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1. Introduction

This technical report is a companion document to the CLAWAR 2012 pa-

per of the same name,1 for which we explicitly write out a full derivation

of the kinematics and dynamics. Please refer to that document for moti-

vation, experimentation, and discussion. Equations numbered as (A.1) are

new, while equations numbered as (1) match that document. Reference and

footnote citations will not necessarily be equivalent.

2. Kinematics

Consider a simple planar model of a tailed robot in an aerial maneuver,

representing the tail by a point mass held by a massless rigid rod, and the

rest of the vehicle represented by a single rigid body (Figure 1). The tail

is a point mass of mt attached via a length lt to a pivot lb away from the

body center of mass, and that the body has mass mb and inertia Ib about

its center of mass. The body and tail centers of mass are separated by a

length l with angle θa, which is dependent on the internal angle θr = θb−θt
(note that Figure 1 has a negative θr).

2.1. Frames of Reference and Nonholonomic Constraints

For ease of analysis we now define a system reference frame whose origin is

placed at the centroid of the combined body-tail mechanism, denoted rcom,

rcom =
mbrb +mtrt

mb +mt
≡ 0. (A.1)
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Fig. 1. Planar two body model.

where rb and rt are the position vectors of the body and tail, respec-

tively. The orientation of this frame, expressed by the orthonormal vectors,

{er, es} is determined so that the body mass center lies along the vector

er with magnitude r ∈ R
+, as seen in Figure 1,

−mt(l − r) +mbr = 0; r =
mt

mb +mt
l. (A.2)

From the definition of the center of mass and the basis vectors er =

cos θaE1 + sin θaE2, and es = − sin θaE1 + cos θaE2 it can be seen that

rb = rer; rt = −(l − r)er. (A.3)

The total angular momentum, H0, about the system’s center of mass

(obtained by adding the tail’s point-mass component to the body’s point-

mass component along with the body’s angular momentum about its own

origin) is,

H0E3 = Ibθ̇bE3 + rb × (mbṙb) + rt × (mtṙt), (A.4)

where E3 = E1 ×E2 exits the page. The tail and body velocities expressed

in the moving system frame now read

ṙb = rθ̇aes; ṙt = −(l − r)θ̇aes (A.5)

Inserting (A.3) and (A.5) into (A.4) and using (A.2),

H0 = mbr
2θ̇a +mt(l − r)2θ̇a + Ibθ̇b (A.6)

=
(

mbr
2 +mtr

2 − 2mtlr +mtl
2
)

θ̇a + Ibθ̇b (A.7)

=

(

(mb +mt)m
2
t l

2

(mb +mt)2
−

2m2
t l

2

mb +mt
+

(mb +mt)mtl
2

mb +mt

)

θ̇a + Ibθ̇b (A.8)

=
mbmt

mt +mb
l2θ̇a + Ibθ̇b, (A.9)



3

bb
lt

l

l

a

)(
ba

Fig. 2. Geometry of internal angles. The angle opposite l is −θr, and the angle opposite
lt is π − (θa − θb).

yields a scalar equation for the total angular momentum about the COM.

Due to the absence of external moments, the total angular momentum

about the COM is constant, and (A.9) imposes a non-holonomic constraint

on the dynamics. Note that the version of this equation given in,1

H0 = Iaθ̇a + Ibθ̇b; Ia =
mbmt

mb +mt
l2t , (1)

is actually in reference to the linear version of (A.9), where l = lt, as

described in the next paragraph, rather than the general case where l can

vary with configurationa.

2.2. Generalized Coordinates

We find it convenient to adopt θb, θt as our generalized coordinates, and

will now rewrite the noholonomic constraint in those terms. First consider

the simplifying assumption that the tail pivots at the body center of mass

(lb = 0), then θ̇a = θ̇t, l = lt = const., and the constraint is linear in

segment angular rates. We choose a time scale γ (units of 1/s, see further

discussion in the next section) such that t∗ = γt, where the ∗ indicates

dimensionless values. Substituting the dimensionless derivatives θ̇i = γθ̇∗i ,

simplifying and dividing by Ib yields a dimensionless version of Eqn. (1),

H̄0 = ε θ̇∗t + θ̇∗b ; ε =
Ia
Ib

; (2)

where we define ε to be tail effectiveness (generalizing the previous defini-

tion2) and H̄0 = H0/(γIb) is a dimensionless momentum.

In the general case, when the tail pivot is some distance from the center

of mass of the body (lb 6= 0), l varies with configuration, and θ̇a depends

aIa is conventionally called the reduced mass moment of inertia in the linear case. To

consider a non-point mass tail, another term Itθ̇t must be added to H0.
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on θ̇r, θ̇b and l̇. Applying the law of cosines about −θr (see Figure 2),

l2 = l2t + l2b − 2ltlb cos θr, (A.10)

and differentiating with respect to time,

2ll̇ = 2ltlb sin θr θ̇r, (A.11)

yields an expression for l̇. Repeating this for the angle opposite lt (which is

π − θa + θb) yields:

l2t = l2 + l2b + 2llb cos (θa − θb) (A.12)

0 = 2ll̇ + 2lb l̇ cos (θa − θb)− 2llb sin (θa − θb)(θ̇a − θ̇b) (A.13)

where cos (θa − θb) and sin (θa − θb) are readily found via the law of sines,

sin (θa − θb)

lt
=

sin (−θr)

l
(A.14)

sin (θa − θb) = −
lt
l
sin θr, (A.15)

and by equating lb with sum of the projections of l and lt,

lb = lt cos θr − l cos (θa − θb) (A.16)

cos (θa − θb) =
lt
l
cos θr −

lb
l
. (A.17)

Thus starting with (A.13) and applying (A.11),

0 = 2ll̇

(

1 +
lb
l
cos (θa − θb)

)

− 2llb sin (θa − θb)(θ̇a − θ̇b) (A.18)

0 = 2ltlb sin θr θ̇r

(

1 +
lb
l
cos (θa − θb)

)

− 2llb sin (θa − θb)(θ̇a − θ̇b)

(A.19)

and then (A.17),

0 = 2ltlb sin θr θ̇r

(

1 +
lb
l

(

lt
l
cos θr −

lb
l

))

− 2llb sin (θa − θb)(θ̇a − θ̇b)

(A.20)

0 =
2ltlb sin θr θ̇r

l2
(

l2 + lblt cos θr − l2b
)

− 2llb sin (θa − θb)(θ̇a − θ̇b) (A.21)

and (A.10),

0 =
2ltlb sin θr θ̇r

l2
(

l2t − lblt cos θr
)

− 2llb sin (θa − θb)(θ̇a − θ̇b) (A.22)
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and (A.15),

0 =
2ltlb sin θr θ̇r

l2
(

l2t − lblt cos θr
)

+ 2lblt sin θr(θ̇a − θ̇b) (A.23)

0 = 2ltlb sin θr

(

θ̇r
l2
(

l2t − lblt cos θr
)

+ (θ̇a − θ̇b)

)

(A.24)

0 =
θ̇r
l2
(

l2t − lblt cos θr
)

+ (θ̇a − θ̇b) (A.25)

where the last simplification holds when 2ltlb sin θr 6= 0. This can be rear-

ranged to get an expression for θ̇a,

θ̇a = −
θ̇r
l2
(

l2t − lblt cos θr
)

+ θ̇b (A.26)

θ̇a = −
l2t
l2

(

1−
lb
lt
cos θr

)

θ̇r + θ̇b. (A.27)

This expression enables expansion of (A.9) into a nonlinear version

of (1),

H0 =
mbmt

mt +mb
l2
(

−
l2t
l2

(

1−
lb
lt
cos θr

)

θ̇r + θ̇b

)

+ Ibθ̇b (A.28)

H0 = −Ia

(

1−
lb
lt
cos θr

)

θ̇r +

(

mbmt

mt +mb
l2 + Ib

)

θ̇b (A.29)

when combined with (A.10),

H0 = −Ia

(

1−
lb
lt
cos θr

)

θ̇r +

(

Ia(1 +
l2b
l2t

− 2
lb
lt
cos θr) + Ib

)

θ̇b, (A.30)

and with the definition of θr = θb − θt, yields the angular momentum in

link coordinates,

H0 = Ia

(

1−
lb
lt
cos θr

)

θ̇t +

(

Ia(
l2b
l2t

−
lb
lt
cos θr) + Ib

)

θ̇b. (A.31)

Dividing by Ib, and simplifying leads to the nonlinear version of (2),

H̄0 = ε(1− λ cos θr)θ̇
∗

t + (ε(λ2 − λ cos θr) + 1)θ̇∗b ; λ = lb/lt. (3)

This equation governs both stabilization and zero angular momentum ma-

neuvering. In the latter case, H̄0 = 0, and by maintaining our definition of

effectiveness in righting as the ratio of segment speeds, the configuration-

dependent non-linear effectiveness is,

εn = −
θ̇∗b
θ̇∗t

=
ε(1− λ cos (θr))

ε(λ2 − λ cos (θr)) + 1
. (4)
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Fig. 3. Two link system with tail joint at COM of body.

3. Dynamics and Power Scaling for a Free Fall Task

While all isometrically scaled robots will maneuver with similar kinematics

given enough time, a real terrestrial robot is constrained by the duration

of its aerial phase (fall, leap, or other dynamic behavior) and this imposes

a new set of requirements on a new set of parameters that specify the tail

actuation power train.

3.1. Linear Dynamics for a Simplified Design

Consider a maneuverability task specified by the requirement to reorient the

body through a fixed angle θb = θ0, in a desired time t = t0. Here we develop

the linear (assuming λ = 0) dynamics associated with a bang-bang style

of control (i.e., accelerating and then decelerating the tail with maximal

available torque) imparted by a conventionally power-limited actuator (i.e.,

whose maximal available torque must decrease linearly with speed3 ).

The system dynamics are calculated by taking the time derivative of

the angular momentum of each link about the COM, Ḣi = τE3 + ri × Fp

for i ∈ {b, t}. The first term on the right is the motor torque and the

second term represents the torque due to the pin joint force, Fp, applied at

a position, ri, from the COM of the system (see Figure 3).

The pin force is the sole force acting on both links, therefore the value

of Fp is equal to the product of each links’ mass and acceleration,

‖Fp‖2 = mbr|θ̈t| = mt(lt − r)|θ̈t|, (A.32)
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where ‖ · ‖2 is the 2-norm. Thus the body dynamics are

Ḣb = τE3 + rb × Fp (A.33)

Ibθ̈b +mbr
2θ̈t = τ +mbr

2θ̈t (A.34)

Ibθ̈b = τ. (A.35)

Since the motor torque and pin force act with opposite direction for the

tail link their signs change in the tail dynamics,

Ḣt = −τE3 − rt × Fp (A.36)

mt(lt − r)2θ̈t = −τ −mtr(lt − r)θ̈t (A.37)

Iaθ̈t = −τ. (A.38)

3.2. Link Response with a Conventional Actuator

Consider a motor-like actuator with a torque function linearly dependent on

speed, applying torque to the tail joint as excited by its fixed (maximal) ter-

minal voltage. The electromagnetic motor operates along its speed-torque

curve,

τ = τm

(

1−
θ̇b − θ̇t
ωm

)

(A.39)

where τm is the stall torque and ωm is the no-load speed of the motor after

the gear box.

Recall from Section 2 that the velocities of the body angle, inner angle,

and tail angle are kinematically related by θ̇r = θ̇b − θ̇t = (1 + 1/ε)θ̇b,

and therefore the full dynamics of any one angle can be determined by the

dynamics of any of them by

θ̈b =
θ̈r

1 + 1
ε

θ̈t = −
θ̈r

1 + ε
. (A.40)

By substituting (A.35) into (A.39),

Ibθ̈b = τm

(

1−
θ̇r
ωm

)

. (A.41)

Finally, using the left hand equality of (A.40), θ̈r is,

θ̈r =
τm(1 + 1/ε)

Ibωm

(

ωm − θ̇r

)

. (A.42)

To fully non-dimensionalize the dynamics we again choose a time scale

γ such that t∗ = γt, where the ∗ indicates dimensionless values. Since we
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seek to specify the entire power train, we find it convenient to decouple

the roles of the actuator and the transmission in achieving this task by

parametrization with respect to peak mechanical power, P = τmωm/4,

(whose product form cancels the appearance of the gear ratio) and no-load

speed, ωm (whose linear dependence upon the gear ration makes it a useful

surrogate for the transmission). Substituting the dimensionless derivatives

θ̇i = γθ̇∗i and θ̈i = γ2θ̈∗i yields,

γ2θ̈∗r =
4P (1 + 1/ε)

Ibω2
m

(

ωm − γθ̇∗r

)

. (A.43)

Choosing γ := 4P (1+1/ε)
Ibω2

m
, and grouping the leading terms as α :=

ω3

mIb
4P (1+1/ε) = ωm/γ, simplifies the dynamics to a single, dimensionless equa-

tion governing a reorientation with a motor under fixed (presumably max-

imum) voltage with H̄0 = 0,

θ̈∗r = α− θ̇∗r (A.44)

i.e. to the inner joint the system looks like a simple inertial load and so

the dynamics are a dimensionless version of (A.41). Assuming the initial

conditions of θ̇∗r (0) = 0 and θr(0) = 0 admit the solution to this differential

equation,

θ̈∗r (t
∗) = α exp (−t∗) (A.45)

θ̇∗r (t
∗) = α(1− exp (−t∗)) (A.46)

θr(t
∗) = α(−1 + t∗ + exp (−t∗)). (A.47)

In general we will most likely care more about rotations of θb or θt, but

they are easy to derive (assuming initial conditions of θb = θt = 0 and

θ̇b = θ̇t = 0)

θb =
θr

1 + 1
ε

θt = −
θr

1 + ε
(A.48)

and similarly for all derivatives.

Therefore the closed form trajectory of the body angle is,

θb = fb(t
∗) :=

ωm

γ(1 + 1
ε )

(−1 + t∗ + exp (−t∗)) (5)

Thus for a fixed system and time, t∗0 = γt0, we see that the robot body

has rotated θb = fb(γt0). Conversely if we desire a body rotation of θ0, we

must solve the implicit function t = f−1
b (θ0)/γ to find the time required. We

can also turn this problem around and ask for a given task specification, a

θ0 body rotation in t0, what are the constraints on the system parameters?
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3.3. Optimal Gearing for the Simplified Design

To solve these problems, it will be convenient to introduce another grouping

of system parameters, β = 4P (1+1/ε)
Ib

(so that γ = β/ω2
m and α = ω3

m/β),

decoupling the motor and system specification (now represented by β) from

the transmission (now represented by ωm).

We would like to eliminate ωm from consideration, i.e. choose the “best”

ωm. Depending on the task, there are two optimal values for ωm to consider

— in the first case (i) there is a fixed t := t0, and we would like to find the

minimal β (i.e. minimal P , maximal ε, or maximal Ib), while the second

case (ii) the sytem parameter β := β0 is fixed (i.e. P , ε, and Ib are all fixed),

and we would like to find the ωm that minimizes the completion time t. In

this section we will consider (i), while in the next section we will consider

(ii).

Define a function c(ωm, t, β) by expanding and regrouping (5),

0 = −βθ0 +
ω3
m

1 + 1
ε

(

−1 +
tβ

ω2
m

+ exp

(

−
tβ

ω2
m

))

:= c(ωm, t, β) (A.49)

Since we wish to eliminate ωm as a design parameter, we will consider

certain properties of one of these implicit functions, either t = st(ωm) or

β = sβ(ωm), that enforces one of the constraints,

(i) c(ωm, t0, sβ(ωm)) ≡ 0, (A.50)

(ii) c(ωm, st(ωm), β0) ≡ 0, (A.51)

with the aim of optimizing either (i) the the motor’s mechanical power

output via the system parameter, β, or (ii) the time duration of the task.

Namely we will choose ωm so as to minimize either (i) sβ or (ii) st by finding

the critical points of the two different functions as follows.

First, for case (i), t0 is fixed and we are trying to find the value of ωm

that minimizes sβ ,

0 = Dωm
c+DβcDωm

sβ (A.52)

0 =
∂c

∂ωm
+

∂c

∂sβ

dsβ
dωm

(A.53)

dsβ
dωm

=
∂c

∂ωm

∂c
∂sβ

:= 0 (A.54)

0 =
∂c

∂ωm
(A.55)



10

where the simplification in A.55 holds for ∂c
∂sβ

6= 0 which is true when

−θ0 + ωmt0(1 − exp
(

−
t0sβ
ω2

m

)

)/(1 + 1
ε ) 6= 0, i.e. θ0 6= 0. Expanding the

partial derivative,

0 =
∂c

∂ωm
=

1

1 + 1
ε

(

−3ω2
m + t0sβ +

(

3ω2
m + 2ω3

mt0sβω
−3
m

)

exp

(

−
t0sβ
ω2
m

))

(A.56)

0 = (−3 +
t0sβ
ω2
m

) +

(

3 + 2
t0sβ
ω2
m

)

exp

(

−
t0sβ
ω2
m

)

(A.57)

0 = (−3 + k) + (3 + 2k) exp(−k); k :=
t0sβ
ω2
m

, (A.58)

where there is only a single positive value k := k0 ≈ 2.15 for which (A.58)

holds (numerically computed). To get the optimal sβ and ωm using (A.49)

and (A.58),

k0 = 2.15 =
t0sβ
ω2
m

, ωm =

√

t0sβ
k0

(A.59)

sβθ0 =

(

t0sβ
k0

)3/2(
−1 + k0 + exp(−k0)

1 + 1
ε

)

(A.60)

θ0 =
t
3/2
0 s

1/2
β k1

1 + 1
ε

(A.61)

sβ =
θ20
(

1 + 1
ε

)2

t30k
2
1

(A.62)

ωm =
θ0
(

1 + 1
ε

)

t0k
1/2
0 k1

, (A.63)

where k1 = [k
−3/2
0 (−1 + k0 + exp(−k0))] ≈ 0.402. Note that (A.62) is the

minimal β needed to complete a θ0 body rotation in t0 time, and that the

optimal motor speed given in (A.63) is proportional to the angular change

desired over the time desired.

Expanding sβ in (A.61) yields,

θ0 =
2t

3/2
0 P 1/2k1

(1 + 1/ε)1/2I
1/2
b

, (6)

and thus the minimum power required is,

P =
θ20

4t30k
2
1

(1 + 1/ε)Ib, (7)
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but of wider interest may be power density, Pd = P/m.

This relationship reveals an important constraint on dynamic tail reori-

entation: the effect of robot size. Consider a robot isometrically scaled by

a length scale L. Then mass m we will scale by the cube of length L and

Ib ∝ L5. If the robot were required to reorient through the same angle in

the same time regardless of size, then by substitution into Eq. (7) we would

require power density Pd ∝ L2. However, a larger robot will fall slower rel-

ative to its length. Considering a free falling distance h ∝ L implies that

the time available t ∝ L1/2. Therefore, from Eq. (7) the power density,

Pd ∝
1

L3

1

L3/2
L5 = L1/2, (8)

scales as the square root of length. This indicates that inertial reorientation

gets more expensive at large size scales; larger robots may suffer reduced

performance, or must dedicate a growing portion of total body mass to tail

actuation. However, the robots in this paper span a characteristic length

range of almost four fold without dramatic differences in ability; in this

case, variance in motor power density may trump scaling.

4. XRL Tail Design

See1 for a full discussion of the tail design, here we will simply derive (9). As

in case (ii) from the previous section, here the power is given for each motor

and we now seek to determine the minimal completion time as a function of

peak power (parametrized by morphology) rather than the inverse function

as above. The time requirement t0 from the previous section can be thought

of a constraint, while here for those motors that meet that constraint we

want to consider the fastest completion time as a metric.

Recall that, for case (ii), β0 is fixed and we are trying to find the value

of ωm that minimizes st,

0 = Dωm
c+DtcDωm

st (A.64)

0 =
∂c

∂ωm
+

∂c

∂st

dst
dωm

(A.65)

dst
dωm

=
∂c

∂ωm

∂c
∂st

:= 0 (A.66)

0 =
∂c

∂ωm
, (A.67)

where the simplification in A.66 holds for ∂c
∂st

6= 0 which is true when

ωmβ0

(

1− exp
(

− stβ0

ω2
m

))

/
(

1 + 1
ε

)

6= 0, i.e. β0 6= 0, ωm 6= 0, and st 6= 0.
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Therefore, expanding the solution to 0 = ∂c
∂ωm

as in (A.55), and as in (A.58),

0 = (−3 + k) + (3 + 2k) exp(−k); k :=
stβ0

ω2
m

. (A.68)

The optimal st and ωm using (A.49) and (A.68),

k0 = 2.15 =
stβ0

ω2
m

, ωm =

√

stβ0

k0
(A.69)

β0θ0 =

(

stβ0

k0

)3/2(
−1 + k0 + exp(−k0)

1 + 1
ε

)

(A.70)

θ20 =
s3tβ0k

2
1

1 + 1
ε

(A.71)

st =

(

θ20
(

1 + 1
ε

)2

β0k21

)1/3

(A.72)

ωm =

(

θ2

0(1+ 1

ε )
2

β0k2

1

)1/6

β
1/2
0

k
1/2
0

=

(

θ0β0

(

1 + 1
ε

)

k1k
3/2
0

)1/3

. (A.73)

Note that (A.72) is the fastest a robot with system parameters β0 can com-

plete a θ0 body rotation, and that the optimal motor speed given in (A.73)

scales with the cube root of the system parameters and desired angular

change, which makes α directly proportional to the system parameters and

desired angular offset.

Therefore when calculating the performance of a given motor and sys-

tem, the optimal no load speed (after gear ratio) and resulting completion

time functions are,

ωm =

(

θ0β0

(

1 + 1
ε

)

k1k
3/2
0

)1/3

; t =

(

θ20
4Pk21

(1 + 1/ε)Ib

)1/3

. (9)

Note that the optimal ωm given in (9) from1 was slightly incorrect and that

it did not define β0.
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