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Coordinated Navigation of Multiple Independent Disk-Shaped Robots

Abstract

This paper addresses the coordinated navigation of multiple independently actuated disk-shaped robots-all
placed within the same disk-shaped workspace. Assuming perfect sensing, shared-centralized
communications and computation, as well as perfect actuation, we encode complete information about the
goal, obstacles, and workspace boundary using an artificial potential function over the configuration space of
the robots’ simultaneous nonoverlapping positions. The closed-loop dynamics governing the motion of each
(velocity-controlled) robot take the form of the appropriate projection of the gradient of this function. We
impose (conservative) restrictions on the allowable goal positions that yield sufficient conditions for
convergence: We prove that this construction is an essential navigation function that guarantees collision-free
motion of each robot to its destination from almost all initial free placements. The results of an extensive
simulation study investigate practical issues such as average resulting trajectory length and robustness against
simulated sensor noise.
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Coordinated Navigation of Multiple Independent
Disk-Shaped Robots

C. Serkan Karaiz, H. Isil BozmaMember, IEEEand Daniel E. Koditschekzellow, IEEE

Abstract—This paper addresses the coordinated navigation goal position. Reactive planners offer the usual benefits of
of multiple independently actuated disk-shaped robots - all feedback relative to the traditional open-loop plannerghair
placed within the same disk-shaped workspace. Assuming perfect ganitivity to execution time disturbances and thus premis
sensing, shared centralized communications and computation, 7 .
as well as perfect actuation, we encode complete information more efficient and robust performance. Of_cours_e_, imprgper|
about the goal, obstacles and workspace boundary using andesigned feedback schemes can cause instability, hence the
artificial potential function over the configuration space of the central problem is to demonstrate convergence.
robots simultaneous non-overlapping positions. The closed-loop  This paper presents a formulation of the problem nearly
dynamics governing the motion _of each (velpcny-controlled) robot identical to that of [5], [6] and proposes a similarly close
take the form of the appropriate projection of the gradient lutior. As bef let tralized infor-
of this function. We impose (conservative) restrictions on the SO u_ 0. AS belore, we asgume complete Ce_n_ raiized infor
allowable goal positions, that yield sufficient conditions for Mation about all the robots’ instantaneous positions abagel
convergence: we prove that this construction is an essential a fixed goal location assigned to each one. Again, we use this
navigation function that guarantees collision-free motion of each information to construct an artificial potential functiomca
robot to its destination from almost all initial free placements. 554y jts gradient as a centralized controller communitate
The results of an extensive simulation study investigate practical .

accurately and instantaneously to the fully actuated robot

issues such as average resulting trajectory length and robustes o
against simulated sensor noise. ensemble. However, now we offer the missing convergence

Index Terms—Artificial potential functions, feedback-based proof, guaranteeing from almost every initial conditiortiv .
navigation, coordinated motion, configuration spaces, reactive the gonr_1ected_ component the_ movement of all robots to their
systems, swarm robots, autonomous robots. destinations without any collisions along the way. The d¢edp

closed loop gradient dynamics governing the motion of the
l. INTRODUCTION robot ensemble projects onto the coordinate slice correspo
ing to each individual robot a vector field sensitive to itsnow

This paper addresses a geometrically simplified VerSi%sition as well as those of all the other robots. Although th

ﬁz co%rdingtﬁdbmotion p:ja_mning_ [1]'“';‘ EOILEC“O; of diSk'approach is in principle applicable with complete genéyrali
ke robots inha Its a two-dimensiona ISk-shape woak:ep to any navigation problem over a known configuration space
Each velocity-controlletirobot can move simultaneously W|th[7 . [8], and the construction for this very specific class of

and independently of the other robots. Moreover, each blems has essentially been in place for over two decades

a spectl)flledfgr(])al I(icatlo_n n Wh'%h It r:leeds t(l)l eni up. T 1, [9], the present paper offers the first formal demorigire
ensemble of these Jocations encodes the overall tas .ﬁmg)arof its correctness. Analogous constructions have been rshow

from the classical coordinated motion planning paradigm B be correct in simpler, related versions of the problem [5]

the mzlsmner of [g]' [6], we flérthir. require that r?ach”robo.t’ 0], [11]. But despite favorable simulation experiendee t
control strategy be reactive. By this, we mean that all mot ossibility of spurious local minima on which the system

is generated by a vector field — a function of the instantaseo ight get stuck has remained an open question. In summary,

ensemble of locations, parametrized (in_ part) by _the _ﬁxe{ is paper shows for the first time that the line of reasonimt) a
ensc_emble of goals that ret.urns at. each |.nstant a d'reCt'Ons?lf;tegy originating in [8] can be extended constructiviely
motion for gach ro_bot. In t_h_|s reactive setting, each robosm coordinated navigation of disk-shaped robots in a dislpsta
start from its grbltrary |n|t!al placement, confront theheF workspace with complete information. Provided certain-con
robots as required dynamically and eventually end up in raints on the allowed goal positions are satisfied, olestac

This work is supported by NSFUBITAK INT-9819890, TUBITAK free navigation to the goal placements from almost evetiaini
MISAG65, DPT 03K120250, UBITAK MAG 107M240, EEEAG 111285 placement of the robots lying in the connected component of
igijlfgggjs Air Force Office of Science Research under the MURBB0- o configuration space is guaranteed.

C.S. Kara@z was with the Intelligent Systems Laboratory, Bogazici-Un . . .
versity. He is currently with the Ford Motor Company, Colog@ermany. A. Coordinated Motion Planning
H.l. Bozma (the corresponding author) is with the Intellig8ystems Labo- . . .
ratory, Electrical & Electronic Engineering Department,gaaici University, ] Tradltlonally, the coordinated motion prOblem ha§ been
Istanbul, Turkey. D.E. Koditschek is with the Electrical &s$ems Engineer- viewed as a special case of the general open-loop motion plan
ing, University of Pennsylvania, Philadelphia, PA , USA.

1The extension of our control solution beyond this ‘quaatistor ‘gen- 2The major advance beyond [5], [6] in this present formulat®ithiat we
eralized damper’[2] to the dynamical setting of a second ordechanical can now handle a compact workspace via the imposition of artiaddi outer
system (a motion where controlled forces generate changeslatity) is boundary as defined by Eq. 2 that makes the problem more broggligable
almost immediate, according to the procedures discussed,if4]3] but considerably harder.
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ning problem. In this tradition, the kinematics of plannia@ lating local vector fields defined over each simplex, engurin
separated from the dynamics of execution [12]. A geometrasymptotic convergence to the goal position while guarante
planner produces a trajectory in the joint configurationcepaing collision avoidance. The forbidding complexity of even
of the ensemble of robots connecting a pre-specified initialgebraic [15], [40] much less convex cellular decomponiti
condition to the fixed goal configuration (the total degreks i the setting of general motion planning problems must give
freedom are given by the sum of the individual machines§ome pause in pursuing this direction. Some preliminarykwor
[13]. This plan is then ‘guarded’in real time execution by §1] suggests that the regularity of multi-body configurati
local tracking controller. In these open-loop approaclhies, spaces such as arise in this problem may render convexarellul
focus is on developing computational geometric means tieat @ecompositions viable for low numbers of cooperating rebot
assured of finding a path in the configuration space that ddeg such computations must inevitably increase geoméyrica
not violate any of the hypersurfaces encoding the conssraimvith the degrees of freedom. In contrast, that same regulari
on the robots’ degrees of freedom [14], [15]. Most geometrfwermits the use of the closed form expressions we study here,
approaches are based on roadmaps or cell decompositign [&8}ailing merely quotients of quadratic functions and rthei
[17]. Furthermore, depending on how the planning is acligvegradients - a major benefit of the global analytical approach
they are either classified as being centralized or decentraf this papet.
ized [18]. Unfortunately, the computational complexitytbé A second direction of recent work on reactive planning has
coordinated motion planning has proved to be PSPACE-hailexamined versions of the multiple disk navigation peabl
even in two dimensional environments where only transtatiowe treat here in response to the two decade old extension
are allowed and when the final configuration specifying ttfg], [6] of the original navigation function solution to the
final positions of all movable objects is known [1], [19]single disk problem [8]. An excellent review of this more
This result has been viewed as a guide to calibration eéntemporary literature is provided in the most recent es¢h
problem difficulty and has led researchers to consider thapers [43] and in [44] which also come the closest in their
more tractable, but restricted classes of the problem [13fms and methods to those of this paper. The chief difference
[20], [21]. Against this backdrop, researchers have agred of our work from [44] (and its extension to nonholonomically
the problem by proposing heuristic or approximate schemgsnstrained disks [45]) is their focus on a partially decant
[13]. Centralized approaches propose various solutiok suzed problem version: all agents have global, instantameou
as transforming the problem into a series of subproblerRgowledge of all others’ positions, but an agent’s ultimate
[14], reducing the search dimensionality [22] or introdigci destination is known only to itself. Their navigation fuioct
additional constraints [23], [24]. Alternatively, in detealized has much greater complexity, apparently in consequendd. Bo
approaches, the path planner is distributed among the sobgiis paper and [43] follow the original construction [6] and
that possibly communicate [18], [25]. Intermediate prable analysis [8] in their concern to exhibit a provably correct
formulations (mixing elements of centralized and distiélol navigation function for multiple, fully actuated first orde
planning) have also been considered [26], [27], [28]. Fafisk navigation under the assumption of noise-free global
all of these feedforward problem formulations, when thel@nsing and inter-agent communication, affording reetws
is any change in the robots’ objectives or the environmenf,completely centralized computation and exact, detestiini
complete recalculation of paths is required. Moreover, implementation of the associated gradient field as a control
obvious consequence of the heuristic nature of these schengw. In [43], the construction departs in significant waysnfr
there is no guarantee of completeness. that of [6], most notably by recourse to a continuous but non-
We take an approach within the extreme opposite paradigifferentiable navigation function, yet the pattern of lgses
purely feedback-based motion planning. Despite the lomgiroduced in [8] is presented in nearly identical form, mlod
established guaranteed existence of such planners inajengfe introduction of methods from nonsmooth analysis [46]. |
[7], [8], [10], specific algorithms with provable propesiéor this paper, our construction is similar to [6] with the adfit
specific problem settings have been slow to appear. A gogt the workspace is bounded by an a priori specified radius
summary account of the many heuristic vector field planneifs which all the robots are required to remain. Furthermore,
that appeared in that decade (e.g., [29], [30], [31], [38], [ notwithstanding the major overlap with the mode of analysis
[33] ) can be found in [34], and a tutorial account of théntroduced in [8], we are forced to depart from that pattern a
following decade’s work in this vein (all of which is heuist certain essential junctures as explained throughout tperpa
and suffers from possibility of local minima) can be foundn contrast to [43], our construction is smooth on the imteri
in [16], [17]. A major boost to the theoretical foundatiors oof the free space but of course cannot be smooth on the (non-
reactive planning has been contributed by the definition agghooth, sub-analytic) boundéryBeyond the intrinsic interest
formal toolbox of topological complexity [35] (which hasér® in smooth controllers articulated originally in [7], a pkea
determined for this problem in [36], [37]).
. In recent years, the construction of provabl_y correct Vr_ecm 3This tradeoff between analytically intricate, computatity simple vs.
field planners has progressed along two major axes. Firstyiytically simple, computationally intensive global regentations in reac-
variety of general algorithmic approaches have been rcerive motion planning seems to echo a more general pattern in datignal

advanced by assuming the availability of a convex (e.g.i-culPelogy [42].
y 9 y ( 94 4Please see the discussion in Section I-D where we addresssthie

cal [38]' or Simp”Cial [39]) CeIIU|ar_deC_0mpO§iti0n' Nm' in by relaxing the requirement for nondegeneracy over the did®space to
[39], a smooth ") global vector field is achieved by interpo-merely over the interior.
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literature initiated around the same time [4] employs tfiie liensemble of goals from any arbitrary initial configuration i
of a navigation function as a key component of obstacléhe goal-connected component (excepting some set of neeasur

avoiding controllers for second order plants: in some irtgour
application settings this lift will require the jacobian tife

zero) with the guarantee of no collisions along the way.

original gradient field —- for example see [47] for a venC. The Problem Statement

nice recent example of this approdapplied to the dynamical
version of the present setting of multiple coordinated oels .

a) c)

e)

Fig. 1. (a) A coordinated navigation scenario; (b)-(f) Sstagis from a task.

B. Motivation

Consider a collection op disk shaped robots lying on the
same two dimensional workspace bounded by an outer disk.
Each robot has two completely actuated degrees of freedom in
this workspace, is assigned to a goal position vector and can
move independently of the others. Thus each robot becomes an
obstacle — possibly moving — for the remaining other robots.
We assumiéthat:

® Each robot has a ‘perfectvelocity controller that
can achieve exactly and instantaneously any desired
bounded planar velocity command vector;

(i) At every instant, each robot has perfect real time
knowledge of its own position; and

(i) At every instant, each robot knows exactly the sizes
and the locations of all the other robots at that instant.

(iv)  For all time, each robot knows exactly its own goal

location as well as that of all the other robots.

If there arep individual planar robots, then ldt € R??
denote the augmented state vector of all robots @adR??
denote the augmented state vector of all goal positions. As
assumed in (i), above, we consider the simplest contrdhgett
and model their change of stabeaccording to control law:

Consider the scenario depicted in Figure la where largee . As discussed above, we will set the control input,

circles represent individual robots and each circle withoss
represents the goal position of its specified robot couaterp
In this illustration, all robots except the top one are aili

to be the gradient vector of an appropriate smooth map,
F — [0,1] on thefree robot configuration spac& C R?” (to
be formally defined below) so that= —V¢. The equilibria

located very close to their goal positidnsThe robots are b(oo) of this system constitute its fixed points. This task is
very closely packed and need to move away from their gogliccessfully completed #oc) = g or successfully terminated
positions in order to let the top robot pass through. Ouff b(co) # ¢ (i.e., the system cannot cycle but must eventually
feedback-based planner leads to emergent cooperatidtheall converge to some critical point - the wrong one only from an
robots nudge slightly away from the center enough to alloiwitial condition set of measure zero [7], [8]).
the top robot to pass through as seen in Figures 1b-d, and then
move back as shown in Figures le-f while the top robot al$9 Navigation Functions
homes to its goal as well. It is important to emphasize that
these motions were not ‘planned’a priori in the convention

(S

sense. Rather, at each instant of time, each of the rob ) .
C : . . . annot exist vector fields that take every pointe F to
is given a velocity vector that is a function of its prese'rﬁ]e goalg. However, there is no such obstruction to smooth

Since the basin of a point attractor is a topological ball
1], and the free space is not contractible [52] there gfear

position as well as the positions of all the others. The tkai
path followed by the ensemble of robots emerges from th
‘reactive’integration of this set of cooperative vectorldi

Our proof guarantees that all the robots will reach the $igelci

5Note that simple potential-dissipative controllers [3],¢4n lift an unmod-
ified gradient field to achieve an asymptotically stable sdcorder system
with no need for further derivatives. However these simptarstructions do
not achieve the same performance as required in applicatizts & [47],
which follows a more aggressive approach originally progose[48], and
developed in the subsequent literature [49], [50]. Intely, the difference in
performance is akin to that between an underdamped vs. aatlittamped
LTI system, and the ability to regulate the transients in thanner is often
quite important in practical settings.

8In these cases, when performance considerations motivateotiog the
graph error [47]-[50], we know of no alternative to the soft s;nooth
construction we pursue here since even Lipschitz contisuman-smooth
gradients yield unacceptable discontinuous lifts.

"The outer boundary which encloses an area four times thatréiied is
not shown so as not to lose the desired detail of visualizatio

vector fields with a point attractor whose basin includes the

elr

connected component of the goal i excluding a set of
zero measure. We believe that the disadvantage of ‘losing
the way'on an ‘invisible’subset of freespace is offset bg th
many considerable advantages that dynamical systems based
motion planning enjoy, as reviewed, for example in [10],d¢een
our interest in the following class of scalar valued funetip
originally defined in [7]. A mapp : F — [0, 1] is anavigation
functionif it is®:

8While these assumptions do not require that any informationitafogure
positions or motion be available in a given instant (beyondvikadge of the
final goals), they do embody the most extreme version of cengdicontrol
with perfect information. We are pursuing in ongoing work firespects for
weakening these strong control and communications requirsmeithout
losing the theoretical convergence guarantees.

9Here and in the sequel we use notation from the standarditliter in real
analysis and point-set topology, e.g., [53].
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1) Analytic on F; is defined a¥ b 2 > iepbi ®e;, whereey, e, ... e, € RP

2) Admissible onF — that is, it attains its maximum on are the unit base vectors IR?. The aggregate goal vector
the boundanypr. g € R?? is defined byg = Yicp 9i @ €.

3) Polar onF — that is, itos unique minimum occurs atthe Now, define the index set of robot pair§) =
goal configurationy € F; {(#,7)i,7 € P,i < j}. The cardinality of@ is denoted by

4) Morse onF — that is, all critical points are non- 4 £ 1Ql = () = p(p — 1)/2. For all robot pairs(i, j) € Q,

degenerate; . define their distance differenaé; € R2 asd;; 2 b; — b;.
If the negative gradient of is transverse on the boundarynote that by definitiond;; = (I ® c%,) b, wherel,, is then
and directed inwards, all solutions of the gradient syste “

: . . . . A -
approach the critical points where the gradient vanisteg. | dimensional identity matrlxgndj = ei—¢;. The robots’ pair-

is a Morse function (critical points are non-degenerateynt Wise relative distance is;; = ||d;;||. Similarly, their relative
critical points are isolated, and the unstable equilibtizagt Painvise distance difference at the goapis € R* defined by

a get of po?nts whose measure is zero. In particulag, i8a g;; =g, —g;. Again, by definitiong;; = (I ® cg) g. Let Q°
unigue minimum ofkp, then almost all points in the connectedienote the index set of robot pairs including the workspace
component of the goal;, move toward it and asymptotically houndary as aerothdisk, that is,Q° 2 QU{(0,i) Vi € P}.

achieve it. Thus, an appropriately constructedsolves the  The robots cannot overlap, so we require that:
geometric path planning problem. Moreoveryifs interpreted

as an artificial potential function, then the gradient veéield dij > pij = pi + pj V(i 7) € Q Q)
leads to the automated generation of robots’ control veésci
Furthermore, within certain constraints, the robots’ ting
behavior is identical to that of the vector field.

We will find it convenient to relax point 4) of the definition
above, and introduce the notion of @ssential navigation 15:1] < pos Vie P 2)
function by stipulating instead thap be:

4) Morse onF — All interior critical points are non-

Differing from the original construction [6], the workspacs
bounded by radiug, € R, hence each robatmust remain

inside a disk of radiugy; 2 po — pi, that is:

The free robot configuration spadg is defined as the subset
of robot positions inR?? which satisfy (1) and (2).

degenerate;
While the freespace interior is smooth, its boundary caneot br £ {be R*|(Vi € P, ||bi|| < pos) A (Y(3,5) € Q,8:5 > pij) }
— there arises the familiar problem of ‘corner points’[54ko (3)

which set the Hessian is undefined. Rather than introdubieg 1n other words, we are concerned with the closure of non-
machinery of non-smooth analysis as in [43], we simply relesontacting placements. For the reader’s convenience, we ha
the condition because it confers no advantage on the boyndéncluded in the Appendix a summary table of the principal
In other words, while degeneracy might possibly occupd notation introduced in this section as well as in Section IlI
no open set of initial conditions can be attracted to sudicati

points sincep cannot increase along the motion eV . B. Construction

Following the recipes in [8] and [6], the candidate function
E. Contribution of the Paper ¢ : F — [0,1] is constructed as the composition:

The main contribution of the paper is to show that our b) — (b 4
construction (Egs. 4-5) is indeed an essential navigatiog-f #(b) =0ac0od(b) @
tion. For in the present case of disk-shaped robots all ngoviiihe functiony : 7 — [0, 00) encodes the goal point and the
independently in a disk-shaped workspace, this guaramteesobstacles of all the robots using the quotient of two funtdio
exact coordinated navigation algorithm that employs feellb v : 7 — [0,00) and 3 : F — [0, 00):
to drive all robots to their respective goals with no codiiss k

LS . L Loy A (D)

along the way from almost every initial configuration in the o(b) =
: B(b)
connected component of the goal. More precisely, we show
that with some conservative but readily computed restmsti e numeratory(b) 4 (b — g)T(b — g) encodes the Eu-

on the goal positions, the constructed artificial poterftiac-  ¢jigean distance from the goal. The denominator encodes the

tion can be made to be an essential navigation function — B%tance from freespace boundary and is defined (s A
suitable assignment of the parameters that we prescrilotexa o -
g P b ¥ [i.)eqe Bij (b), where¥(i,j) € Q, Bi;(b) = 67; — p;; and

in Theorem 1 as a function of the known problem geometr i € P, Boi(b) = p2, — ||bs]2. The freespace boundanyF

is the zero level set oB~1(0) and entails robots touching

each other or the workspace boundary. The paranieisra

A. Notation design parameter that determines the relative weight afethe
We will index the collection ofp € Z* robots by the set two terms. As will be seen in the sequél,plays a critical

P=A{1,...,p}. Eachr j € Pis| i nter poin

b ;Q’ P} taC dOEOt.tE ds' Ocati;j+by tz ce t.e pg t 10Here, ® denotes the Kronecker product, where Af € R"*™ B ¢

i € ) _p_arame nze y ItS radius; < and assigned a RPX4 then A ® B € R™*™4 with anij*" block of sizep x ¢ specified

goal positiong; € R?. The stateb € R?? of all the robots by a,;B.

keZt (5)

II. THE CANDIDATE POTENTIAL FUNCTION
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role in ensuring that the functiop is an essential navigation s-neighbor setsV”(b,4i) C P as N2(b,i) := {i} and
function.

Since ¢ blows up ondF, it is not admissible. In order to
makey admissible, it is squashed by the function [0, co] —
[0,1], defined byo(x) = 7. The resulting function be-
comes admissible but the goal poinis a degenerate critical According to this definition, eactn + 1) neighbor of robot
point. In order to restore the goal point's non-degenertiwy, i is ¢ close to some:'” neighbor of roboti, but no closer -
sharpening functions, : [0,1] — [0,1] is applied, given i.e. it is note close to any(n — 1)** neighbor. The process is
by o4(z) = x'/*. Thus, the resulting functiopp becomes stopped whenV>*1(b, i) = (.
admissible and has non-degenerate minimurh -atg. Robot Clusters: Specify a partition{Pl(b),...,Ps(b)(b)}
where P;(b) € 2 and s(b) is the number of cells in this
partition using a recursively defined functid®(b) and its

) o complementary functionP;(b) as follows: The base step is
Our proof requires a few natural restrictions on allowablgyan by

goal positionsy. Similar constraints have been introduced for

the different, but related versions of the problem in earlie pt y

studies. For example, to retain the geometry as well as the r=1, Pi(b) = U Nz (b,r1)

topology of a ‘sphere world’in the freespace, the robot is g=0

defined as a point mass object in [8]. In [55], the minimal ga@nd the recursive step is given by

between any pair of obstacles is restricted to be largerttan o1

diameter of the robot and the mated object. Our assumptions . . 5 o j

constrain how closely the robots may be commanded to Iocénfbérl =min | () P(0) |, Pura(b) :i= | NI(b,rns1)

finally with respect to each other and to the outer boundary in ~

their goal positions. The goalis allowed to be chosen from stopping when,_,, P;(b) = (. At each configuration this

a subset ofF subject to two assumptions given in the sequepartition divides up the robots into distinctive clusters o
First, it is helpful to introduce a classification of the'closest neighbors”. For convenience, we wish to keep track

freespace that is away from the boundary by defining aof the partition cell index se(b) = {i € P|i<s(b)}. Itcan

notion of robot neighborhoods and their associated ‘ctaste be verified that] [, 5, Pi(b) 12 is a partition over the robot

Much past research on the coordination of multiple robots hindex set [57].

encountered the need to decompose a neighborhood of th@lext, consider an arbitrary clustd?’ C P containing at

configuration space boundary into a hierarchy of variouslgast two elementsP’| > 2. Associate with itF’ C F

arranged clusters, the earliest mention of this idea known A

to us having been contributed in [56]. Most closely related F' ={be F|3icS©b),P)=P}

to our present formulation of robot neighborhoods and thei_i

associated ‘robot clusters’is the introduction in [44] daeily

of ‘relation verification’function; whose mgmbers roughly Q' 2 {(i,5) € Qli,j € P'} (7)

correspond to each of these different possible ‘clustads’a

like ours, are indexed over all possible partitions of thecge Finally define two derived problem parametek$ and A”

agents. The cardinality of the collection of partitions wso defined as follows:

super-exponentially in the cardinality of the base settu~or . 2P| — 2

nately, in our problem formulation, these clusters do nd¢en A’ = max Z 8ij +

into the controller itself but only play a role in the analysi bes (4,4)€Q’ 4

N (b d) = U M) | ()N @,0)

JENZ(b,i) I<n

C. Restriction on Goal Locus ¢

j<n =0

bt Q' C Q be the corresponding pair index set defined as:

2

Z J(bn 7‘@/) ®€n

nepP’
of correctness, specifically in Prop. 3.6. In contrast, ljike (8)
because of their focus on the more challenging decentcalizand
version of the problem, the obstacle term in the navigation N
functions that generate the controllers of [44] explicitiglude A= i ax o Il z; 0ij 9)
n L oyt

each of these super-exponentially many factors.
Robot Neighborhoods: Let ¢ € R™ be an arbitrarily A A 0o 117.
. . . /= e » . = he 90°
small design parameter that determines robot neighboghooffnere o’ = ming jeq {pij}, 7 [ 10 } Is t

In particular, its value is set as to ensure that . . A . .
P planar rotation matrix ang’ = ﬁ > icp bi is the centroid

0 <e < p” where p” = min {po;} (6) of the robots in the celP’.
ek With these definitions in place we are now ready to
Vi € P, define ane-neighbor setN.(b,i) C P to be introduce the assumptions that restrict the allowable goal
the indices of its closest neighbors — namelg (b, ) 2 configurations. The first states that for any robot clustes, t
{j € P|0 < B;;(b) < e} L. Now, recursively define theth goal positions of the robots in this group are separated from
each other by a value af’. This term is the maximum value

1we will denote by an overbar the complementary index set sq tbat
example,N¢ (b,i) = P — N (b, 1). 12The symbol] | denotes disjoint union [54].
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IIl. THE CANDIDATE IS AN ESSENTIAL NAVIGATION
@ FuNCTION

(@@0@@ A. Statement of Main Theorem
a If ¢ is a navigation function, then its associated gradient

field automatically generates velocity control policies éach

of the robots under whose joint influence they all achieve
Fig. 2. Sample goal configurations. Left: A goal configuratifailing the desired goalg, from almost all initial conditions in its
Assumption 1. Right: A goal configuration failing Assumption 2 connected component of the freespace with the guarantee of

no collisions along the way [61].

Theorem 1:For any goaly satisfying assumptions 1 and 2,
of a function of the pairwise distances between the robatis athere exists a positive integét* ¢ Z*+ such that for every
their centroid.This maximization is over any cell contami %k > K*, the real-valued function,
these robots. Figure 2(Left) shows a workspace configuratio k(h) 1/k
containing three robots (big qrclgs) which .m|ght blocl_<.the o(b) = g0 00 p(b) = ( _ gl > (10)
way of each other while navigating to their goal positions 7% (b) + B(b)

(dark points) since the goal points are not separated enoyglan essential navigation function.

according to Assumption 1. Proof: By definition, ¢ is analytic and admissible af. By
Assumption 1.¥P' € 2P where|P’| > 2 Proposition 3.1, assumptions 1 and 2 imply that there exists
a positive intege € Z* such that for everys > K, ¢ is
Z llgi;ll > A polar in F. By Proposition 3.2, assumptions 1 and 2 imply
(4,4)€Q" that there exists a poositive integirc Z* such that for every

where@’ and A’ are calculated according to the Eq. 7-& k> N, i is Morse onf. Taking K™ = max{K, N}, the result
thus follows.O

The second assumption states that for any robot group,
each goal position is not allowed to be located closer to the
workspace boundary more than a value &f. This term B- Proof of Correctness
is the maximum value of the sum of the distances betweenConsider the partition of the free configuration sp&cato
the closest robot to the workspace boundary and the otliige disjoint subsets - following a line of reasoning insgire
robots. This maximization is over any cell containing thedey that of [8]:
robots. Figure 2(Right) illustrates a disconnected freacep 1) the goal point{g}
as the robot radii are too large with respect to that of the 2) the boundary of the free spade = 371(0)
workspace which is an infeasible goal position according to3) the set near the outer boundaryr(e)

Assumption 2. {be F|Fie S(b),3j € Pi(b),0 < fBo;(b) <e} -
Assumption 2.¥P’ € 2P where|| P’ > 2 ({g} UOF)
4) the set near the internal obstacleg;(¢) =
[P/IVp? == A" =3 llgill > 0 {be F[FieS0),|P0)]=>2}—({g}VIFUFo(e)
iep 5) the set away from the obstacleB(c) = F —

{9} UOF U Fy(e) U Fi(e))

o .
whereA” is calgulateq according to thg .Eq. . 5 Note that because the goal is held away frai#, ¢ is
These assumptions, introduced to facilitate the proof as re

. . . A
marked above, are sufficient for the desired result, buthevo a design parameter as stated in Secthn ”'C'. Cet =
bounds that have proven to be conservative in the simub’atioéb < .]-”'D(p(b)H - 0} de(;Ote the set of gr|t|cal points of 'the
For example, it seems clear that they guarantee a complet&nﬁtlon@' LetT: 7 — 2% denote the pair touching function
connected freespace, but the dependence of the homotagy typ atis
of F (including the conditions for its connectedness) on the'(p) 2 {(i,7) € Q|6:5 = pij } U {(0,4),i € P|||b:]| = poi }
disk radii is a delicate issue of great importance — indeed ) .
touching on such longstanding questions as the ancientesph-g?e_ following proposmon shows the absence of the local
packing problert? [58] — whose characterization goes fa/Minima of functiony. _ _
beyond the scope of the present paper. Nonetheless, foaform Proposition 3.1:For any free robot configuration spage
guarantees to hold, the goals would need to satisfy the t%nstralned by Assumptions 1 and 2, there exists a positive
assumptions and the tuning parametemould indeed need 'Ntegerk € Z* such that for every: > K, the real-valued
to be set as a function of these bounds. function,
v\

13For example, authors of [58] point out that determining caadi on the @(b) =04000 @(b) = (k> (11)

disk radii yielding a non-empty free space (e.g. the smalkdius precluding v (b) + 6([))

any free placement of movable uniform disks) restates thersppacking has ynique minimum point that is. © is polar onF.
problem in a bounded region. See [59] for a nice overview efhistory of 4 P a, it P

this problem which, as the author shows, stretches baclaat &emillennium PT0Of: The po_larity ofp is analyzed in each s_u_bsetﬁ‘_f Note_
prior to Kepler's famous conjecture in 1611 [60]. that the functionsp and ¢ have the same critical points with
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the same type (minimum, maximum or a saddle) except at4) There are no critical points itz (e) by Proposition 3.7.

OF. If the parameter k is chosen accordingly, the result follows
1) By definition, o(g) = —29____ Taking the gra- " iy .
| ' (v*(@)+Bg)"/* Proposition 3.1 and Proposition 3.2 follow mostly a line @+
dient V~(b) = 2(b — g) and noting thaty(g) = 0 and  goning similar to their counterparts in [8]. However, thésoa
Vv(g) =0, depart from the respective analysis. First, in Proposifdh
Vo(g) = Wx we define partitions over the robot index set and use the

k 1/k & 1/k\robot clusters to "find” the unstable tangent direction. el
((7 (9) +8(9) 7 Vlg) =1(9)V (*(9) +5(9)) )Proposition 3.2 invokes Proposition 3.9 wherein we depart
=0 necessarily from the approach taken in [8]. In that problem

Thenyg is a critical point ofp. Sincey(g) = 0, p(g) = 0. Setting, every saddle is associated with two complementary
Furthermore, by constructiorg : F — [0, 1], theng is Subspaces where the Hessian matrix is sign-definite with the
a minimum point ofe. corresponding negative and positive cones explicitly a&ek

2) Next, considery on 9F. By definition, at least two DY computation [7]. In contrast, the present problem infices

robots must touch to each other or one robot mugtconfiguration space of dimensiap (with p > 1), which is
touch to the workspace boundary. Partitié# = {b ¢ known to have nonzero Betti numbers [62] for every intermedi

OF : |T()| =1} u{b € OF : |T(b)| > 1}. There ate dimension [58]. Hence, according to theT Morse inedaalit
are no critical points in{b € OF : |T(b)| = 1} [63], there must now be saddles of every index and the hope
by Proposition 3.3 given in Section IlI-C. The criticalof explicitly revealing the corresponding positive and atige
points in {b € OF : |T(b)| > 1} are maxima by COnes of each different type seems hopeless. Instead, leere w
Proposition 3.4. abandon that geometric approach and instead focus dirattly
3) ¢ has no critical points inFy(c) by Proposition 3.5 - satisfying algebraic conditions for nonsingularity by appto
which asserts that for a given design parametehere notions of diagonal dominance. Specifically, we use a thmore
exists a lower bound on the parameterKs(e) > 0, to this effect by Sherman, Morrison and Woodbury [64] along
such that, ifk > Ks(e), thenC, N Fo(e) = 0. with some related results in linear algebra [65].
4) The critical points inF;(¢) are not minima by Propo-
sition 3.6 — which asserts the following: For a giverC. Polarity
design parameter, there exists a lower bound on the The details of proof of Proposition 3.1 are presented in
parametet:, K (c) > 0, such that, ifi > Ky(c) theng  thjs section. Due to space restrictions, some of the veryt mos
has no minimum in any sef (¢). detailed computations supporting the proofs of some of the

5) ¢ has no critical points inF;(e) by Proposition 3.7 — constituent lemmas cannot be included in this paper. Howeve
which asserts that for a given design parametétere they are available in [61], [57].

exists a lower bound on the parameterK;(e) > 0, 1) The Free Space Boundarg.F = 3~1(0): Referring

such that ifk > Ki () thenCy N Fa(e) = 0. to the definition of the pair-touching function T (defined in
The proof of Proposition 3.1 is completed by choosing loweSection 11I-B), |7T'(b)| = 0 means no robots are touching each
boundK > 0 on the parameter k as follows, other and none of them is touching the workspace boundary.

- The free space boundady* will be investigated for two cases:

K= K K K 12

max {K1(e), Ka(e), Ko(e)} (12) i) Case 1T ()| = 1, (i) Case 2T (5)| > 2. The following
t proposition proves that there are no critical pointsdoh for

Non-degeneracy, the Morse property, is established byake ncase 1.

result, Proposition 3.2. Proposition 3.3:If |T'(b)| = 1, thenC, N dF = 0.

Proposition 3.2: For any free robot configuration spage Proof: If [T'(b)| = 1, then only one of the terms ¢f is zero.
subject to Assumptions 1 and 2 and for a given desidggall this termgy,, (I,n) € Q°. Then, all the summation terms
parameters, there exists a positive integéf(c) € Z+ such of Vg vanish except the ones that containidg, # 0 and
that for everyk > N(e), the real-valued function, VB # 0. Hence, V|, - = — 2z (BinVBin) # 0. 0

K 1/k The foI_Iqwing proposition proves thas admits maximum
o(b) = 0g 000 B(b) = ( 7 (0) ) (13) Vvalued critical points o for Case 2. .
vk (b) + B(b) Proposition 3.4:If |T'(b)| > 2, thenC,, N OF contains only
. ) . Lo maximum valued critical points.
has non—degene_rate c_rmcal points, thatgsis Morse inF.  proof- Since|T(b)| > 2, 3(i, ), (I,n) € T, such that;; =
F:roof: The functiony is analyzed in each disjoint region Ofﬂzn — 0. Then, all the summation terms &, vanish except

F. the ones containing;; # 0 or 3, # 0, resulting iINVe|, > =
1) The goal poiny is a non-degenerate minimum point by- =% (8, Vi + B Vi) = 0. But ¢ = F — [0,1] and
Proposition 3.8. ¢le,nor = Frpse = 1, which means that those critical

2) There are no critical points iffy(¢) by Proposition 3.5 points achieve the maximum value of O

3) By Proposition 3.9, there exists a lower bou¥igt) > 0 2) The Set Near the Outer Boundar¥;(¢): The following
on the parametek such that ifk > N(e), then D?¢ proposition shows that there are no critical pointsFig(e) -
restricted toF; (¢) is non-singular. the subspace aF that is close to the outer boundary.
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Proposition 3.5:For a given design parameter, there
exists a lower bound on the parameferK;(¢) > 0, such
that, if £ > K (¢), thenCs N Fo(e) = 0.

Proof: (By contradiction) By definitionyb € Fy(c) if ¢(b) =
[Tics) Pi(b) is the corresponding partition theti € S(b)

such thallj € P;, By; < €. In other words, there exists at Ieas% (i,7) € Qli,j € P} andP’

centroid of the robots in the ceft,, gz = ‘P | Znep b,. We
have chosen this vector based on our following observation
in the simulations: When the robots are getting close to each
other, each starts moving in a direction perpendicularne li
between their center and the cell centroid. Recall t]g,;atﬁ

P\ P.. Let

one cell consisting of at least one robot close to the wordespa

boundary.

First, denote the cell which is arbitrarily chosen from the
cells consisting of at least one robot close to the boundgry b

42 2pz—

lv- |

>

(In)eQ-

|glnH - Z 5ln -

(In)€Q-

ary in the cellP,, that is, 2’ 2 arg max;ep, gy, <e{|0:l|}- If
b is a critical point, thenkV~y = ~Vj3. After expanding
the termsV~y and Vg, using the definition® and g, letting
N . N .
Qi = W v(i,j) € Q% Q. = {(i,j) € Qli,j € P.} and
Q. = Q \ Q., decompose the summation ovér and P
respectively and simplify as:
Z gn + Z am ij

Z ( + aOn
nepP, nePr, (i, j)EQz

After taking the magnitude of both sides and applying the
triangle inequality, using,, = b.: +d,,. on the left-hand side
and maximizingd;;/3;;, taking minimum of left-hand side

and finally usingvn € P, «ag, > 0

Z (Hbz’H - 6nz Z Hgn ‘ +

nepP, nebP,

: D \rhite

(l J)EQ=

Recall that p” min;ep {po;}.  Using
minge 7o) {16 [|} = \/p”Q — ¢ and minimizing left-hand

side,
|Pz|\/ P”2 —&= Znepz Onzr — ZnePz ”gn” <

% Z(i,j)€@7 \/ p?j +e

Using Assumption 2, ify is chosen appropriately the left-hand
side of the above inequality will be positive. #fis chosen as,

k>
'YZ(z JEQL m }
max
wenio | v
: Kl(E)

thend cannot be a critical point. Thug, has no critical points
in Fo(e). Further details can be found in [61] or [57].
O
3) The Set Near the Internal Obstaclegi(<): The fol-
lowing proposition shows thap has no minimum inF (¢) -
the subset ofF that is close to the internal obstacles.
Proposition 3.6:For a given design parameter, there
exists a lower bound on the parameterK,(s) > 0, such
that, if & > K3 (¢) theng has no minimum in any sef; (¢).
Proof: It is sufficient to show that fo€; N F(g), Jv € R
such thatv? D2pv < 0. By definition, vb € F;(¢), there is a
partition] [, 5, £:(b) such thatli € S(b) where|P;(b)| > 2.

right-hand side as follows,

BkUTD2<pv <

k r YpPop’
_k A - —p—1

| 2, =2 o [(P—P2)(p —p= = 1) +pc]

o1

1
bTJz +— b, — g.|1°
<ﬂ03 g:] BOng gll)

+ Z( ; gz>]2—;ﬁ<bj—gz>2>
51 (b - gz>2>

2

JEP,

i€P! jEP, J

’
T2

—9:
l.

"
To

Jj>i

22 3z

i€eP. jeP,

)” -

Let oy 2 ob + off. Note thatQ, 2 Q\ Q.. If gis chosen
according to Assumption 1, then terfh > 0. If k& is chosen
as,

k > maxvpe 7, ()

Y(P==1polp+(P—p:)(p—p-.—1)]
[Samea. lomll=Sameq, in— 2572 [lv- 2]

é KQ] (E)

theno; > 0. Thus, a sufficient condition to maké D?pv, <
0, is

(o2 +03)7

k> max { } 2 Kaa(e)
VbeFi(e) (o}

Finally, the proof is completed by choosind{s ()
maX{K21 (E), K22 (8)}

O

4) The Set Away From the Obstaclés:(¢): The following
proposition shows that for sufficiently largevalues, there are
no critical points inFz(e).

Proposition 3.7: For a given design parametethere exists
a lower bound on the parametgr Ks(¢) > 0, such that if
k> Kg(E) thenC@ ﬂfQ(E) = 0.
Proof: Vb € C;, kBV~y = vV 3. Taking the norm of the both

Pick arbitrarily a cell consisting of at least two robots andides and re-arranging terms 3 = /7(|V 5,

denote it byP, — that is|P,| > 2. Now consider the following
vector, v, 2 Znepz J(b, — §») ® e, whereg, denotes the

p o~ VAl

= (14)
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If k is selected to have value, Letting A = é _OI } we may re-write the previous
equation as:

k > maxyye 7, (e) gx B P2

(Zanea V203 +e+ Ticr ViR —2) T LN :

2 Ks(e) Slop + L <2M (Iqﬂj — 500 ) M* + A) L
then, Eq. 14 does not hold which in turn implies that there are B
no critical points infs(e). - Next considerl,, — 100 . By construction,

1 1 _

0. Nondegeneracy o= |40 x| ]

The details of Proposition 3.2 are given in this section.iAga
due to space restrictions, some of the very most detailﬁd
! . - . ow letV =2

computations supporting the proofs are available in [57].

1) Goal point{g}:

Proposition 3.8: The goal point,g is a non-degenerate o, | = 2(1—¢) ifi=j
minimum of ¢. KA - otherwise
Proof: It can be shown that

(Ig4p — 100”). We show thatl” is full rank
via considering its elements:

Note that for each row of/,

DQS"’cw - 3 il = gpta—1 (15)
W ((,Yk + 6)1/k212p _ ’YDQ(’Yk + B)l/k) o i k
Noting that~|, = 0 and Vv|, = 2(b — g) = 0; Hence, ifk > p + ¢, then for everyi, every diagonal element
2 1 +q-1
2 _ pTq
D¢, = i L |Uu‘=2<1—k> > 20— — =) eyl

J#i
Hence, sincd/ is strictly diagonally dominant, it follows

that V' is of full rank by Levy-Desplanques theorem [66] and
we have,

implies thatg is a non-degenerate minimum @f

2) The Set Near the Internal Obstacle&;(¢): There
are no critical points in{b € OF : |T(b)] = 1} by
Proposition 3.3 given in Section IlI-C. The critical poirits
{b € OF : |T(b)|] > 1} are maxima by Proposition 3.4
has no critical points iFy (), F2(¢) by Proposition 3.5 and
Proposition 3.7 respectively. Now let us consider the aalti
points of ¢ that are inFy(e).

Proposition 3.9:3N(e) such that fork > N(e), D?p

rank(2 (Iq+p — llcooT)) =p+gq

Hence the result holds for its inverse. It can be shown that
eachfui;1 entry of V—1 has the following form:

restricted tof; (¢) is non-singular. Lh=(pta)+l 5 ;s
i ) A 1 T . A 2 k=(p+q) " J o
Proof: Define Lo; = — = (Iz®el), Vi € P and L;; = ) s if 3,7 <pandi# j
L (L®ck), V(i,j) € Q. AN [ U if i,7 >pandi#j
V/Bi; i 25— (pra) U J
. A rop T -1 1 otherwise
Let Lo be the2p x 2p matrix Lo = [L{; ... L{,] and L, 2 k—(p+q)

be the2p x 2¢ matrix L; 2 [LT,...LT | ]. Let L be the  Now considerrank(MVMT + A). According to a theo-

2p x 2(p + q) matrix L A [LoLi] ando be the(q +p) x 1 €M py S_herman, Morrison ar_1d _WoogbuMVMT +Ais
T invertible iff M7 A='M + V1 is invertible [64]. Namely,

A
= = - T _
vectoro 1...—=1,1...1| .Note thatL has rankp G?nk(MVM +A)=2(p+q)
V4 q
in Fi(e). Let M be the2(p + q) x (p + ¢) block diagonal rank (MTAflM + Vfl) =p+gq
matrix,
Lotb 0 - 0 Now, considerM” A~ M. Note that by constructionl~! =
A andrank(A) = 2(p+q). Let M be represented as a block
MEa 0 matrix as

. . Mll M12 :|

: . M= [

0 Ly 1ub My My2

whereMy is a2p x p, My5 is a2p x q, Msy is a2¢q x p and
Mo is a2q x g matrix respectively. Hence, it can be shown
B_D2p = that
2k

It can be shown that (Lemma E.13 [SE) € C; N Fi(e)
MTAM _ |: MﬂMll 0p><q :|

512,, +2LMMTLT — 2LMoo" MTLT — Ly LT + Lo L§ Ogxp  —MbHMsy
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By construction, both/{, My, and —MJ, M,, are diagonal Now let us considefz;;| — Z#i |z;;| with the lower bound
matrices. Furthermore, & is the ordered set of permutationson |x;;| which is equal to
of P and . denotes the lexicographic order of a given per- 1k pra+1 2 1ptg-1

mutationin, each diagonal entryn;; of M7 AM is defined e e (16)
as " 2 k—(p+q) e| 2k—(p+yq)
- { ||L0ib||2 ifi<p Sincee is an arbitrarilyfmall design parameter as discussed in
" —||Lwmb|)® if i =p+ u(in) Section II-C, the tern’ will dominate in Eq. 16 and hence

|wis| > 3,4 |zi;|- Now consider the second case where the

b7 b, 5
bound on—% is as:

and
b?bi_pgi

where it should be recalled thdtLo;b|* =
— (bl_bn)T(bl_bn)
HLlan T (bi—bn)T (bi—bn)—p?, " 6+p2 B, —|—p2 p2
Let X = MTA-'M +V~! wherex;; denote the elements - In o 0P n—
of . Next, we show thatX is a nonsingular matrix via € Bin (2p = pin)
diagonal dominance. First, note that each diagonal elemétgnce,|x;;| is bounded as:

zii,l=1,...,p+ ¢ is equal to: ‘lk—(p—&-q)—s—l 2, e
2 o - = | >

1E bl Soitoo if < p 2 k—(p+q)  (2p0 — pin)?
Tij = = p ‘2 L . . . . .

%kkip(;i);;l — 5“5:!71 if i >pandi=p+.(in) Letus now consider withe;| — >, |zi;| with |z;| at its

smallest value as:
On the other hand, each off-diagonal elemept, i j is
equal to: g i 7 lk—(p+q+1 Pin ‘1p+q—1
2 k—(p+tq (2p0 = pin)?| 2k—(p+q)

[

if i,j <pandi#j

1

2k=(ptg) Y 7 This is an increasing function éf Hence fork > Ks, (¢) > 0,
i =4 2Fgig b7 >pandis] il — Y2, i > 0 which implies thatiz;| > 37, o],

—35-prg Otherwise Now let K5(e) = max;>pKs, (). Hence, sinceX is strictly

diagonally dominant, hence according to Levy-Desplanques
theorem [66]:

Z 25| = lpta-1 rank (X) = rank (MTAT'M +V ") =p+¢q
oy 2k—(p+q)

First consideri < p. It can shown that

Consider)_, , |zi;|-

This in turn implies that

rank (MVM" + A) = 2(p + q)

lk—(p+q +1  Boi+pd . .
il =Y laiyl = >k E o +)q) + o . Recalling thatB = L (MVM™ + A) L, sincerank(L) =
J#i 0 rank(LT) = 2p, according to lower and upper bounds on the
1 ptg-1 rank of product of matrices [65], the following holds true :
2k—(p+q)
2p < k(B) <2
PP =p+k+2  Boit p < rank(B) < 2p
- —p2 —p+2k Boi Hence,B is ensured of being full rank and hence non-singular.

If. B= DAD™! be an eigendecomposition &f where theA
IS a diagonal matrix with eigenvalues and U is the matrix
of eigenvectors, then

O
=

Since the fi2rst term on the rhs is is an increasing function
k and 2220 > 1, 3 Ky(e), such that fork > Ka(e)

[zl > 3l ’B il = ’UDUI i,

J#i Y Y
Now consideri > p. First note that eithed < 3, < ¢ = || ’D+k12 |U*1|
(Case 1) OF < B, < (2p0 — pin)? — p2, (Case 2). The first v
case holds for all robot pairs that are withimeighborhood _Ip k[
of each other while the second case holds for all the other - + v p
remaining pairs since the workspace is bounded. Of course, 2p 1
by assumption, as we consideritig (¢), there exists at least = H(Al +-) 17
one(l,n) € @ such thatd < 3;,, < e. Hence =1

Bin + P, PP, Recall that by Prop. 3.6, there exists at least one negative
TSR ST e eigenvalue. Ifb € C,,, then by definition

It can be shown that kBVy = 4Vp (18)

|z:1| is bounded as: Thus, Eq. 18 is equivalently expressed as:

lk—(p+q)+1 pf v
- 2zl < Vy = —V
2 k—(p+q e | < lmal <o 7 k3 P
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Recall that sincey(b) 2 (b — g)T(b — g) by definition, parametek of function. Recall in case of accurate positional
equivalentlyy(b) = iVyTny. Hence, at a critical pointy is data, the robots are ensured of moving without any collsion
equal to: along the way.

Vot v
Y= 4]{3252 vﬂ Vﬁ = EQ (19) a) ° b) )
with © = Y2¥2 which implies that . o . oo
k2 . o
= — 20
’Y Q ( ) °
d) e)
Rewriting % after substituting fory using Eqg. 20 and simpli-
fying ° oo
k- Q °3e °se
vk
Thus, forb € C,, B + %Izp is equal toB + $1,,. Using
Eq. 17 Fig. 3. Circular formations of increasing tightness:ta)ht = 2.44, b)
2% tight = 2.63, c) tight = 2.87, d) tight = 3.30 and e)tight = 3.45.
B+, - T+ Q)
~y 2p - l A

=1
A. Circular Formations

We first study a problem involving six robots and five differ-
ent randomly chosen goal configurations of circular foroadi
with increasing tightness as shown in Figure 3. Figure §(lef
shows the variation ofirl as a function of goal tightness
measurelight. In this graphic, each bar represents the mean
and the standard deviation of 30-40 sample runs with random
initial configurations.k is taken to bes0. The effect ofk is
discussed in the following section. Unlike [6], we obselvatt
the general trend and the deviationrofl values increase with
increasing workspace tightness. This result is expectecksi
the closer the robots need to pack together, the more tirres wi
encounter each other, thus requiring longer paths that move
around each other in order to reach their goal positions It i
seen that in the most complex workspace, path length is on
average 1.25 - 25 percent longer than the (typically infdayi

We now report on simulations of the flows associated Witlﬁuclidean _straight line betwe_en initial and final configimas.
the construction to suggest the nature and quality of théomot " t€ €asiest workspace, this value decreases to 1.08.
planning resulting from the artificial potential functign A 201
workspace tightness measutight is defined as:

100
10810 (TTii,peq 19312 = 7))

Fi(e) can be partitioned into two subsetsFy,, and Fo. =
Fi(e) — Fon. Now consider the negative eigenvalue Bf
having smallest magnitude and denote it XyB). Consider
the closure ofF,. - namely .. As F;. is compact, let

A* = inf |N(B)]
beFoe
Finally, choose

Q
k> sup — =Kel(e)
beFoe A

Thus, ifb € C, N Fi(e), then ]Iy, + B is nonsingular. The
proof is completed by choosing

N(e) = max{Ky4(e),K5(¢),Kg(e) } |

IV. SIMULATIONS

3.0

tight =

nrl - normalized robot path length

Note that this measure of tightness captures the difficiltiie
task. The closer the robots need to be packed together thee mo 1,
careful and precise the robots have to be in their movements
We will summarize performance by means of the measures

ot

nrl - normalized robot path length

2

tight -- workspace tightness

T T T
10 50 20
k - parameter

originally introduced in [6]. The first performance measise Fig. 4. Left:Normalized robot path length vs workspace tigiss for circular
the normalized robot path length measure which is the formations; Right: Normalized robot path length ¥s.

total distance traveled by the robots normalized by the stim o
the Euclidean distances between initial and final positioins

the robots, .
e Jo' 10i(0)]dt

nrl =

Figure 4(right) shows the dependenceroafl values onk
parameter. The graphic presents the mean and the standard
deviation values of 30-40 sample runs for the goal config-
uration given in Figure 3 and starting from random initial

2iep [16:(0) = gill configurations. It is observed that the general trendnof
Here,t; denotes the duration of a simulatiohi(t) denotes values agree with those presented in [6] and decreases with
the position vector of robot at time¢ and b,(0) denotes the the increasing: parameter.
initial position of roboti. The second measure is the design This result can be attributed to these facts:
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1) For smallk values, in the constructed potential function, nelvstightnsss

the term for obstacle avoidance dominates. The robots
attempt to increase their proximity to nearby robots as
much as possible. Consequently, the paths taken by the

robots get longer. Still, the maximum meam! value
is 1.68 whenk = 20. Furthermore, the moving task
is not accomplished fok values smaller than 20 in

—+— Mam

nrl

S bd ke oo

—&— Maan-stdav

Maan+ztday

050 034 0,57 0,61

tichtnass

the simulations starting from some initial configurations.

This fact is expected since there is a lower boundkon
for convergence to the goal positions.

Fig. 6. Normalized robot path length vs. workspace tightriesarray-like

2) For largek values, the robots are concerned with poinformations.

ing towards their goal positions rather than avoiding each
other. In this case, a robot may try to pass through the 150
spaces between the other robots which are only 1-2 cm 10,0 —+—Hlean

larger than its diameter. Therefore, the paths taken
the robots become shorter.

® ® ® ®
® ®

® ® ®®

® ; ®

@ = @ ®)

Fig. 5. Array-like formations of increasing tightness:tayht = 0.504, b)
tight = 0.538, c) tight = 0.569, d) tight = 0.611.

by T';I: —8— Meaan-stdev
50 - Mean+stder

0o 4

o 01 05 1

sersor noke (sigma)

Fig. 7. Normalized robot path length vs. noisein array-like formations.

considered: Lowf = 0.1), moderate £ = 0.5) and high

(o = 1). Figure 7 showsnr! vs o— where it is observed
that althoughnrl increases dramatically, the tasks still can
be completed. However, it should be noted that with higher
levels of noise, the probability of collisions between thbats
increase as expected since there is a discrepancy between
where each robot is actually and where it thinks it is. Let
us note that in this case, the performance of robots can be
improved by resorting to state estimation methods as has bee

shown in a different, but related task of parts’ moving [68].

B. Array-like Formations
We next study a problem involving ten robots and four

Low Packedness — R20

Medium Packedness — R20 High Packedness — R20

different randomly chosen goal configurations of arrag-lik
formations with increasing tightness as shown in Figurete T
variation ofnrl with respect to goal tightness is as shown in
Figure 6. Again, it is observed that with increased tightnes
there is a tendency for the path lengths traveled by the sobot
to increase as well. In this simulation, we then consider the

Low Packedness — R30

tightest goal and assume that sensor measurements aretsubj~
to noisé*. The noisy state observatiohs are generated as

where 7, represents the position measurement noise. It i
assumed to be Gaussian~ N(0,X;) where the covariance
¥, are known. In our simulations, different noise levels are

Medium Packedness — R30 High Packedness — R30

Low Packedness — R40

Medium Packedness — R40 Low Packedness — R40

14with a strict, smooth (essentially) global Lyapunov funatim place,
standard results immediately yield local (in this settingagvirom interior
saddles and boundary) persistence: e.g., small sensor ol maide results
in controllably small errors [67], [62], [63], or alternagily, for statistical
disturbance models, integral formulations yield analogeersiptence results
[61]. Of course, these standard arguments are generally cargervative,
and it is of interest to see how well such formal disturbance imitgu
properties translate practically in particular instandéste that we we have

not addressed formally the global version of this questiag. (gust how
"close” one can come to the interior saddles or obstaclesewh#intaining
guarantees), but these numerical results give the reagssuiggestion that
the controller remains reasonably robust relative to smaludbances over
large volumes in the freespace, including regions close édbtiundary.

Fig. 8. Random goal positions for varying packedness (lowdiom, high)
and for varying population (20,30,40) robot teams.



JUNE 2014 — IEEE TRANS. ON ROB. 13

C. Random Goal Positions sufficient to ensure the construction indeed holds the requi

Finally, we consider randomly positioned goal locations droperties. As a consequence of its defining properties, the
varying tightness for robot populations of 20, 30 and 40 assedradient field resulting from an essential navigation fierct
in Fig. 8. The variation ofurl with respect to the number of Yi€lds a flow guaranteed to bring almost every initial coiodit
robots is as given in Fig. 9 where the results are averagesali] the connected component to the goal with no collision
for 20 runs with random initial positions. It is observed tths2/ong the way. The recourse to an online feedback based

increase in the number of robots does not affedt much. planner lends robustness against the unanticipated chamge
workspace configuration (state stability) and inevitatdesor

and actuator inaccuracies (structural stability). Evedigk-
shaped robots treated here constitute a very small porfion o
the general coordinated navigation problem of arbitratyote

in arbitrary workspaces, we expect that this constructidh w
advance the design of artificial potential functions foregéos

3 that are progressively more realistic respecting geometry
actuation, sensing and distributed information.

3

Normalized robot path length

Fig. 9. Normalized robot path length vs. number of robots irdcan goal
positions.

Finally, despite a large number of numerical experiments
with goals, g € F that violate Assumptions 1) and 2) of
Section 1I-C conditions we have not been able to find goal
configurations that are not attainable, bolstering ourngfro The authors would like to thank the editor and the anony-
sense that these assumptions, while convenient to our,praabus reviewers for their careful reading as well as their
are pessimistically conservative and not necessary for thany helpful comments and suggestions for improving the
desired result. Numerous successful simulations run op veriginal manuscript. We also would like to acknowledge the
"tight” goal configurations certainly belie their difficyltand contributions of Mehmet Akigl and Haluk Bayram for the
we suspect that only very specific goal "shapes” may giwmulation software. The second author thanks Reritirk for
trouble. Provided thak is set high enough and numericaldiscussions on Morse theory. The third author thanks Michae
overflow/underflow problems are eliminated, the goals havarber for discussions on topological complexity and Yuliy
always proven to be attainable. However, even in the womBaryshnikov and Fred Cohen for discussions on the topology
case, if some goals "tight” enough to violate Assumptionsf configuration spaces.

1) and 2) do not yield a successful navigation function, our

construction (4) gives rise to safe (guaranteed no cofigio

non-degenerate gradient systems which have only isolated

point attractors. Hence "blocked” initial conditions wdul APPENDIX
reach unacceptable equilibrium positions rather thanketxg

oscillatory (some more exotic, undetectable) behavior.

ACKNOWLEDMENTS

The following list presents the most commonly used the
definitions in the paper where the third column indicates the

place of first introduction.
This paper extends the navigation function methodology

V. CONCLUSION

[7] to the coordinated navigation of independent disk-gldap  Symbol Definition Section
robots moving in a disk-shaped planar workspace as first P CZT The number of robols A
proposed over two decades ago [6]. Intuitively, the soufce 0 p = {1,... p} Robot index set I-A
difficulty that characterizes this problem arises becawsd e b; € R? Center of roboti [-A
robot becomes a dynamic obstacle for the remaining robots. p: € R* Radius of robot [-A
Since this is a real time dynamical systems based planner, 9: € R® Goal of roboti II-A
there can be no a priori knowledge of robots’ trajectories. b€ R* = Diepbi®ei [-A
However, by making assumptions i) - iv) in Section I-C, 4cR?* éziep i ® e I-A
we adopt the framework of encoding complete information 2 it p 1-A
about the goal, dynamic obstacles and workspace boundary. S{(,j)lijePi<j} I-A
The main' cgntribution is to e;tablish thf':\t our prpposed con- 29 u {(071') i e Py LA
§truct_|on is indeed an _essennal na_wgatl(_)n func_tlon - gme I n dimensional identity matrix  11-A
it satisfies the properties 1) - 4) listed in Section I-D. The A

analysis yields closed-form expressions that depend on the ) N . II-A
goal configuration and thé parameter of this construction. ij € R R bi—b; = (l2@ci;)b II-A
First, lower bounds constrain the allowable goal proxinaty 0ij = [lds

among robot pairs as well as to the workspace boundary to g;; € R® Sgi—g = (la®c)yg [-A

be “reasonable”. Next, suitable parameter values are found ~(b) Sb-—g"(b-g) I-B
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