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A Comment on Sigma Model Anomalies

Abstract

Some non-linear sigma models with fermions are known to be ill-defined because of a global obstruction to
any consistent quantization. Sigma models relevant to phenomenological theories of dynamical symmetry
breaking must satisfy the additional constraint of appropriately realizing the flavor symmetries of the
underlying theory at the one-loop level. This is possible if and only if 't Hooft's anomaly condition is satisfied.
In particular, we show that there always exists a Wess-Zumino term which correctly reproduces the flavor
anomalies, and the global obstruction vanishes, whenever 't Hooft's condition is satisfied.
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t. Introduction amd Sucarnory

Sigmo models with mon-linear boson Gelds coupling to masslecs fermions
arise im & number of contents, for example in string theories [1], supergravity,
and in the low-energy approzimations to strongly interacting chiral gauge the-
ories. Recemtly, it hea become clezr that clossical sigma models of this type
canmot olways be quantized [2]{3}{4][5]: in certzin czges, & global obstruction
prevents quontisation of the Fermi Gelds in o consistent way for all background
boson Geld configurntions. Loosely speaking, there is no appropriale choice of
basio for the space of fermion paths in the functional integral [3].

The above obstruction arises when we place the mildest restriction pocsible
on an “appropriate” choice of basis, momely that it should give rise to a Fermi
effective action ['y|¢] which is well-defmed for every boson configuration $(z).
In the czse of sigma models which sctuclly arise as low-energy reductions,
however, we can ond should aek more. In this case some underlying linear
theory with o global chiral symmetry under o group G breaks part of G down to
H. Any phenomenological theory describing the consequences of this breaking
must reproduce the {possibly anomalous) Ward idemtities of the original linear
theory. In the lemguage of the previcws paragraph, we must quantice the
putative low-emergy theory wsing o choice of bases which is mot only well-
defined, but s also covarizmt under the oction of G. We can rephrase this
" demand im more familiar language if we nole that |3| charging fermion bases
changes the fermion effective action by the addition of a functional of ¢(z) of
the Wegs-Fummino type [8]. Thus we can start with am arbitrary quantisation
of & sigma model which is known to male sense, say the one used in stamdard
perturbation theory, and demand that there exist a local counterterm of the
Wess-Zumino type which modifies the Ward identities to the form required by
the underlying theory. 1t io mot ebvious that such a counterterm always exists.

In thia letter we establish & condition for the existence of such z counter-
term. Since we now require predictable behavior under G transformations, the
behavior of the theory on oll of G/ H should come from its behavior mear any
point; hence we expect o purely local condition which includes the previous
global ome. This will indeed be the case, just 2o in gauge theory.

Recall [7] that o phenomenological theory with matter is specified by a
choice of the underlying symmetry group G {a compact Lie group), &n un-
brolien subgroup H imbedded in G, znd o representation py of H for the
matter Belds.! In our case, py describes the fermions kept massless by unbro-

! This representation can be reducible.
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Lenm chiral symmetries.? If there ore mo macslecs cémpooite fermions, c3 in the
reduction of QCD, all the anomalies in G muat be reproduced by Goldstone
boson poles in the Green functions, and in particulor the underlying fermions
must be anomaly free under H, since the unbroken currenta canmot produce
single Goldstone bosons out of the vacunm. More generally, there will be sur-
viving low-energy fermions also contributing to the G-znomalies. Then we mo
longer demand that H must be omomaly free; instend, the amomalies of pp
must match those of pgln [8]. Here pg, o representation of G, is the fermion
content of the anderlying theory, and pelm is ite restriction to . Our resull is-
that the necessary matching of Hf omomalies is also sufficient, both for o proper
reslization of the G symmetries and for the vanishing of the global obstruction.

There is zn easy heuristic argument for this result. To define the effective
theory locally, we can use the prescription of |7] for the fermion effective action
I'y(pu). We can conveniently describe the amomalous Ward identities for
Ty {pn) by coupling the theory to external flavor gouge Gelds A for G ond
discussing the anomalous variation of I'y under local G-transformations. Now
consider adding the H-representation pcly, and its complex conjugate. This
does not change the anomalies, so we have

Ty low) = Ty lon + Bela) + Ty locla)

where the symbol = means “has the same anomalous variation under G*. But
pur + pcly has ne H-anomaly by hypothesis so the first term om ¢he right
hand side hzo no G-variation {see mext section). Also, the fermions inm the
second term on the right hand side correspond to those in the effective action
of the underlying linear theory, E"f"“" {pc). Before we can conclude that
Ty {pu) = T~ {pc), however, we must investigate the transformation from
the Fermi fields ¢ in the Callan-Coleman-Wess-Zumino (CCWZ) basis to felds
¥ transforming linearly under G. Following {7] this is

pc{s{s(zN) ¥ (=) =V (a) , (1.1)

where s is a map [rom G/H to G used in defining T'y. Since the fields &
transform in the same way 2a the underlying fermions the flavor anomalies are
the same. As shown in {9] in the case of the chiral quark model, the change of
variables(1.1) contributes an anomalous Jacobian factor to I'y. In that case the

2 All fermiona will be considered to be left-handed.
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change im phese could be compenaated by the addition of a local counterterm,
however, ond so we expect

Ty (pp) + F =TF {pc) . (1.2)

Kemce the addition of o local coumterterm F in each patch should be sufficient
to renlise the G symmelry properly. :

Im gemeral, the map s above will be defined only on a meighborkood U C
G/H, a0 we need to use o collection of maps {s.} on patches {.} covering
G/H. These define o s2t of T'Y, and by equation (1.1} & corresponding set of
Fo. Since the right hand side of equation (1.2) is independent of 54, we have

that e {FFHF “) regarded a5 a section of o line bundle has trivial transition
functions. Thus the global anomaly of [2] is absent.

Iin the sequel we give o derivation which bears out the above erpectations.
We simply compute the local counterierm Fo|$] needed to fix T'§. We show
how the 't Hooft conditions are enough to gunarantee the existence of F” and
the vanishing of the global obsiruction.

2. Clasaleal end Quantum Sigme Models

For convenience we always worl in four Euclidean spacetime dimensions.
Consider the projection # : G — G/ H, where g maps to the coset gi.2 This
defines o principal H-bundle. To couple matter fields to the Goldstome fielda
¢ : 59 — G/ H we first cover G/ H by o collection of contractible patches {Uq}.
We will olways comsider mape which take all of spacetime into aome pateh Ua.

Simce the patches U g are contractible we can choose sections 8. These are
the maps considered above; they must oatisly sq (p) H = p. For example, in 17
the cection mear the identity ie so{p) = ¢4 X where € are the normal coordinaies
of p amd X' are the “hroken gemerators,” l.e. gemerators orthogonal in the
Cartan metric to the generators T2 of H. Define the function ha{p; go) by

go8alp) = 9albo - P)halP: go) ) (2.1}

where ha{p; go) € . For the choice in 7] we thus have ho(p; go) = ¢ T where
«'(p; go) is defined by goed X = e€ Xe® T, Examining the action of @G defined
in 7] now chows that the matter felds live on the vector bundle B associated

3 e will also demote points of G/H by p.
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to @ — G/H by the representation pg of B, Thot is, taliing account of its
spinor properties, ¥(z) is o section of S+ © ¢°B, just ts in [3].

To define fermion dynamics we st choose coordinates for Bly _, so that
${z) is @ vector im the representation apace of pa. If we change sections to
sp{p) = se(p)hap(p), then ${z) is rotated by pulhap{d{z))). Next, we mote
thai there iz & natural connection on B given om U, by g = prlsz dsalr).
The notation lre, |xr, etc. means orthogomal projection of an element of
the Lie algebra £{G) of G onto its T®, X" etc. component. The derivative
Do+ built from this transforms covariantly under charges of 64 and is the ome
defined in [7], so we can take the classical action to be £y = ¥Path. More
generally, when we also wani to couple gavge fields A, which we consider 88
one-forms with values in £{G). Let

Q514 8] = (A% 1), (2.2)

where A? = gAg~' + gd{9™'). Qo is a connection on the pullback ¢* B, so we
can take

‘c! = EﬁQo‘b‘
By {2.1) the G-transformation
A— At
bbb (2.3}
induces the transformation
Q- {Qg)pnlhul&ﬂl . . (2.4)

In certain cases we can' add to Qg entra lerms. This requires only that the
representation px ® pa of P9 contzin in its Clebach-Gordan decomposition
a copy of the representation D) defined by [T, X7 = D,E?')(T"‘)X 2, that
is, the representation of H formed by the Goldatone bosons. Let C, be a set
of Clebsch-Gordan matrices in the representation space of pu which extract
D) and let

Qo= Q8 + 944 ) (2.5)

with 2 oum om . For example, in the chiral quark model gq is the axial--
vector coupling constant[9}{10]. The full Q< again transforms properly to be
a comnection on B. .

( :



We com mew show that the weun) Feynman dizgram expansion for r'yle, Al
{fig.1) ez the wrong apemolous voriation under @avor gauge iransformations.
In porticalar, by {2.4) the tronaformation in {2.3) changes the effective oction
by the imtegrated amomaly [8]. Let &z} = Z{z,t} be & sequence of gauge
tramoformations with L{z,0} = 1 € G and E{z,1) = ¢{z).° This induces a
sequence of H-transformations

K(z,t) = M¢{z); L{s, )] (2.8)

ond we Gnd
gt ,
Iyle-¢; A% - sl Al = [ dt jf wilow(KK); Q2] (2
. (1] g6
where i = &K ond w, the usval anomalous variation, is given by
i 1
1 _ i 2, 1,pa
wylv, B] = Mﬂ_:trvﬂdﬂ) + 2:!1.8 )

for matrix-valued ome-forms B and v im the matrix representation of a Lie
algebra|11}.

The voriation {2.7) is an inappropriste reclisation of the (possibly cnoma-
lous) G-symmetry of the underlying theory, because the anomalous variation in
{2.7) tnvolves the Q Gelds instead of the A fields. The appropriate realization
demonds that the right hand side of (2.7) be replaced by

IlpclAYi pclB) = /ﬂ fa [s wilpolbipal4)] modzwin. (28]

The motation in (2.8) for the integrated cnomaly I from A to Atin the repre-
sentotion pg suggests that J is independent of the path L{z,t} chosen. Im fact,
by stondord arguments one can show that ¥ is o focal fanctional of the gauge
field A and the map &(z) given by

o f, orteolz an) + [ alpole? 40 pol4)

A formula for @ can be found in [11). The integral of the Maurer-Cart = form
is a local functional of £{z), up to an ambigaity of 27 >int, 7.

4 We have assumed 74{G) = 0 which is true for any simnle factor »f G whien
has anomalous representations.

8. Local counterterms

We now construct o local counterterm in the Gelds ¢ and A, F|8, A] such
that Ty|¢, A] + F|4, 4] has the appropriate snomalous variation given in {2.8).
Such 2 counterterm must satisly

 Fle-¢,4Y - Pl Al = TlealA)ipelB] - I1Qioa(®)] , (3.0)
where k(x). = K{z,1) = h{$(x); &§z}) io in H. In particular, if we take =) =
s(#(x))"! then, observing that

h{#(=); o(#{=))") =1
and s{é{z))"2 ¢{z) = 1 - H = $o(z) we find, up to 2qi xinteger, that & mwwed
be given by

Flg; A} = Flgo; 2297 ] = Iloc(4); pcls(4))] (3.2)

We must now study the behavior of each of the terms im (3.2) under ¢
transformations. We begin with the imtegrated anomaly, which is now & local
functional of ¢ and A. By considering the composition of paths from 1 to ¢y
and from g; to gag; one establishes the composition law

HA; o] = TA%; g + I[A; n) (3.3)

which holds in any representation of the gauge group. Eq {3.3) states that
the Wess-Zumino functional is a i-cocycle in the sense of [12]. By eq. {2.1},
s(¢-¢) = € e{$)k™, and two applications of eq. (3.3) yield

Hocl A% pcls(e - 8)™) — Tlpal )i pcls(8) )]
= Hoc{ A"} pcl®)| — Tlpcl4); pcld]

Now comsider the behavior of the other term im (3.2). Under G-

transformations we have 499" — (4219 )*, Using {3.2) and (3.4 we find
ihat (3.1% can be satisfied if and only if

(3.4)

F']én ﬂ/l””" '\'E-l _ F|¢0; Aﬂ{¢rn’ — I [PG(A“&}H);}?G(H] _ IIQ;pH(k)]
(3.5)



Eq. (8.8) koo reduced the prablem of concelling amomalous G-variation in &
geuged sigma model to coneelling cromalous H-verdation in & pure gauge theory
with gauge Gelds in L(G). To see this more clearly, let B be an arbitrary £L{G)-
valued gouge field ond defime Z{B) = F (¢o; B). Z will be & local functional if
and only if F is. Eq. (3.5} can be rewritten as

Z(B®) - B(B) = Ipc(B); o)l — Iipu(Bir) + 940 - (Blx); pu (k)] (3.6)

Here we hove repleted & by om arbitrary H gouge transformation h, and used
the definition of @ from equations (2.2} and (2.5).

Eq. (3.8} con be considerably simplified by introducing the gemeralization
of Bardeen’s counterterm [13]. It is shown im [13] that if Ao, A1 are two matnx-
valued 1-forme with idemtical gauge tramsformation properties under §;, v €
L(H):

60140'11 = - (ahr + IAO.h ‘Ul)
ther wsing Cartan’s homotopy formula ore can construct a local counterterm

R{Aj; Ao) such that

[ /‘ R{Ap; Ao) = /[mﬁ(u, Aq) — wl{v, A0)).
Exrplicitly, ome has

1
Rqﬂn;/ﬂo} = METNA?AO - Agﬂn) + Z(A()AIFO - AnﬂoFg)

- 1
+(A5F1 — ATFo) ~ 5 A1 AoAs ol
where Fo g = dAoa + A% 3 _
Since pe(B), pc{Bir) and pu(Bir) + 94C - (Blx), pu{Blr) are pairs

of matriz-valued forms transforming the same way under H-transformations
we can defime the functional

5E) = 2(B) + [ Rlpc!{Blr)i pc{B)] |
- j‘R[pn(Blﬂ;PHﬁBIT)-F g4C - (Blx)|

50 that (3.8) will be satisfied if we can find a local functional Z transforming
ag

#B*) - Z(B) = Ilpc(Blr)i oclh)] - Tlen(Blr)ionlh)] . (3.7)
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This i the anomalous variation for an A-googo theory with gange Geld Bly
and fermion representation pgly ® fur. It io well tnowm that there is no Jocal
functional Z of Bly which satisfies eq. (3.7) if the right-hand side is nonvan-
ishing. {Otherwise there would be no anomaly in chiral gauge theories!) The
vanishing of the rhe of eq. (3.7) is just 't Hooft’s anomaly matching condition.
Therefore the local counterterm F satislying (3.1) exists if and only if the H
anomalies of pely match those of py. Explicitly, F is giver by equation {4.1)
below.

Had we formulated the sigma model in terms of maps to & and eliminated
the extra degrees of freedom with unphysical H-gavge Geids, we might have
concluded that ppr must have no anomalies at all [4]. The moral of the present
derivation is that we must demand locality only in the physicsl pion fields.

4. Globel Obstructions

11 't Hooft’s anomaly constraints are satisfied, we can construct the local
counterterm

Folg; Al = ]R [p(-,- (Ao;nmh,) e (Ap;ua))] _ [R [pﬂ (Aa;'(O)IT);Q]
~I{pc{A)ipc{sz" (})] - (4.3)

Note that F¢ depends om the choice of section 55. If ¢ maps spacetime into
the intersection of two patches Ugq M Up then there wiil be a disagreement
between the coumterterms constructed from s, and s5. Thus, F might not be
globally defined. However, I'f also depends on the choice of section, and as
we now show, I'f (¢, A) + F=[¢, 4] is section-independent. Thus if the local
obstruction to the appropriate realization of G-symmetry vanishes, then there
is mo farther global obstruction.
Therefore, consider a change of section by & right H traneformation 7

s(p) =+ ¥(p) =s(p)-v(p) ,
where 7 : U — H. The connection Q of the CCWZ prescription changes by
Q-G= (Q)pn(w*'m} ’
g0 that the effective actiom changes by
/148 - Ty lA ¢l = 1{Qion (1 (8D)] - {4.2}

9



On the other hand, by equotion (3.5),

Flgos 4°191] = Fldo; 4" (9] = Flgoi (47" (9)7740)] ~ Flgo; 479
=7 [PG (A"'"“’) 721 G M))]
—1{@ex (v ()] (43)

and the composition law {3.3) implies

Ipc(4);pa (5 ()] = 1 [pclAisc (v () pc (s7" (4)))]
= I [pa(A);pc (s~ (#))]
+1oc (479506 (-1 (#)] 144)

By equations (4.3) and (4.4) we find thal the counterterm, equation (3.2)
changes by —1 [Q;pn {v=1(¢})] so that I'F [4;¢] + F[4; ¢#| is section inde-
pendent.

We com also see more directly that if °t Hooft’s anomaly conditions are
satisified, them the obstruction considered in {2]{3] vanishes. If B, denotes the
bundle zssociated to the principal & bundle G — G/H by the representation
o1 of H, then 't Hooft’s anomaly conditions imply that

cha (B, ) = chs (Hmh:) '

simce the two representations have the same d-symbols. However, for B,;|,
we can choose the Clebsch-Gordan coefficients CT,,, = pi{X"),,, 2nd the
commection om Uy ia just

polir (oo doalz) + pa (X7} ({52 dsa) Ix-) = pe (55" dsa) -

By the Maurer-Cortan equations, the curvature, and therefore the Chern char-
acters vanish for B,gi,. In particular, chs {Bpolz) = tha(B,z) = ©, o the
global obstruction which depends on the mon-triviality of cha{ B, ) vanishes.

In this paper we have only considered “small” field configurations which
lie in some contractible patch on G/H. Simce I'f is a non-local functional,
and mot the integral of & differential form, our problem does mot quite fit into
the gemeral framework of [14]. Nevertheless, . Alvares has given gemeral
arguments to show that the existence of Wess-Zumino terms is 2 problem in
cohomology, not homotopy. In our case, these arguments suggest that there

10

will be no further obstructions to the proper realication of & oymmetry arisimg
from & monvanishing mg (G/H).

E. Witten, end also P. Gineparg and L. Alvaren-Gaumé have arrived ot
similar reaults using different methods. We thank them for discussions. We
also thank S. Coleman, H. Georgi, and R. Rohm for helpiul conversations.
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