk−1‖2 in L2−2λ ⊗ O(P1). We can rewrite this in terms of the usual norm times

G(P1, P2) using (12). Continuing in this way we arrive at formulæ (11b, c) when proper

care is taken with the last few steps, when λ ≤ 1. Thus we have put the bosonization

procedure on a completely rigorous footing.

The bosonization formulae should prove useful in investigating properties of multiloop

string amplitudes. For example, using either Faltings’ approach or the present one it is

possible to write various formulæ for the string integrand similar to those in [15]. One can

also use (11 )to investigate the behavior of the string integrand on the boundary of moduli

space. Moreover (11c) with λ = 3/2 and similar formulae for correlation functions should

be useful for investigations of the modular invariance of multiloop superstring amplitudes.

Finally, these formulae should help further our understanding of the ultraviolet structure

of string perturbation theory and superstring finiteness.

In conclusion, we have shown that the algebraic geometry of determinant line bundles

and the physics of bosonization are two aspects of the same thing. The mathematics

allows us to prove bosonization formulae rigorously while the physics suggests both the

existence of new identities for determinants, zero-modes, and Green functions, and an

as yet unexplored connection with the representation theory of Kac-Moody algebras. We

believe that bosonization will be a useful tool for further exploration of the deep connection

between algebraic geometry and string theory.
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