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Semi-Oft-Shell String Amplitudes

Abstract

We study n-string amplitudes with one or two strings off-shell using the Polyakov path integral. The residues
of the poles of these amplitudes correspond to the correct S-matrix elements. The coupling of gravitons to off-
shell amplitudes shows that objects invariant under all world-sheet symmetries are also invariant under
spacetime gauge symmetries. We interpret our results in terms of a local operator expansion.
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1. Introduction

S-matrix elements in string theory can be calculated as the matrix elements
of local vertex operators in the two-dimensional field theory of the string world
sheet[1]. Unfortunately this procedure does not extend off the mass shell in
any simple way. The light cone string path ihtegra.l, or equivalently the light
cone string field theory, defines off-shell quantities in a natural way as transi-
tion amplitudes between initial and final string configurations at finite times
[2]. More recently it has been observed that such string to string amplitudes
can be defined in an invariant way without first fixing the world sheet gauge
invariances [3][4][5]. This is accomplished with the Polyakov path integral, by
summing over all world sheets which have specified boundaries in spacetime.
These amplitudes were introduced by Alvarer [3]. The explicit evaluation of
the two-string amplitude, the propagator, was carried out in [4][5] for closed
bosonic strings. The result is physically satisfying in that the singularities of
the propagator are all poles which can be identified with physical particles.

The natural extension of the above work is to consider n-string amplitudes
in which the world surface has n boundary curves. Various aspects of these
amplitudes have been considered in [6][7](8][9]. This is substantially more com-
plicated than the cylindrical topology relevant to the propagator. In this paper
we would like to consider an extension of the propagator calculation which is
simpler than the n-holed sphere but still quite interesting. This is the “semi-off-
ghell amplitude,” involving one or two closed bosonic strings at finite locations
plus m string states on-shell. The computation of these amplitudes, which is
an easy extension of [4][5], is described in section two. In section three we dis-
cuss the extent to which the formal expressions we derive are well-defined. In
fact, the amplitudes we find suffer from a new Weyl anomaly. We can avoid
this problem by forming appropriate combinations of amplitudes, an alternative

which does not exist for off-shell vertex operators.
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In section four we show that our well-defined amplitudes are indeed the
off-shell continuations of known scattering amplitudes. We illustrate in several
cases the general rule that when combinations of momenta approach the mass-
shell the Polyakov amplitude is dominated by the integration over an asymptotic
region of moduli space. The reason for this is that the string integrand is never
singular inside moduli space, so singularities can only come from integration
over asymptotic regions. These regions have a clear physical interpretation
which we will exploit to find the pole structure of amplitudes when momenta
go on-shell.

In section five we describe some of the features of these amplitudes related
to gauge invariance. We find that a principle discovered for the propagator
continues to apply: quantities which are invariant under all local symmetries
of the two-dimensional world sheet action are in fact invariant under the d-
dimensional gauge symmetries.

In this paper we work by explicit calculation, and examine in detail only
the simplest interesting cases: the off-shell states are the “punctual” states
introduced in [4] rather than the general states constructed in [5]; the on-shell

states are all tachyons or gravitons.

2. Semi-Off-Shell Amplitudes

In field theory, Green functions are functions of n spacetime points:
G(z1," -, ,). One might expect that in string theory the Green functions will
be functions of n spacetime loops 4. A sensible prescription for G(¢y,---,£,)
is given by Polyakov’s path integral for surfaces with n boundaries:

[dX]ldo] s

(2.1)
volecoxw

G(ly, -, t,) =

where X* is the embedding of the world sheet in spacetime, gap is the worldsheet
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metric, and T is the string tension. S is the action

T
Slg, X] = 3 / V9™ 3a X" B X"

and we have divided by the volume of the gauge group. The fields in (2.1) are
subject to certain boundary conditions. We demand that the embedding map
the boundaries of parameter space to the specified loops ¢; further technical
boundary conditions on the metrics and diffeomorphisms are described in |3][4].

The standard gauge-fixing procedure reduces the expression (2.1) to a

finite-dimensional integral over moduli space and a functional integral over

boundary reparametrisations I;. Specifically, choosing parametrised curves"

Xi(o) describing the loops ¢; we form the solution X to the Laplace equation

with these boundary values and write

./

boundaries iff(SY)

Gy, - t) = dE; / (dr|(det' P! Py)} (det p—9?) 13~ S10.X]

(2.2)
The measure for moduli [dr] and the boundary conditions for the ghost de-
terminant have been described in [3](10][11][12). The scalar determinant is
evaluated with Dirichlet boundary conditions. Although the reparametrization
integrals can be worked out explicitly [5], they are complicated and nonlocal.
We therefore replace the boundary loops £; by points X; in spacetime so that
the reparametrization integrals become trivial. As discussed in [5], these *punc-
tual states” have pathologies at short distances, but these difficulties will not
be a problem here.

When we pull a point X; off to infinity, (e.g. to get the S-matrix) the
Polyakov integral becomes dominated by configurations which in spacetime look
like those in Fig. 1. Furthermore, in the intrinsic metric g, these dominant
surfaces also have a long narrow tube, or, what is conformally the same thing, a
very small boundary curve (Fig. 2). Intuitively we expect that in the limit such

surfaces can be replaced by propagators times the insertion of local operators on
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a punctured Riemann surface (Fig. 3). We may test this intuition by replacing

all holes but one with tachyon vertex operators:
d’ov/g(0) : P X(o) . - (2.3)

thus defining the disk amplitude D(X}'; p1, ..., Pm) With a punctual state X, on
the rim and m on-shell tachyon vertex operators inserted on the interior. Since
the solution X to the boundary value problem is simply X = X, and since the

disk has no moduli we have:

D(X*ip1y e pm) = € P50 .../ H"""/ uol.S['(Z(Zl 7y Pl 2 Xoi)=S1X)

(2.4)
where A is the unit disk and the functional integral on X is to be computed with
Dirichlet boundary conditions. The volume now reflects the residual conformal
Killing group [3]{11], which we fix by moving the first vertex operator to p; = 0
and then rotating the second to the positive real axis. The effect of this gauge
fixing is to replace

d?p1d’p; — |paldlpal - (2.5)
It is now straightforward to evaluate (2.4). We compute the Green function

using the method of images:

y 12

—p
1-pp'

The normal ordering in (2.3) means that the self-contractions are to be evalu-

(2.6)

G(p, p') = -—l g'

ated with the normal-ordered Green function

. 1
:Glp,p) 3o = limy . |G(e',p) — = log |o = ¢'[?)
dx (2.7)

1
- los(1 =)
where the subscript p on the normal-ordering symbol denotes the coordinate

used in the subtraction. ! An alternative procedure would have been to define

! This subtraction procedure introduces a coordinate dependence which,

however, cancels for physical vertex operators [13].
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the Green function directly as a ¢-function regulated sum over the eigenfunc-
tions of the laplacian. This sum can be simply evaluated, the pole in ¢ being
subtracted to yield the normal-ordered Green function, as in [10]. The prescrip-
tion (2.7) for the self-contraction is equivalent to the one used in [10] in that
it corresponds to renormaliging the vertex operator by a topology-independent
factor. Putting these factors together and Fourier transforming on the variable

X" we get the disk amplitude represented by Fig. 4

PPy
4nT

D(Po,Pl, tpm) - (2”)266(2 Pl)gm_ / H (1 ___dT::.lg)g H lp‘__—;’{:;
* 1<i#j<m M)
(2.8)

Note that we have reinstated the harmless integral of the phase of p2. The
irrelevance of this phase is due to Ly — Lo invariance, t.e. invariance under
rotating the disk. About normalization: in proceeding from the path integral
to (2.8) we have dropped various finite and infinite factors such as the volume of
the group Dif f(S'). We absorb all such factors into the normalization of the
punctual state and take (2.8) as defining the normalization. With this definition
the punctual state couples to the tachyon with unit amplitude, as can be seen
for example from eq.(4.3) below. For the normalization of vertex operators and
S-matrix elements we follow the paper of Weinberg [14].

Later it will be convenient to have the amplitude for a disk with one gravi-
ton and m tachyon vertex operators inserted. Let the graviton have polarization

¢ur. The answer is then easily found to be

v 1 " R s
§* Dy (P03 P1y ooy Pm) = H(Zs,wpf-‘pj(p.‘—p,-‘)(pj—p,-’)) ,  (29)

where the average of an operator O is defined by setting (O) equal to the
expression (2.8) with O under the integral.
We now consider the case with two particles off-shell. Thus we have a tube

with vertex operators inserted, as in Fig. 5. We may parametrize the gauge-

6

= (do*)? + (do?)? on
the region (0!,02) € [0,1] x [0, A] with o! identified with o' + 1. Since we have

inequivalent tubes by choosing the standard metric ds?

chosen punctual states we must shift by the classical solution X = X;+ -‘f\—’ (AX).

In the case with no vertex operators we found in [4] that the tube amplitude is

e AmnAy- - X 2
T(Xa Xy) = 57 2{)13/0 IYE] JI (1 - emtmmd)=28 gdmd =T (Xi=X,)"/2m

n>0
(2.10)

Ignoring the (irrelevant) short-distance singularity at A — 0 and going to mo-

mentum space we find

/ dA C‘”A H(l -4""*)—2‘ —-Ap’/2T (2'11)

n>0

T(pi —P)

We can follow the same procedure for computing semi-off-shell amplitudes by
inserting vertex operators. The only new feature in the computation is the

Dirichlet Green function which can be expressed in terms of the variables z =

o! +10? and p = ¢*™* as

2
P plehrnA

e (2.12)

log |p{log |p
Go(p,p')——u;ri—' 2r A Z log
n=—N

Equation (2.12) is obtained by the method of images. The first term can be
thought of as arising from a “charge at infinity;” it arises because the sum is not
absolutely convergent. The self-contractions are defined analogously to {2.7).

Thus in momentum space the tube amplitude T becomes
T(PosPm+1:P1s- -+, Pm) = (21r)2652°(2p. / d,\/d’zl &z A"

——hrnA -24 ZU —'\ 2
< I10- oo (s =+
n>0
g gl
T

1<i#Ej<m+1

Pi - Py GD(UHUJ)+ ZP. GD(auUl) 'z }

(2.13)



The normaligation of the punctual state in this expression agrees with that in
(2.8) . This may be shown either by considering the coupling of the punctual
state to the tachyon or by a careful treatment of the normalisation of the path
integral following that of [10] .

We close this section with a conjecture. Note that the Polyakov integrand
in (2.13) can be written entirely in terms of classical functions. First, we have
that 2
olo® 1 6[3](21 ~ za|r)

. + og |—
A A o) (e~ 7aln)

GD(P, p') =

23 RO NE
:Gplp,p) 1= ( :) +I1;los ;T[L_—
[*](z-—zlr)

where r = 21A. Define the Dedekind eta function by

n=q% [[(1-q")

n=1

where g = ¢2™". Then (2.13) becomes
T(PosPm+1iP1y- ) Pm) = (2f)2e526(ZPi)g—;..-[) d/\/dgzl"“{zzm n(r)~*
By i 4 P ) 1) %;zr*
e~ APmsr/2T H [i](olf) H [i](z' = Zlr

=1 "[i](z-‘-?-'lf) 1<i# <m+1 ‘9[§](Zi—3j|')
(2.14)

where po, pm+1 are off shell, and 2,,4; = tA. The notation for theta functions
follows [15]. Our conjecture is that for arbitrary manifolds with boundary the
Polyakov integral will be an integral over the real slice of some complex moduli

space of an integrand expressed in terms of theta functions, similarly to [16].

3. An Off-Shell Weyl Anomaly

The amplitudes (2.8) and (2.14) will contain divergences for values of the

external momenta in the physical region; these divergences are a result of the
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expected analytic structure of the amplitude at this order. We can avoid these
physical singularities in the usual way by restricting the domain of D and T to
a portion of the Euclidean region. Since the tachyon has a (Euclidean) mass
squared equal to 8xT, this region is defined by? ¢ > 8xT, where q is po or
any internal momentum formed by summing two or more of pg,py,...,Pm- The
amplitude in the physical region is then defined by analytic continuation. This
immediately eliminates two potential divergences:
i.)When two or more vertex operators approach each other.
ii.)When the tube length A — oo.

There remain two more potential problems:
iii.) When A — 0. The integral (2.10) diverges as A — 0 if (X; — X;)? < %=.
As discussed in [5] this is an artifact of the highly singular punctual state, and
not a general property of off-shell amplitudes. The divergence as A — 0 does
not appear in the channels we will consider in sections 4 and 5. This is why we
have chosen to use the convenient punctual states.
iv.) When vertex operators approach the boundary. This is a new feature of
semi-off-shell amplitudes. As we will see in section six, there is a corresponding
region of moduli space for a fully off-shell amplitude, so this is not an artifact
of our approach. To isolate the divergence we consider a vertex operator :
P X(e]0) .« ag it approaches the boundary a? = 0.(Since locally any boundary
looks the same, this applies equally well to the disk and the tube.) The principal
effect of the boundary can be accounted for by including a negative image charge

at (cr;., —of). This gives effectively the operator

2 This is true since we only have single particle intermediate states. For
contributions to the amplitude that include two or more particles in the inter-
mediate state, the amplitude will have singularities for all real values of the

external momenta, due to the tachyon in the theory.
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s P 2(0}i0]) L mipia(0)=0]) | = . il of)~ipia(ofi=o]) ; (252) 2
= (202)7% + (207) "'ip; - B2z(0},0) + O((07)°)
(3.1)
The o integral thus produces a linear and a logarithmic divergence. This is
evident, for example, in (2.8). We can study these divergences by cutting off
the o2 integral, s.e.

0% > e 2N . (3.2)

The metric scale factor ¢ ( where ds? = e®[(do!)? + (do?)?] ) appears so that
the cutoff is coordinate-invariant, i.e. expressed in terms of the proper distance.

The integral over a? then produces
1l ¢/2_3 1 ?/2
do; (ZAc 3Pi 82z(0;,0) log(Ae ) - (3.3)

The divergences can be removed by an additive renormalization of the operator

product:

Plpo)V (ps) = Plpo)V (p5) — A([  ds)P(po +5,)
oM (3.4)

+llog}\/ dsn - 3(p; - z)P(po + p5)
2 oM

where P(pg) denotes the operator which creates a punctual state. However,
when this is done we see that we have re-introduced a ¢-dependence: the choice
of counterterm that preserves coordinate invariance necessarily breaks Weyl
invariance. This is a new Weyl anomaly that afflicts off-shell string amplitudes.

It is possible, however, to form certain special off-shell amplitudes which

are fully invariant under the world-sheet symmetries. Consider

Dy E/d”ponl...me f(po,p1,---,Pm)P(Poi P1y - - - Prm) (3.5)

10

for arbitrary weight function f, where Dpy = d?®py §(p2 — m?). Inspection of

the form of the divergences (3.4) shows that provided

/d”po Dp; f(po,p1,---,Pm)6(D_pi) =0 and (3.6)
0

/d%Po Dp; p% f(Po,P1y- -1 Pm)8(D_ pi) =0 (3.7)
0

for each j then the amplitude D; will be finite (and hence Weyl invariant)
without subtraction. For the tube amplitude we must add corresponding con-
ditions with pp — pm+1. Note that these conditions are nonlocal; because of

the mass-shell condition they have no simple coordinate space interpretation. 3

4. Boundaries of Moduli Space

We must now show that the well-defined amplitudes we have found are
indeed off-shell continuations of known on-shell scattering amplitudes. We will
see that when combinations of momenta go on-shell an asymptotic region of
moduli space dominates the integration and produces the pole. This principle is
already well-known in the case of the Shapiro-Virasoro amplitude $(p1,...,pm)
for the scattering of m on-shell tachyons:

pi-Pj
|z.-—z,-| 4nT

S(pl.-.-,pm)=(21)26526(2p¢)8r2Ty'”"2/c"ﬁ £z ][

1<i#j<m—~1
(4.1)

where z; = 0 and z; = 1. The integration can (and should) be thought of as the
integration over the moduli space of the m-times punctured sphere. The bound-

aries of moduli space correspond to the places where punctures approach each

3 We could make a subtraction in place of the first condition (3.5), but it is
simpler and equivalent to treat the linear and logarithmic divergences the same

way.
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other. As is well-known, these are the regions of integration which dominate
when combinations of momenta go on-shell.

Similarly, examination of an asymptotic region of the moduli space of the
m-times punctured disk allows us to recover § from the disk amplitude D. We
expect that as py goes on-shell the dominant region of the moduli space of the
m-times punctured disk will be that in which the boundary moves far away from
all the vertex operators (Fig. 6). This is conformally equivalent to a situation
where the boundary stays fixed, while all the vertex operators crowd towards
the center of the disk (Fig. 7). To show that this region dominates the integral
we integrate the phase of p; and define a collective scale factor z by px = z¢:

(so ¢z = 1). In terms of these variables the disk amplitude becomes

l m
dz 2 d2¢ Sk — Se
2"/ _—z—3+p0/‘nr / P e ————
o (1—2%)2 0<lgi|<z? g (1-=z2[s}?)? 15,‘];!5"‘ 1- 1226
(4.2)

We see that, neglecting the boundary divergence, as p3 — 8T the dominant
region of integration is that of small z (we may expand the various terms in a
power series in z and analytically continue to get the higher mass poles) and

that the leading pole is just

1

WS(PO'Ph---:Pm) (4.3)

Thus the disk amplitude is indeed an off-shell continuation of the Shapiro-
Virasoro amplitude.

Let us now consider the tube amplitude T and study its behavior as p, 4
goes on-shell. We expect that the region of moduli space in which A — oo
and the vertex operators stay to the left will dominate, as shown in Fig. 8. To
demonstrate this it is useful to map the tube to an annulus of outer radius one
and inner radius e 2" by

p=e21n'(u'+|'a’). (4.4)
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As A — oo the annulus becomes a disk and the Green functions satisfy

ofol 1 pi — Py 12 —4nA
G(oi,05) = + —log|-—2|" + 0(e )
o2 -2) 1 -
:G(o,0) :, = — - Z—;log(l ~1p[?)2 + O0(e™*)
Thus, after a little algebra we find
T (Po,Pm+1;P1,-- - Pm) -*(Zw)"‘&(Zpe)%f/ dX e~ *(Prer —8rT)/2T
0
/’ r o I pi — Py
=M <pl<1 f oy (1 o= ka!2)7 1<idg<mt1 1- pi;j
(4.6)

with p,41 = 0. That is

1
T(Po,Pm+1iP1s---1Pm) = =3 D(PoiPm+1,P1y--+)Pm) (4.7)

piyy — 87T

and the tube amplitude reproduces the disk amplitude as one of the momenta
goes on-shell. Since the disk amplitude is an off-shell continuation of § so is
the the tube amplitude. A nice consistency check on the theory is obtained by
taking two ends of the tube to infinity simultaneously as in Fig. 9. We do this
by defining A; = 0?___1 and n; = p,;/p1 and expanding the Green functions in
power series as Ay and A3 = A — Ay go to infinity while n are held fixed. One
recovers once again the Shapiro-Virasoro amplitude.

It is also interesting to see what happens when snternal momenta go on-
ghell in the semi-off-shell amplitudes. Consider, for example the behavior of the

tube amplitude when k = pg + - - - p; goes on-shell. It is convenient to define

—2"1\-—Tl

GG =e P; I+1<7<m. (4.8)

The singularities in k come from the region of moduli space A — oo illustrated

in Fig. 10

13
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with p; and ¢; held fixed. Expanding the various factors in (2.14) in this

2xA

limit and dropping terms suppressed by powers of e~ “™*, we obtain

1 [* 2
T (po, m+15P1s- -1 Pm) = '2-,1:/0 dAe™ 2K -82T)/2Tp,pe  (4.9)

where Dy  are the disk amplitudes given by (2.8), so that the tube amplitude
factorises into initial and final disk amplitudes. Working a little harder, and

—2n

keeping all terms suppressed by e~4"* (terms suppressed by e average to

gero by Lo — Lo invariance) the first subleading term is

24

1 had : il ndi i 1
TO = ﬁ/o de ‘\"’/QT[D?‘D;' + D7 (Guodvo — = 9uv900)DF |, (4.10)

where D" is defined in (2.9) and D' is the disk amplitude with a dilaton
vertex inserted

DH = Vo1 + E pi - pslpi —

97T 7 )E - e ') (4.11)

These results are shown pictorially in Fig. 11. The results of this section can
be understood in a more general way from the operator product expansion, as

will be explained in the conclusion.

6. Gauge Invariance

We now consider some issues related to the gauge invariance of the off-
ghell amplitudes. On-shell scattering amplitudes are gauge invariant because
the longitudinal parts of vertex operators are total divergences which vanish
when the parameter space of the string world sheet has no boundary. For
example, if we replace the polarization tensor ¢, of a graviton by p(,¢,) then

the graviton vertex operator is replaced by
- / VA (VXY X) (5.1)
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When the parameter space has a boundary the total divergence gives a
vertex operator at the boundary. This is precisely where we found difficulties
with divergences before, so we must be careful. Writing

P¥ = lim (: 85, X"35, X" P1X 2 V(pa)---V(pm)) (5.2)
P1—0
where the correlation function refers only to contractions of X’s and the normal

ordering symbols indicate no self-contractions we find that

PiD = lim (: 35, X7 0, (7 X0} : V(pa) - V(pm)) (53

and, expressing the derivatives of the Green functions in terms of derivatives

with respect to the other variable we can write

P1 pr = }_—:/ dzP‘( < 3— PrX(m) i X(e) HV(PJ)>
J#s
(5.4)
It follows immediately that D" is transverse when we pick out the residues
of the poles in po?, since these come from the integration region where the
boundary runs off to infinity, so the surface integral vanishes.
In general the surface integral is nongero, and the expression in brackets in
(5.4) diverges on the boundary. However, a careful evaluation of the integrals
shows that the integrated boundary term is finite and of the form

Zp“ﬂ“" (55)

where A% is independent of p;. Hence when we specialise to the amplitudes
(3.5) which are finite and free of world sheet anomalies, the conditions (3.6),(3.7)
ensure that the surface term vanishes. Thus the conditions necessary to es-
tablish invariance under the local symmetries on the world-sheet (and hence,
finiteness of the amplitudes) guarantee that the amplitudes are also spacetime

gauge invariant. This seems to be a general principle.
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A second, related issue is the behavior of the tube amplitude as the in-
ternal graviton line goes on-shell with external lines off-shell, (4.10). General
reasoning suggests that negative norm states cannot appear in a theory defined
by a sum over surfaces. Defining states by taking spacelike hypersurfaces, there
is a positive inner product, the delta functional on loop space. As long as we
consider only amplitudes invariant under all the two-dimensional gauge symme-
tries, we see only positive norm intermediate states. In lattice gauge theories,
which can also be interpreted as sums over surfaces, such reasoning can be
turned into a rigorous argument [17]. Note that this applies to off-shell quanti-
ties as well as on-shell, as long as they are invariant under all the world-sheet
gauge symmetries.?

On the other hand, inspection of (4.10) seems to indicate that the gravi-
ton propagator is in Feynman gauge, with negative norm states contributing.
Indeed, we usually expect the full set of off-shell amplitudes in a theory with
gravity to be gauge dependent, since we cannot specify the space-time position
of a local operator in an invariant way. Because our calculation has treated the
26 dimensions covariantly, and because all covariant gauges contain states of
negative norm, one might expect such states to appear in our amplitudes. This
appears to contradict the argument in the preceding paragraph.

In fact there is no contradiction. As we have seen, the Weyl-invariant
sum over surfaces does not provide us with a full set of off-shell amplitudes;
only the special combinations (3.5) are well-defined. Consider for example the
tube amplitudes T,. These factorize on the disk amplitudes D", which we

just showed were transverse. Thus all gauge-dependent terms in the graviton

4 As further evidence for this point of view we note that the normalization of
the one-loop amplitude obtained from ultralocality [10] agrees with that from
unitarity [18]and that in references [4](5] negative norm poles never appeared

in the two-point correlation function of local invariant objects.

16

propagator drop out, longitudinal gravitons decouple, and negative-norm states
do not contribute to the singularities of T .

Thus the sum over surfaces (2.1) defines only those amplitudes which are
perturbatively independent of the choice of spacetime gauge. One might try
to go further and define string amplitudes corresponding to all off-shell ampli-
tudes in gravity. This might simply be a matter of introducing arbitrary ghost
boundary conditions. By the above discussion, however, we expect that any
such modification will not correspond to a Weyl-invariant sum over surfaces.
Moreover, the modified prescription for amplitudes will have to have a more
complicated pole structure for gravitons than (4.11). For example, if we intro-
duce the natural gauge-fixing term ge(a,,ha,. - ga,,haa)’ for the graviton h,,,,,

then the graviton propagator becomes

1 1
perP1 — p_2 [%(gaﬁgm + gavgﬂp) - -2—49”957]

11+ "
= p—4—2§§- (rPp°g™" +P°p°g"" +pP"9"" +p7p%¢"")
A gauge-dependent formulation of off-shell quantities will have to provide a way

to generate the second order pole.

8. Conclusions

Our results give further indication that the Polyakov integral defines a
gensible off-shell continuation of string theory. The amplitudes are, under the
conditions discussed in section three, finite and Weyl invariant. The LSZ re-
duction gives the usual S-matrix elements. We have seen an interesting inter-
play between the two-dimensional and 26-dimensional gauge symmetries. The
26-dimensional invariance is not evident in the original path integral, but all
well-defined off-shell quantities given by the path integral have turned out to

be 26-dimensionally gauge invariant.
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Let us discuss the results of section four, on the S-matrix, from a more gen-
eral point of view. In terms of the variables p, equation (4.4) , the cylinder maps
to the complex plane between e~3™* < |p| < 1. That is, as A — co, we have the
disk minus a small circle centered at the origin. Now, any sufficiently localized
disturbance in a field theory can be mimicked by a sum of local operators. The
usual example is the operator product expansion, where the disturbance is a
pair of local operators. Other familiar examples are the effects of virtual heavy

particles and of small instantons, but the principle applies equally well to a
small hole. Thus,

small hole of radius r « E a(r)Vi . (8.1)

t

The sum runs over all suitably invariant operators — the vertex operators. The
coefficients ¢;(r) are functions of the radius, which dimensionally are simply of
the form (P’ +m)/2T Integration with dr/r then produces a pole times a vertex
operator. Since this is an operator statement, it will apply to the corresponding
asymptotic region of any off-shell amplitude.

A similar expansion, the representation of a long tube in terms of an op-
erator sum, is seen in Fig. 11. In this case the topology at each end of the
tube is a boundary plus some vertex operators, but the expansion is an op-
erator statement and will apply with arbitrary topologies at the ends. The
idea that asymptotic regions of moduli space can be studied using the opera-
tor product expansion has been raised in other contexts by Friedan, Fischler,
Peskin, and Susskind[19]. A systematic treatment would be of great value; we
are considering some aspects of this in [9)].

Another idea worth attention, given the results here, is an attempt to make
concrete the heuristic argument for unitarity along the lines of [17]. The natural
object to consider would then be the transfer matrix, the amplitude to go from
any state of string on a given spacelike hypersurface to a state on a slightly

later hypersurface.
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Figure Captions

World-sheet in spacetime as one end goes to infinity.

A Riemann surface with boundary corresponding to fig.1.
A punctured Riemann surface corresponding to fig.1.

A disk with vertex operators.

A tube with vertex operators .

A configuration relevant when po goes on-shell.

A surface conformally equivalent to fig.6.

A configuration relevant when p,,41 goes on-shell.

a.)po and pm+1 both go on-shell b.)the resulting amplitude.
¢ = po + p1 + pa goes on-shell,

The amplitude resulting from the limit of fig.10.
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