University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

4-1994

Planning and Control of Robotic Juggling and
Catching Tasks

M. Buehler
McGill University

Daniel E. Koditschek

University of Pennsylvania, kod@seas.upenn.edu

P.J. Kindlmann
Yale University

Follow this and additional works at: http://repositoryupenn.edu/ese papers

b Part of the Electrical and Computer Engineering Commons, and the Systems Engineering

Commons

Recommended Citation

M. Buehler, Daniel E. Koditschek, and P. J. Kindlmann, "Planning and Control of Robotic Juggling and Catching Tasks", International
Journal of Robotics Research 13(12), 101-118. April 1994. http://dx.doi.org/10.1177/027836499401300201

“The final, definitive version of this article has been published in the Journal, International Journal of Robotics Research, 13/12, 1994, © SAGE
Publications, Inc. or Society/Proprietor, 1994 by SAGE Publications, Inc. at the International Journal of Robotics Research page: http://ijr.sagepub.com/
on SAGE Journals Online: http://online.sagepub.com/

NOTE: At the time of publication, author Daniel Koditschek was affiliated with the University of Michigan, Ann Arbor. Currently, he is a faculty
member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.
This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/ese_papers/691

For more information, please contact repository@pobox.upenn.edu.


http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fese_papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=repository.upenn.edu%2Fese_papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=repository.upenn.edu%2Fese_papers%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1177/027836499401300201
http://repository.upenn.edu/ese_papers/691
mailto:repository@pobox.upenn.edu

Planning and Control of Robotic Juggling and Catching Tasks

Abstract

A new class of control algorithms—the “mirror algorithms”— gives rise to experimentally observed juggling
and catching behavior in a planar robotic mechanism. The simplest of these algorithms (on which all the
others are founded) is provably correct with respect to a simplified model of the robot and its environment.
This article briefly reviews the physical setup and underlying mathematical theory. It discusses two significant
extensions of the fundamental algorithm to juggling two objects and catching. We provide data from
successful empirical verifi cations of these control strategies and briefly speculate on the larger implications for
the field of robotics.
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Abstract

A new class of control algorithms—the “mirror algorithms”™—
gives rise to experimentally observed juggling and catching
behavior in a planar robotic mechanism. The simplest of these
algorithms (on which all the others are founded) is provably
correct with respect to a simplified model of the robor and its
environment. This article brieflv reviews the physical setup and
underlving mathematical theory. It discusses rwo significant
extensions of the fundamental algorithm to juggling two objects
and catching. We provide data from successful empirical verifi-
cations of these control strategies and briefly speculate on the
larger implications for the field of robotics.

1. Introduction

We have built a one-degree-of-freedom robot capable

of juggling two pucks falling freely on a frictionless
plane inclined into the earth’s gravitational field. The
robot responds sensibly to distinct circumstances. When
in the middle of juggling two pucks, if suddenly one
puck is fixed and held in place, the robot will continue
to juggle the other. When the first puck is again released,
the robot will adjust its hits to restore symmetry between
the two pucks’ motions. The juggling algorithm works
on the principles of feedback theory and implements
what might be called “visual servoing”: the sensor-based
algorithm translates puck states into an on-line reference
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trajectory for the robot controller via a carefully choscn
nonlinear function. Thus, the robot is programmed using
a mathematical formula rather than an expert system

or some other “syntactic” means, an approach we have
come to call “geometric robot programming.”! It succeeds
over a wide range of initial puck locations and recovers
gracefully from unexpected perturbations of the puck
states during flight.

This article reviews the experimental setup and abstract
theory we have devcloped. It describes the geometric con-
structs underlying the mathematical formulas that make
up the robot’s “program.” It presents raw data as well as
statistical summaries from extensive experiments attesting
to the physical validity of this new class of algorithms
that we call “mirror” laws. Beyond the level of simple
visceral pleasure afforded by machine juggiing, we be-
lieve that the experiments and mathematical reasoning
presented here offer the rudiments of a general approach
to many other classes of robotic tasks. It seems worth
pausing to motivate such claims before proceeding with
the subject proper.

1.1. Geometric Robot Programming

A central theme of this article (and, indeed. of our gen-
cral program of research in robotics [Koditschek 1986,
1987 Koditschek and Rimon 1990]) is the desirability of
translating abstract user-defined goals into phase space

1. There is no relationship with the geometric programming technique for
solving algebraic nonlinear programming problems.
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geometry for purposes of task encoding and control. A
number of advantages arise from the absence of logic
implemented in some more or less formal syntax. First.
physical robots and the environments within which they
must operate are dynamic systems. Their coupling via
functional relationships—in this case, the mirror algo-
rithm—admits some possibility of correctness proofs (as
evidenced below). while the recourse to syntactic pre-
scriptions all but eliminates that hope (for example, sce
the related discussion by Andersson [1989]). Second,
there is good reason (o expect that careful attention to
the (provable) geometric invariants of a particular task
domain will reveal general propertics required of any
successtul controller. These would need merely be “in-

stantiated™ by the appropriate change of coordinates (for
example, as in Koditschek and Rimon [1990]). thereby
solving an entire range of problems with one controller
structure. Although properly modular software is reusable,
one is hard pressed to imagine a careful study of the code
itself revealing which modules are essential. Furthermore,
we have consistently experienced less brittle modes of
failure and decreased sensitivity to modeling errors in
experiments using geometrically expressive control al-
gorithms when compared with experiments with more
syntactically expressive laws. The insensitivity to noise
and unexpected perturbations and the strong stability
properties of our juggling algorithms arc apparent from
the experimental data presented in Sections 2.4 and 3.
Finally, the gcometry is intrinsic to the problem and docs
not commit the controller to a particular computational
model. Logical statements, in contrast. are intimately
wedded to a discrete symbolic model of computation that
best fits a digital computer equipped with a computer
language. However. the contemporary hegemony in in-
formation processing of digital computers may represent
a brief interlude in the history of technology. Morcover,
those roboticists who look to biologic systems for in-
spiration (or who, more radically, treat their robots as
plausibility models of biologic organization) will surely
not be content with the grip of logic and syntax on their
field.

The apparent disadvantage of geometric task encoding
relative to syntactic prescriptions is a dramatic reduc-
tion in ease of cxpression. Regardless of whether the
robot’s and environment’s dynamics will “understand.”
at least we think we know what we mean when we write
down if-then-else statements in our favorite program-
ming language. Thus, a central aim in the presentation
that follows is the demonstration that even complicated
goals involving some combinatorial component (as docs
the two-juggle in Section 3.1) may be readily expressed
via the appropriate geometric formalism. The intuitively
generated extensions to the fundamental mirror algorithm
of Section 2.4 described and tested in Section 3.1 and 3.2
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have as yet no better claim to analytical origins than any
old computer program. But. by the same measure. their
generation has been no more arcane than writing code in
any new computer language.

We do not seriously cxpect that atl robot tasks at any
Jevel can or should be forced into the geometric formal-
ism developed here. However, we feel that this approach
is particularly suited (o robotics in an intermittent dy-
namic environment.

1.2. Intermittent Dynamic Environments

There is a large and important range of robotic prob-
lems requiring interaction with physical objects governed
by independent kinematics and dynamics whose char-
acteristics change subject to the robot’s actions. The

first systematic work in this task domain has been the
pionecring rescarch of Raibert (1986). whose careful ex-
perimental studies verify the correctness of his elcgant
control strategies for legged locomotion. McGeer (1990)
has successfully used local linearized analysis to build

a passive (unpowered) walking robot and believes that
similarly tractable analysis should suffice for controlling
running machines as well (McGeer 1989). Wang (1989a)
has proposed using the same local techniques for studying
open-loop robot control strategies in intermittent dy-
namical environments, although his ideas remain to be
empirically verified. Research by Aboaf et al. (1989) on
juggling suggests that task level learning methods may
relieve dynamics-based (or any other parametric) con-
troller synthesis methods of the need to achieve precise
performance requirements once a basically functioning
system has been ensured. Thus, increasing numbers of re-
searchers have begun to explore the problems of robotics
in intermittent dynamic environments with increasingly
successful results.

Our work is principally inspired by Raibert’s success
in tapping the natural dynamics of the environment to
achieve a task. We have previously shown via an analysis
similar to that reviewed in this article (Koditschek and
Buehler 1991) that a greatly simplified version of Raib-
ert’s hopping algorithm (Raibert 1986) is correct. Thus,
convinced of its value, we have borrowed Raibert’s idea
of servoing around a mechanical energy level to produce
a stable limit cycle and will demonstrate later that this
procedure accounts for the success of the fundamental
mirror algorithm as well. Its extension to the problem of
juggling two bodies simultaneously may. in turn, have
significance with respect to problems of gait in legged
locomotion. Presumably, our robot “settles down™ to a
characteristic steady state juggling pattern, because that
pattern is an attracting periodic orbit of the closed-loop
robot-cnvironment dynamics. Very likely, similar “nat-
ural” control mechanisms would make good candidates
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for gait regulation. We have proven only that this pre-
sumption is correct for the case of a singic puck on our
juggling plane. The proof of the two-puck case is the log-
ical next step. Establishing the formal connection to gait
mechanisms will obviously require more work.
Furthermore, we believe that the successful control
by a one-degree-of-freedom robot of a two- and a four-
degree-of-freedom intermittent dynamic environment has
implications for general robot manipulation of objects
in the absence of “guarded moves.” Prior to the static
grasp phase, wherein the myriad robot degrees of freedom
may be simultaneously engaged to control a (typically)
six-degree-of-freedom object, there must be a “fumble”
phasc—a series of controlled collisions involving unpre-
dictable combinations of the robot link surfaces and the
surfaces of the object. During a fumble. far fewer robot
degrees of freedom may be engaged with the environ-
ment, and only intermittently. We show by experiment
later (but have not yet formally proven) that a variation of
the mirror algorithm used for juggling results in a quick.
stable “catch.” Moreover, by “juggling” the puck into a
specified orbit, a catch may be effected at any portion
of the robot’s link surface. Mason and colleagues have
carefully studied manipulation involving impact with a
dynamic environment (Mason 1986: Taylor et al. 1987;
Wang and Mason 1987) and have recently begun the
study of impacts with intermittent dynamic environments
in the absence of sensors as well (Erdmann and Ma-
son 1986: Wang 1989b). There is presumably a clear
relationship between these theories: its elucidation would
strengthen the applicability of cach.

1.3. Organization

This article is organized as follows. Section 2 summarizes
our analytical and experimental results concerning the
original mirror algorithm that achieves a simple vertical
one-juggle. Much of the material has appeared in other
publications, to which we will refer where appropriate.
The central contributions of this article are made in Sec-
tion 3, where we describe work in progress generalizing
the original algorithm. We present working mirror-like
algorithms for juggling two pucks and for catching falling
objects, all with a one-degree-of-freedom revolute actua-
tor.

2. The Mirror Algorithm for a Vertical
One-Juggle

This section summarizes work reported elsewhere

(Buehler ct al. 1989. 1990) concerning the fundamental
mirror algorithm. Section 2.1 presents our experimental
setup and a simplified mathematic model. In Section 2.2
we state the task as an “environmental control problem”™

-—
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Fig. 1. The planar juggler.

that cnables us to posc and solve robot juggling tasks as
formal problems in control theory. This analysis, we feel,
is central to understanding how robotic tasks in this do-
main may be planned and effected. In Section 2.3 we first
introduce the vertical one-juggle task. We then demon-
strate that. assuming the availability of state information
at cach successive impact, it is achievable via a lincar
feedback control law. based on the discrete contact state
measurements. In Scction 2.4 we will develop, for pur-
poses of robot implementation, a vastly superior control
strategy that uses continuous free flight information about
the body. After a summary of analytical results show-

ing that this new strategy—the “mirror algorithm™—is
correct, we present experimental data of working one-
juggles.

2.1. Robot and Environment Models

The experimental apparatus consists of one puck (or two
pucks, for the two-juggle as described in Section 3.1),
which slides on a plane, inclined 30 degrees away from
the vertical line, and is batted successively by a simple
“robot”: a bar with billiard cushion rotating in the jug-
gling plane as depicted in Figure 1. The entire length of
the robot bar can interact with the puck. All sensor and
controller functions are performed by a four-node dis-
tributed computational network formed from the INMOS
Transputer-based Yale XP/DCS control node (Buehler

et al. 1989). Implementation details describing how the
computational resources are mapped to the mechanical
hardware can be found in Buehler et al. (1989, 1990).

A puck trajectory with puck-robot collisions is de-
picted in Figure 2. The full puck state vector is denoted
by w = (b.h) € W, where b 2 (b1, 5] represents the
location of the sliding puck with respect to the inertial
reference frame, F, located at the center of the motor.
The robot’s angular position and velocity are denoted
by r and 7, respectively. Throughout the article. puck

Buehler et al.



Fig. 2. The impact event. This illustration shows the rel-
evant variables for developing the discrete map between
successive robot-puck impacts and the one-juggle mirror
law. The robot consists of a motor, located at the inertial
frame F, and a hitting bar, depicted by the long solid
line. For illustration, several pucks are shown at different
positions along a hypothetical trajectory.

or robot states are meant to be either continuous or dis-
crete— evaluated just before impact. If the nature of the
states is not obvious from the context, it will be made
explicit (i.e., w(t)). State measurements taken just after
impact will be primed (i.e., b).

To obtain an analytically tractable dynamic model that
maps the puck states just before one impact into the puck
states just before the next impact, we make a variety of
simplifying assumptions: First, we assume that the puck-
robot impacts occur instantaneously and can be described
via a coefficient of restitution law that takes the a priori
puck-robot states just before contact, into the new puck
velocity vector after contact b ((b. ), (b, 7")) derived care-
fully in Buehler et al. (1990) and Buehler (1990). Next,
we will idealize the sliding puck to be a point mass and
neglect the width of the robot link as well. Finally, fric-
tion is neglected. In reality, there is noticeable friction on
the sliding plane, and we will compare numeric simula-
tions of the robot control laws in the idealized frictionless
environment with the same strategies run in the more re-
alistic simulation model with coulomb friction, as against
empirical data.

The future trajectory of the puck subsequent to an m-
pact event may now be readily derived (as a function
of the puck-robot states just before impact, w, the robot
velocity at impact, 7, and the time of flight, £) by in-
tegrating the free flight model starting with the initial
conditions just after impact, w = (I)/.i)/), as

b+ b ((b, ), (b, 7")) t+ %uf,z

i ((b, ). (b, f')) + at (h

w(t) =

Here a = |0, —~]%, and ¥ = ~grav sin /3 denotes the
projection of the gravitational constant of acceleration,
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Yerav~ ONLO the sliding plane inclined away from ver-
tical by the angle 4. For a more complete discussion
and formal derivation of this model, we refer to Buehler
et al. (1989). The vindication of our claim to have re-
tained the essential aspects of a robot and environment
whose dynamics are intermittently coupled is only pos-
sible by recourse to physical experiments, which will be
provided in Section 2.4.2.

2.2. The Environmental Control Problem

The robot can determine where (or, equivalently, after
how much clapsed time since the previous impact. 7.
now denoted ;) to hit the puck and with what linear
velocity (||b]l7, now denoted ) the impact should occur.
In the mean time, the puck’s behavior cannot be altered.
Thus, on the most fundamental level, the robot’s two
actions represent the only means of imposing control on
its environment. We may now investigate the response
of the puck to all logically possible impact events by
examining the environmental control system whose
inputs are the puck states just before impact w, together
with the robot’s abstracted actions, u = fuy.ua ]t € U, and
whose outputs are the puck’s state just before the next
impact, f(u,u). In other words. we treat the robot as an
independent external “agent of control” and consider the
various puck behaviors resulting from the robot’s actions.
The resulting formal discrete dynamic control system

wip = flwg,ug),

is derived by substituting the robot’s inputs at impact into
(1),

. b4 b (o, u)t + Sau?

flw,uw) = o ( 2) 20T (2)

b (w, up) + auy

This represents the underlying physical model with re-
spect to which the robot’s behavior must be rationalized.
Formally, an environmental control problem results from
prescribing some desired sequence of puck states,

{w; };i()’

and asking for an impact sequence,
e ¢
{ U }J—,() °

which results in asymptotic convergence of w; to wj.
Since we are interested in sensor-based manipulation,
we focus on solving such problems with feedback-based
controllers. Although we prefer to avoid time-varying
controllers, there is no a priori objection to dynamic con-
trollers. In practice, the memoryless control structure
presented here suffices for all the tasks we have encoun-
tered to date. Thus, a robot feedback strategy is a map,
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g W — U, from the body’s state to the robot’s action
set, U, resulting in the impact strategy u; = g(w;). The
robot-environment closed-loop dynamic system is formed
from the composition of f (2) with g,

folw) 2 flw, g(w)). (3)

Wiy = fg (“(j )

2.3. The Vertical One-Juggle Task

Probably the simplest systematic behavior of this envi-
ronment imaginable (after the rest position), is a periodic
vertical motion of the puck in its plane. Specifically, we
want to be able to specify an arbitrary vertical puck im-
pact velocity (and thus an apex position) together with a
vertical impact position and, from arbitrary initial puck
conditions, force the puck to attain a periodic trajectory
that impacts at zero vertical position and passes through
that apex point. We call this task the vertical one-juggle.
Such tasks are exactly represented by the choice of a
desired fixed point, w*, of (2) (for a more formal task
definition, see Buehler et al. [1989]). Note that a purely
vertical steady-state trajectory along a desired horizontal
position b} requires zero horizontal velocity, b =0,
throughout the puck’s continuous trajectory including the
moment of impact. Moreover, a fixed vertical impact ve-
locity, b,", from a specified impact height, b3, implies a
specified apex position by conservation of energy during
the free flight phase. Thus, a putative fixed point, w*,
whose horizontal velocity component and vertical posi-
tion component are set to zero corresponds to a specific
vertical one-juggle.

It is clear that not every constant set point, w*, can be
made a fixed point of the environmental control system
(3). The allowable vertical one-juggle set points are deter-
mined by the fixed points of the discrete impact map, f,.
In this fashion it can be shown (Buehler et al. 1989) that
only set points with zero vertical puck position and zero
horizontal velocity can be made fixed points. However,
it is not enough to merely achieve a vertical one-juggle
fixed point. We must also ensure that perturbations away
from the desired behavior are dissipated. We show in
Buehler et al. (1989) that at any fixed point of (3), the
system (2) is controllable. Therefore, it follows from lin-
ear control theory that any vertical one-juggle fixed point
of (3) can be made locally asymptotically stable by a
(discrete) linear affine state feedback law,

glw) 2 u” + Ka(uw — w*). (4)

Here, (w — w™) denotes the vector of puck state errors
at impact, /5 a matrix of feedback gains, and u* the
robot control inputs resulting from the fixed point condi-
tion. Thus we have shown that the vertical one-juggle is
logically achievable.

This discrete analysis confirms the intuition that onty
state information at impact should be required for a suc-
cessful juggling algorithm and that full trajectory infor-
mation is redundant. Conceptual appeal notwithstanding,
in reality, state information at or very near the impact
event is exceedingly difficult to measure. Moreover, we
have said nothing yet concerning the ability of the robot
to realize any particular feedback strategy, g, much less
one that stabilizes a desired set point, w*. Recall that g
merely specifies discrete robot control inputs at impact. It
is completely up to the designer to solve the robot con-
trol problem (i.c., to construct a continuous robot torque
command that achieves an approximation to the required
impact strategy, g). Finally, employing affine feedback (4)
guarantees only local asymptotic stability. It is not clear
how to enlarge the domain of attraction around the fixed
point sufficient for the appropriate equilibrium state to
be observed in the physical world. In a previous arti-
cle (Buchler et al. 1988) we have reported our failure to
achieve experimental success with any implementation
of a locally stabilizing feedback strategy (4) based on
discrete impact state measurements for these reasons.

2.4. The Mirror Algorithm

We now introduce the mirror algorithm, which remedies
the shortcomings of the algorithm described in the pre-
vious paragraph. In Section 2.4.1 we provide an intuitive
motivation for the mirror law and review our analytical
results concerning this algorithm. Next, Section 2.4.2
attests to the empirical relevance of our findings.

2.4.1. Intuitive Motivation and Formal Results

Intuitively, two different ideas are combined to produce
an algorithm that is implemented by recourse to standard
trajectory tracking techniques. First, we “reflect” the con-
tinuous puck trajectory in w(t) into a “distorted mirror
image” reference trajectory 4 for the robot that is “fa-
vorable” to the task at hand. In the specific case of our
planar juggler, as depicted in Figure 1, the robot is forced
to track the distorted “puck angle”

bv
# = arctan =,
1

to control the puck’s vertical motion,
N
) = —k(w)f + Ka(w). (5)

modulo a proportional-derivative (PD) feedback term for
stabilization around a fixed desired horizontal position,
by, b7 =0),

ka(w) = Ka1(by — b)) + Kaaby. (0)
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Both k>, and k> are constant gains. In the sequel we will

assume that the robot r tracks the reference trajectory i

sufficiently accurately and thus will assume that » = ..
Second, to stabilize the vertical periodic motion. we

borrow from Raibert (Raibert 1986; Koditschek and

Buehler 1991) the idea of modifying the robot’s tra-

jectory by “servoing” on the discrepancy between

the puck’s currently measured total mechanical en-

ergy (constant during flight. as we neglect friction)

n(bho, by) = %b; + by, and its value at the desired steady

i A
states n(b3.b3) =", ¢, =n" — .

A
Ki{w) = Ko + Ky (7)

Here 1y is determined by the fixed point condition, and
iy i again a fixed constant gain. The gain function

ry(w) directly modulates the robot’s vertical impact ve-
locity, as can be seen when taking the derivative of (5),

F= fi(w) = —r (), (8)

assuming no horizontal position error and no horizontal
motion. Deviations from the desired vertical total energy
result in higher or lower robot impact velocities, forcing
the puck trajectory onto the desired set point. Similarly.
the PD term (6) translates horizontal position and velocity
errors into impact angle offsets from the (otherwise) zero
impact angle, thus creating restoring horizontal velocity
components. The coupling effects between these two
stabilizing mechanisms are trcated as perturbations. A
more complete intuitive account of this mirror algorithm
is provided by Buchler et al. (1989, 1990) using the one-
degree-of-freedom juggler restricted to the vertical line.

As a consequence of choosing a smooth function for
our control law (5), a stability analysis of the resulting
four-dimensional nonlinear closed-loop system is pos-
sible. It turns out (Buchler et al. 1989, Proposition 5.3)
that the robot’s “mirroring” motion induces a three-
dimensional invariant submanifold of the environmental
control system (2). Therefore, (Buchler et al. 1989, Corol-
lary 5.3) the local stability behavior of any valid vertical
one-juggle task, w*, may be adjusted by the appropriate
choice of gains in (5).

Although this result obtained from the linearized sys-
tem provides a formal proof of correctness of the mirror
algorithm, it does not furnish a characterization of the
domain of attraction. Such information is very important,
as local stability by itself does not guarantee a successful
practical implementation without a sufficiently large basin
of attraction. While a nonlinear analysis of the planar
juggler operating under the mirror algorithm is presently
incomplete, we have achieved the analogous result for a
simplified version of our juggler: a one-degree-of-freedom
robot operating in a one-degree-of-freedom environment
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{Buehler and Koditschek 1990). These results provide
us with more insight into the qualitative behavior of the
higher dimensional system and might suggest how to
achieve the nonlinear analysis.

2.4.2. Empirical Verification

We now present a direct application of the mirror al-
gorithm for the vertical one-juggle implemented by the
revolute robot in a two-degree-of-freedom environment.
The horizontal impact position and the apex point (via the
vertical impact velocity) of the desired vertical one-juggle
are determined by the selection of an appropriate fixed
point. In all the data displayed below, we have chosen?

b 0.28 m
x 0 0
u = 0 = 0
by ~3.175 m/s

The analytical results guarantee that for this fixed point,
the vertical one-juggle task is achievable, and they reveal
how to choose the specific gain settings to keep all poles
inside the unit circle.

Figure 3, a “recording” of a successful vertical one-

juggle, nicely depicts the rapid convergence for initial

conditions (in drop-off position) from a large region
within the puck’s workspace. Since the global analysis

is still incomplete, we have not tested the exact extent of
the domain of attraction. It is likely, as in the one-degree-
of-freedom case (Buehler et al. 1990) that «* is not, in
general, globally asymptotically stable. Notice that, even
at steady state, the impacts do not occur at zero height,
but rather at a fixed offset: this is due to the nonzero
puck radius and the robot dimensions, which were ig-
nored in the simplified model but taken into account in
the implementation. Despitec many departures from the
idealized model and the relatively large sensor noise, it
may be observed from this and the subsequent plots that
our algorithm produces steady, reliable juggling perfor-
mance. We have recorded vertical one-juggle runs with
hundreds of impacts.

Next, we present data plots of the puck states just be-
fore impact. These figures display statistical information
(mean and standard deviations) obtained from onc single
sequence of 20 successive runs (without hand selection).
Figure 4 compares the responses of the analytical model
with and without friction with the responses of our ex-
perimental sctup (with friction) for two different initial
conditions. These two initial conditions for the puck
impact states result from dropping the puck from two

2. These and subsequent numeric set points seem “odd™ because they have
been converted from nonmetric units: our qualitative results do not depend
critically (as some readers might suspect) on these exact numeric valucs.
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Fig. 3. Sample continuous data. A qualitative continuous
“recording” of a vertical one-juggle that illustrates the
rapid convergence to the desired periodic motion for even
large inital errors.

extremes of the right juggiing half-plane. the upper left
(initial condition 1) and the lower right corner (initial
condition 2). The steady-state values in the horizontal po-
sition, by, are very close around the desired value for all
three curves. The plots of the vertical impact velocity, bn.
exhibits that first, as expected. the effect of the unmod-
cled friction is a steady-state deviation, which, second. is
accurately predicted by a simple one-degree-of-freedom
model for the vertical motion augmented with friction.
Examining the transients, notice that the experimental
transient responses for by (lower plots) consistently match
the responses of the model with friction, as expected.
However, for by (upper plots). the experimental transient
responses are closer to the much faster transient model
responses without friction than to those of the model with
friction. The main reason for this benign discrepancy

is that our apparatus’ friction dynamics are more com-
plicated than our computcr model. While at the higher
vertical velocities the dry friction model is fairly accu-
rate, the actual friction at the lower horizontal velocities
is much smaller than modeled. This explains why the
transients in horizontal impact positions are closer to the
model without friction than to the one with friction.

3. Applications

We now present two informal modifications and exten-
sions of the provably correct vertical onc-juggle algo-
rithm described in the previous section. First, the vertical
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Fig. 4. One-juggle impact data. Here simulations are
compared with statistical experimental data of one-juggle
runs. We show the mean and standard deviation derived

from 20 successive experiments. The upper plots contain

the initial transients in horizontal impact positions and
the lower plots in the corresponding vertical impact ve-
locities. For the left two plots. the puck was released from
a position on a juggling plane to the left and higher com-
pared with the desired apex position. In contrast, for the
right two plots, the puck was released to the right and
lower compared with the desired apex position.

two-juggle task discussed in Section 3.1 introduces new
aspects of timing and combinatorial choice to the prob-
lems of intermittent dynamic cnvironments that we feel
are closely related to issues of gait regulation in legged
locomotion. The catch task discussed in Section 3.2 has
significance for the “fumbling” stage of dynamic robot
manipulation. Beyond the intrinsic interest of both ex-
tensions, their presentation affords the opportunity for
a more detailed examination of the gecometric program-
ming methodology implicit in the original mirror law as
described in the introduction.

3.1. The Two-Juggle

Our first—and most obvious—generalization of the one-
juggle is the “two-juggle’™: the task of simultaneously
maintaining two vertical one-juggles. One puck is juggled
on each side of the robot actuator in a specified periodic
orbit via repeated impacts. A successful two-juggle al-
gorithm must intermittentty control the horizontal and
vertical impact positions and vertical impact velocities of
the two pucks and their phase angle separation and, in
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addition. must resolve the onc-degree-of-freedom robot’s
kinematic restrictions. In this section we will describe
how the one-juggle mirror algorithm can be extended (o
achieve the two-juggle. The resulting algorithm maintains
the pure geometric features of the original mirror law

in that it maps the continuous phase space trajectory of
both pucks into a reference trajectory in the robot’s phase
space. There is no explicit use of time, and there is no
logical syntax. The extended algorithm experimentally ex-
hibits global convergence and robustness properties in this
four-degree-of-freedom case similar to those of the orig-
inal mirror algorithm in the two-degree-of-freedom casc.
We suspect that a very similar analysis will go through

as well but have not yet attempted a rigorous stability
investigation. Moreover, as stated in the introduction,

we anticipate that some of the insights developed here
will generalize to the problems of active gait stabilization
in legged locomotion. We are presently pursuing these
connections.

3.1.1. Extending the Mirror Law

The two-juggle task can be loosely described as follows:
Perform two one-juggles, uy and w,., one on the left and
one on the right half of the juggling plane. Here and in
the sequel., the subscripts [, and 7 denote quantities as-
sociated with the left and right puck, respectively. As
before, the individual one-juggles are encoded via the de-
sired constant sequence of puck impact states just before
impact,

—by by
0 0

wl = 0 Lo, = E 9)
f)§ i)§

As the two one-juggles cannot be controlled indepen-
dently by the one-degree-of-freedom robot, (9) is not yet
a complete task definition for the two-juggle. An added
“phase angle relationship” between the two one-juggles

is needed. For simplicity, we shall specify for this initial
implementation that alternative impacts occur maximally
separated in time. However, time can be eliminated by
the following specification in puck phase space: when one
puck impacts, the other puck attains its apex.

There is a provably correct and empirically verified
mirror law, 4 2 JUCN I 2 pi(ae,), (5) for each puck.
An obvious approach to the two-juggle problem is to
prescribe a weighting rule by mecans of which the robot
can decide which mirror law is more critical at any time.
Two distinct issues arise in the determination of a viable
weighting rule: what to do in an emergency situation
when both pucks are roughly cqually needy of attention
at once: and what to do when the pucks are reasonably
well separated in phase angle 1o keep them away from the
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Fig. 5. The phase angle (illustration). The puck flight
trajectories for three different total energy levels ny. 12,73
are shown in the phase plane. The dashed lines indicate
lines of equal phase angle € (10). It maps a puck flight
trajectory between two impacts onto the interval (—1,1)
in a geometric fashion and independent of the total puck
energy.

emergency situation. We loosely refer to the first as the
global phase angle problem and to the second as the local
phase angle problem.

The Local Phase Angle Control Problem. The puck
phase angle is a purely geometric measure (without dy-
namics and use of time) that indicates how much of the
total vertical trajectory between two impacts has been
traversed. It will form the basis for the phase angle error
used to keep the puck’s impacts equally separated in time.
To decouple the control of the phase angle, its measure
should not depend on horizontal position or total verti-
cal energy 7. Those quantities arc already controlled by
the existing one-juggle mirror law. One such phase angle
measure,

AN i)g

B 20

maps any puck trajectory onto the interval (—1.1) be-
tween impacts and evaluates to 7ero at the apex. More-
over, its time derivative is constant. The phase angle

is illustrated in Figure 5, which shows threc puck tra-
jectories with different total energy levels 7y, 72,73 and
some “equi-phase angle” level lines from just after im-
pact (¢ = —1), to the apex (¢ = 0), to just before impact
(¢ = 1). The phasc angle takes advantage of the fact that
all impacts occur at or close to 7ero height. The meaning

(10)

I3
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of the mapping (10) becomes immediately clear when one
considers the ideal casc without friction. Now the total
vertical energy between impacts w; (the energy just af-
ter the jth impact) and 1w, (the energy just before the

J + Ist impact) is unchanged,
/ | 21y I./,
ity = (t;) = ;})Q_J‘ +gba; = ;[)3:,' =nl;).

Therefore, in the absence of friction,

i)z (”)
€ = ————.
Hbz._,‘”

Here, b» is the continuous puck vertical velocity, and
blznj is the puck velocity just after the previous impact.
This representation illustrates more directly than (10) the
mapping between the puck trajectory and the (—1, 1) line
segment but has the drawback of depending on single
discretc measurements of f);. In addition, (10) still maps a
puck trajectory onto the complete (—1, 1) interval even in
the presence of friction—that is, when the total energy is
not preserved.

A geometric version of the phase angle error built
from this function,

epn () = [e(uy) — ((u,v,.)]2 -1, (12)

vanishes when one puck is at apex and the other is very
near (either just before or after) an impact. The farther
away the two pucks are from this desired phase angle
separation, the larger the phase angle error grows, as
illustrated in Figure 6, with two pucks’ trajectories with
significant phase angle error.

We will now describe how the phase angle error quan-
tities can be used to tune the robot impact velocity to
achieve the desired phase angle separation. When the
pucks arc well separated in phase angle, then their con-
flicting mirror laws may be relatively easily satisfied one
at a time. Thus, it makes intuitive sense to allow the
robot to track the original mirror algorithm only when
epn 18 close to zero, or ¢lse to force it back toward zero
even at the temporary expense of the accuracy of either
puck’s vertical one-juggle. The phase angle is changed by
tuning the puck’s flight time. The flight time, in turn, is
modified via the robot impact velocity. This mechanism is
used already to stabilize the vertical one-juggle (8). The
phase angle crror term may now, in the same fashion, be
added to the original mirror algorithm gain (7):

kG, un) = ko + ke, (@) + ke (o w,),

where w are the continuous puck states for the left or
the right puck in the mirror law for the left (;1;) or right
puck (1), respectively. The local phase angle control
gain k> is determined empirically. The remainder of the

o
1

(m/s)

Velocities

Puck

Vertical

Puck

Fig. 6. The phase angle error (illustration). A phase an-

Positions (m)

Vertical

gle €1, ¢, Is assigned to the left and the right puck, re-
spectively. Now the phase angle error Cpn = ¢ — el —1
represents a geomeltric measure for how far the two
pucks’ trajectories are away from the desired phase
angle relationship: when one puck impacts, the other
should be at its apex. The figure shows six successive
snapshots of a right and a left puck on trajectories with
different total energies and a phase angle error. A pair
of a right and a left puck belonging to the same snapshot
are linked by a solid line. In addition, the numeric value
shows the phase angle evaluated ar that time. When the
left puck impacts, e, is negative (—0.84), and when, af-
ter two more time steps, the right puck impacts, e, is
positive (+1.9). Thus ¢,,;, can be emploved in the mwo-

Juggle mirror law to modulate the robot’s hitting velocity,

which affects the flight time, to achieve the desired phase
angle.

original one-juggle mirror algorithm (5) is unchanged.
Unfortunately, as ¢, # 0, it follows that &; # 0. and thus
(for simplicity., along the desired horizontal position) the
desired robot velocity just before impact is

[1 = */\,‘12(’7)},9 - }L|9

The first term on the right side seems to affect our abil-
ity to control the robot impact velocity solely via &y as
before. Fortunately, the cffect of the first term is § depen-
dent and thus small for small puck angles ¢ (that is, close
to impact). The implementations confirm the validity of
this crude argument.

The Global Phase Angle Control Problem. When both

pucks are falling toward the bar nearly at the same time,
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it is imperative to service the nearest first, sacrificing any
needed one-juggle performance measures to the work of
restoring phase angle separation. This intuition can be re-
alized by assigning an urgency measure to cach individual
one-juggle. While there are many ways to implement this,
we will again choose geometric programming and encode
this urgency measure as a continuous “weighting func-
tion” in puck phase space. A simple weighting function,
o, maps the puck’s vertical position and velocity into the
unit interval, increasing from zcro to one and evaluating
to one half at the distance p from impact:

ag(u) = ap(u)o-(w),

!

1
ay(w) = 5= = arctan| ky,(by — p)l,
e i

1 i )
ay(w) = = + —arctan[k,(—b)].
2 7

The position weight function o constitutes the heart of
the global phase angle separation. With p and £, k. set
properly, it evaluates to one in the vicinity of the robot
and decreases to zero farther away. Using a simple ver-
tical distance works out well because of the simplifying
fact that impacts occur close to &, = 0, even when the
puck’s horizontal position and velocity errors are nonzero.
While we based the smooth weighting functions on arctan
functions, other equally well-suited approaches could
employ, for example, the very similar sigmoidal function

1
l+e "

The velocity weight function ¢, scales ; in a smooth
fashion such that weight is assigned only during the de-
scending part of the puck trajectory. The function s then
normalizes the contributions of o(uy) and o(w,), mediat-
ing between the two reference trajectories from the two
puck’s independent one-juggle algorithms:

N auwy)
o) + rr(u',.)'

The Extended Mirror Law. Combining the two ap-
proaches to the local and the global phase angle control
problem, the mirror law extension for the two-juggle may
now be written as

Hojug = 5 pwy) + (1 — ) ple,). (13)
In the case of good phase angle separation, each puck
gets “full attention” from the robot close to impact. If
the phase angle separation is not good, both pucks can
be close to impact simultancously, and thus both o(uy)
and o(w,) can approach one. In this case both mirror
algorithms p(uy) and p(w,) will contribute to the robot
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Fig. 7. Continuous vertical positions of the two-juggle.
This qualitive continuous “recording” of a two-juggle
illustrates its strong stability and robustness properties.
During the first 5s, large initial ervors in apex height and
phase angle are quickly eliminated. Then the right puck is
knocked away by hand before its apex. Again, this experi-
mental data plot shows the recovery from this unexpected
external disturbance. Notice that the right puck impacts
twice before the next left puck impacts. This is a com-
mon occurrence for such large perturbations but presents
no problem for the mirror law, as no assumptions about
alternating impacts are made.

reference trajectory in such a fashion that the puck closer
to impact recetves more weight. If both pucks fall iden-
tically in phasc angle at once (that is. it they possessed
the exact same trajectories, except for a sign reversal in
the horizontal position by}, f£>;,, evaluates to zero, and
the robot does not move at all. Both pucks eventually
come to rest. This failure mode is very rarely observed in
practice, as any small difference between the two pucks’
states contributes to the phase separation. In fact, we con-
jecture that this corresponds to an unstable fixed point of
the closed-loop system.

3.1.2. Discussion of Experimental Data

We implemented the two-juggle algorithm as described
earlier on our planar juggling apparatus. To provide
better qualitative insight into its convergence and ro-
bustness properties, we display in Figure 7 the vertical
positions, b» of the two pucks versus time (for simplic-
ity. not showing the horizontal positions, ;). They are
dropped simultaneously from slightly different initial
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heights. This results not only in initial errors in verti-

cal impact velocity (and thus apex). but also, as can be
clearly seen at the first impact, in almost simultaneous
impacts (large initial phase angle error). Subsequent im-
pacts display the recovery from both the error in phase
angle and the impact velocity. After reaching steady state.
the motion is drastically perturbed again. The arrow in
the plot marks the instance where the ascending puck
was knocked away by hand before its apex. The resulting
large velocity error (height) for that puck and the phase
angle error (very close impacts) are obvious from the
data. Again, steady state is recovered within roughly five
impacts per puck.

The plots in Figure 8 show the simultancous conver-
gence propertics of three initial errors in horizontal
impact positions, vertical impact velocities. and phase
angle error. Both pucks were dropped by hand simul-
taneously from their initial positions (h; = —0.356 m,
b, = 0.838 m and b; = 0.356 m, b = 0.965 m for the
left and right puck, respectively). During the following
100 impacts (50 per puck), each puck’s horizontal impact
position, by, the vertical impact velocity, h,. and the phase
error e,,;, were recorded. This was repeated for 32 runs.
Two runs were discarded because they failed during the
first five impacts. All other runs completed successfully.
From the completed runs we show the mean with error
bars indicating one standard deviation in both directions.
Also, to show the initial error transients more clearly, we
display only the first 30 impacts per puck. In Figure 8(1)
and 8(2) we see the convergence to steady state within
about five impacts for the initial transients in horizontal
impact positions. The offset for the left puck is readily
explained as a consequence of inaccurately modeling the
steady-state vertical impact position (which depends on
the amount the elastic billiard cushion is compressed).
Such modeling errors translate into shifts in horizon-
tal impact positions. Next, Figure 8(3) and 8(4) show
both puck’s convergence to the impact velocity predicted
by a simple one-dimensional model taking {riction into
account, in a similar fashion to Figure 4. Finally, Fig-
ure 8(5) shows that at the same time, the phase angle
error between the two pucks is rapidly eliminated. In all
the plots, the standard deviations, after some increase
during transients, stay fairly constant.

In addition to the displayed convergence properties,
this algorithm has additional desirable attributes. It runs
consistently for hundreds and hundreds of impacts. No-
tice that (again, in consequence of the geometric nature
of the algorithm) at no point in time does it depend on
a single measurement of a discrete event, such as flight
time, impact position, impact phase angle error, or apex
positions. This results in a strong tolerance to noise and
measurement errors. Furthermore, during the two-juggle,
one or even two pucks can be manually halied and re-
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Fig. 8. Two-juggle impact data. The plots (1)—(5) show
how simultaneous initial errors in horizontal impact po-
sitions and vertical impact velocities of both pucks, as
well as an initial large phase angle error between the
two pucks, are eliminated. In addition, to demonstrate the
consistency of this performance, we show the mean and
standard deviation of 30 successive runs.

leased without causing the system to fail. When the first
puck is halted. the second one continues its motion: as
soon as the first one is released again, the two-juggle con-
tinues. All this is accomplished by no other means than
the relatively simple, smooth algorithm, (13), described
earlier. There 1s no additional higher level decision mak-
ing or conditional branching as found in implementations
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purely characterized by a computer program. Therefore,
not only simple and robust, this approach lends itself in a
similar fashion as the one-juggle (Buchler et al. 1989) to
rigorous analysis.

3.1.3. Alternative Extensions

There are many different approaches to the two-juggle
that we could have taken. In fact, the first working imple-
mentation of the two-juggle servoed around the error in
flight time. This error term entered the one-juggle mirror
algorithm in the same fashion as the phase angle error
term described earlier. The global phase angle separation
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was accomplished by simply switching s betwecn one
and zero at cach impact. While this resulted in a working
implementation that produced good steady-state regula-
tion. it suffered from a number of shortcomings that secm
{o be typical of algorithms that take time explicitly into
account. It had poor global angle phase performance:
emergency situations almost always caused a failure.
Morcover, the time-based two-juggle is much more brit-
tle: it cannot tolerate the removal of one or the other of
the pucks during a run as can the algorithm sketched
carlier. It relies strictly on the expectation that the two
pucks will impact alternately. Finally, while the purely ge-
ometric extension of the mirror law does not rely on any
single event measure, in the time-based version we must
accurately detect the impact events to determine the time
between impacts. In the presence of noise and measure-
ment errors, this leads to a more difficult and less robust
implementation. The scheme of switching the mirror laws
at impacts worked well at steady state, with both pucks’
phase angle well separated. [t failed with perturbations
of magnitudes as large as the ones displayed in Figures 7
and 8. The time between the two close impacts is much
too short for the robot to track the reference trajectory
sufficiently well to maintain the two-juggle.

3.2. Catching

We now provide a second application of mirror algo-
rithms to intermittent dynamic robotic tasks. We will
investigate a behavior opposite to juggling: the problem
of catching. The same notions of geometric programming
discussed in the previous section may be used to devise
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Fig. 9. The line-juggler.

a controller here. In contrast, since the catch is a non-
periodic behavior demanding a “dead-beat convergence”
capability, it seems clear that the asymptotic analysis we
have used to demonstrate correctness of the one-juggle
(Buehler ct al. 1989; Buehler and Koditschek 1990) will
not be of use. Thus, a theoretical treatment of these ideas
lies beyond the scope of the present article.

In Scction 3.2.1, we present a one-degree-of-freedom
definition of a catch. Section 3.2.2 describes its control
via a mirror law. This catching mirror law is then ex-
tended in Section 3.2.3 to the two-degree-of-freedom
casc for the same physical planar juggling apparatus that
was used to implement the previous juggling tasks. Ex-
perimental evidence of successful catches presented in
Section 3.2.4 attests to the validity of the ideas.

3.2.1. Definition of the Catch for the Line-Juggler

Denote by (b, by and (r.7) the puck’s and the robot’s posi-
tion and velocity in workspace, respectively, as shown in
Figure 9. For simplicity, both puck and robot are assumed
to be point objects. A sensible outcome of a catch could
be formally characterized as a stcady state for both puck
and robot contained in the “catch set,”

AL {((h, f)),(7’,7‘*)) b=y, b=r = ()} . (14
the points in puck-robot phase space with the same posi-
tion and zero velocity.

There exist at least two fundamentally different ways
to achieve the goal as stated in (14). First, it would be
appealing to treat a catch as a particular instance of a ver-
tical one-juggle whose apex point happens to be at zero
height. There are, however, two distinct problems with
this point of view. Operationally, the theory employed for
the analysis of the vertical one-juggle may fail, since a
vertical one-juggle set point with zero vertical velocity is

contained in a degenerate set whereon it is not completely
controllable. Moreover, the vertical one-juggle task is
defined in terms of asymptotic convergence to a fixed
point. However, in the present setting such an “asymp-
totic catch” (at least to an unspecified horizontal position
on the bar) obtains trivially from any initial condition
(by the strategy of commanding the robot gripper remain
stationary), since the coefficient of restitution is less than
one. Note also that this approach will work only if the
puck’s velocity vector is aligned with the gravitational
acceleration. Thus we are led to distinguish asymptotic
convergence to A from convergence in finite time: bor-
rowing from discrete-time linear control theory, let us call
the latter a “dead-beat catch.” We then need to refine our
previous definition (14) to exclude the asymptotic catch.
The dead-beat catch is characterized by two distinct
phases: the pre- and postcontact phases. Proceeding on
obvious heuristic ground, we shall define the precatch
phase via a velocity matching condition,

A E{(beb ) () b =70 b=}, (1)

where all states are evaluated at time of first robot-puck
contact, t = .. Specification of the postcontact phasc
appears to require a much more comprehensive model of
the force interactions between the robot and puck. For
example, recall that the juggling environment dynam-

ics (2) assumed a simplistic “coefficient of restitution”
impact model that will clearly be inadequate to describe
the mechanical impedance our billiard cushion presents
the puck’s mass during conditions of sustained contact.
Thus, any general notion of desirable postcontact behav-
ior scems hostage to the particularity of contact material
properties. Even given such a model, the specification
and control of postcontact behavior will likely depend
significantly on the sensory information (force. slip,
puck states). In the present article, we will concentrate
solely on achieving the pre-contact behavior-—a velocity
matching contact A’ —and move the puck to a desired
postcontact state while maintaining contact by recourse to
a simple (properly tuned!) PD controller.

3.2.2. The Dead-Beat Catch for the Line-Juggler

Motivated by the success of geometric programming of
a mirror-like robot behavior for juggling, here we use a
scaled-down or shadow-like image of the puck trajectory
to generate the online robot reference trajectory. Suppose,
without loss of generality, that the velocity matching
robot-puck contact should occur at b* = 0. Consider the
function of puck position via

({(b) = K arctan kb,

(16)

where #; and #» are constant gains. Forcing the robot to
track the trajectory that results from this function when
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the puck moves in space gives rise to a contact surface
whose geometry may be “programmed” to achieve the
desired behavior. Before demonstrating this. observe

that (16) enjoys two desirable features. It is smooth (in
fact, analytic), which both cases practical tracking re-
quirements and promises to simplify the eventual analysis
(which is not provided in this article). Moreover, it is
bounded and limits the robot position even in the case of
very large puck positions.*

Assume, as before, that the robot is able to asymptoti-
cally track the desired trajectory. and we will assume that
r(ty = p(b(1)). It is easy to see from (16) that contact
between robot and puck occurs whenever the puck passes
through 6 = b* = 0, provided ~, - x> < 1. Furthermore,
the velocity matching condition between robot and puck
at contact is satisfied whenever

(7

This can readily be derived from

o

==K ——7=0
/l Iy Kb

»

and

o = (b, = b = 0) = K kb,

Thus the catching mirror law (16) together with the ve-
locity matching condition (17) will result in a successful
precontact phase A'. The freedom left in satisfying (17)
translates into a tradeoff between the maximum robot
position for large puck distances versus tracking require-
ments close to contact.

3.2.3. Extending the Catch Mirror Law for the Plane-
Juggler

The simple-minded but effective approach to catching de-
scribed earlier can readily be extended to achieve catch-
ing on the plane-juggler in our laboratory, as shown in
Figure 1. We now replace the puck position in (16) with
the puck angle, 8(b) = arctan b, /b,. to obtain the planar
catching algorithm,

[t = Ky arctan Kaf. (18)
As before. the contact should occur on the horizontal
line; thus. if the robot tracks its trajectory correctly, then
contact will occur at the specified vertical position. There
is no specification of horizontal position, since the robot
can catch along its entire link. Thus, we must ensure
that the precontact conditions (15) obtain at any contact

3. We have chosen the arctan function here, but many others, for example,
the sigmoidal function t/(1 4+ ¢ ?yare eligible as well.
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configuration (that is, in spite of any nonzero horizontal
puck velocities). This follows from direct computation,

!

’.,(' = /.['(' = Ry T@HZ ’ ()( = Hl/“'z()('- (19)
which gives the velocity matching condition,
Fo =0, (20)

at 6. = 0, whenever 1k = 1.

With a mind toward eventual applications to general
robot manipulation, we now point out that the two task
capabilities—the vertical one-juggle and the dcad-beat
catch—offer a general means of rapidly transferring the
body from one rest position (or, for that matter, any initial
state on the juggling plane) to any other rest position
on the robot’s bar. Namely, given a desired steady state
in A", one commands a vertical one-juggle to any point
whose horizontal component matches that of the desired
catch point. After the puck settles down to its steady-state
trajectory corresponding to the task point (theoretically,
after an infinite amount of time; in practice, after four or
five impacts), onc commands a dead-beat catch.

3.2.4. Discussion of Experimental Data

This section presents experimental catching data from our
planar juggler using the catching mirror law (18). Fig-
ure 10 shows the vertical puck positions in the course of
a typical puck transfer routine as described in the pre-
vious paragraph. The circle at the beginning of the data
plot represents a realistically scaled puck with a diam-
eter of 7.5cm. The plot displays the last three impacts
produced by the juggle law (5). After the last juggle
impact at about 2.6's, the robot executes the catching al-
gorithm (18). The plot displays an offset of about 12.2cm
because of the finite size of the robot’s link and nonzero
puck diameter. which we have ignored in the discussion
heretofore for ease of exposition. It is worth mentioning
that the ripples in the displayed trajectory demonstrate a
systematic measurement error introduced by the inductive
position sensing method (the actual trajectory is much
smoother). The error is periodic in position and is caused
by the discrete spacing of inductive loops 2.54 cm apart.
This ripple “frequency” can be verified in the plot and is
seen best at the lower puck velocities at apex and during
the catch. After the contact the close proximity of the
metal robot bar to the puck’s inductive field creates an
additional error. Together they explain the apparent oscil-
lation just after the instant of contact at 3.25s. This is an
artifact. In reality, the puck does not lose contact with the
robot.

Next, we drop the puck from different heights and
show the resulting catch trajectories without any mod-
ification to the catching algorithm. As expected, the
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Fig. 10. Continuous vertical puck position of a one-juggle
Jollowed by a catch. After the third puck-robot impact, the
robot controller switches from the one-juggle to the catch.

catching performance should be independent of the con-
tact velocity of the puck. This is veritied in Figurc 11 in
curves (1)—-(3). However, as the initial height—and thus
the contact velocity—is gradually increased. the robot
will eventually fail to track the reference trajectory de-
fined by (18). Data curve (4) in the same figure depicts
such a case: the puck is dropped from about | m above
the robot bar. and a comparison of sensor estimate and
robot state shows a significant error. In consequence, con-
tact occurs earlier than at ¢/ = 0, and there is no velocity
match at that contact. Naturally, the tracking error could
be reduced by recourse to more sophisticated trajectory
tracking control algorithms (for example, feed forward
controllers). However, these require a dynamic model

of the object to be caught, and our simple PD controller
does not. In any casc, all physical robots will have torque
and velocity limitations, eventually resulting in tracking
errors regardless of the controller used. Even for a high-
performance system. it would be a challenge to catch a
fast-flying baseball in a velocity matching fashion.

As might be expected. the severity of velocity mis-
match at contact caused by tracking errors depends
strongly on the impact dynamics and the post contact
strategy. Figure 11 presents data taken using a very stiff
low-loss spring—the billiard cushion chosen to expedite
the juggling—and an open-loop robot control strategy
for the post contact phase (that is, there is not even a
contact sensor, let alone a force transducer). Figure 12
distinguishes the relative importance of catching algo-
rithm and impact dynamics for the excessive dropping

2
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Time (8.23s)
Fig. 11. Smooth catches with different contact veloci-
ties. The catching algorithm accomplishes the catching
of pucks dropped from increasing heights smoothly, as
shown in curves (1)—(3), without any changes. However,
in curve (4) the dropping height is so large that the robot
cunnot track the online “shadow” trajectory sufficiently
accurately. This results in a temporary loss of contact
during the catch.

height corresponding to curve (4) in the previous figure.
Curve (1) shows the trivial asymptotic catch with the
robot locked in place at the desired catching angle. Since
the coefficient of restitution is less than one, the puck will
eventually come to rest after numerous bounces. The next
curve (2) shows the puck being dropped from the same
height while the robot employs our catching law (18). In
consequence of velocity mismatch, two residual bounces
occur (the large onc-sided oscillation is not a sensor ar-
tifact). The deleterious effects of velocity mismatch may
be considerably diminished by changing the impact dy-
namics as depicted in curve (3). Here, the billiard cushion
1s topped with a 5 mm thick layer of soft foam. We still
observe premature contact but eliminate completely any
subsequent bounces.

4. Conclusion

Our research aims at developing a framework for the
specification, control, and analysis of intermittent dy-
namic tasks. This class includes, for example. dynamic
manipulation, juggling, catching. throwing, as well as
dynamic legged locomotion tasks. Such capabilities re-
quire (often repeated) interactions with an environment
possessed of its own independent dynamics that can be
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Fig. 12. Improving the catch. Three different caiches are
shown of pucks dropped from the same height. Curve (1)
depicts the trivial asympiotic catch, where the robot bar
is stationary. Curve (2) is identical to curve (4) in the
previous figure and shows the puck bounces resuli-
ing from robot tracking limitations. By increasing the
dissipative properties of the contact material (a laver
of dissipative materials was added on top of the bil-
liard cushion), these bounces are readily eliminated in
curve (4), without any changes to the catching mirror
law.

controlled only through intermittent contact with the
robot. We have demonstrated here that certain exam-

ples of such behavior may be parsimoniously specified in
terms of a desired contact condition. In turn, controllers
that realize these contact conditions may be synthesized
by recourse to “mirror algorithms”—smooth functions
that map continuous environment states into desired robot
states—reducing the robot’s task to a matter of mere
tracking. Experiments reveal the effectiveness of this
methodology in achieving robust and reliably repeat-

able instances of the desired behavior even in the face

of severe disturbances.* Finally, for those tasks requiring
repetitive contacts, the correctness of the specification and
the resulting controller synthesis may be determined by
recourse to standard methods of dynamic systems theory.

4. Tt is worth remarking here that the robot’s level of dexterity is quite
advanced by any measurce. We are convinced that no human could succeed
in keeping two pucks up in the air by swinging a bar around a single
revolute joint anywhere nearly as capably.
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4.1. Practical Extensions of the Present Work

Perhaps the most obvious application of these ideas is to
dexterous manipulation in relatively unstructured envi-
ronments. For example, notice that in the derivation of
the catching algorithm, we have not made any assump-
tion about the dynamics underlying the ball’s trajectory.
For this reason, we are not limited to catching free flying
objects. but might be able to tackle many tasks that re-
quire a smooth contact of the robot gripper with a moving
(or, of course, stationary) object. Beyond eliminating the
“guarded move” that precedes normal pick and place op-
erations, this approach might be used as well to transfer
workpieces in a fast and smooth fashion between robots
or from and to other conveyors without stopping. Other
traditional applications can be imagined as well. Many
parts feeders might be replaced in favor of simply drop-
ping parts or tools into the robot’s workspace, where they
would be caught smoothly. The juggling mirror algorithm
is similarly independent of the particular underlying envi-
ronmental dynamics (even though our knowledge thereof
informs the choice of gains). One can imagine the pos-
sible role of mirror type algorithms in repetitive but not
necessarily periodic environments—for example, in active
suspension of wheeled vehicles.

The two-juggle poses a combinatorially complicated
problem that our robot “solves™ using a very modest
switching rule. We presume that similar techniques might
be employed to achieve stable and robust gait regulation
in legged robots.” We also have a growing sense that
similarly modest switching rules might provide solutions
to more general “planning problems™ where there are
many tasks that would be better done all at once but for
which the robot’s limited means necessitate a prioritized
sequence.

4.2. Theoretical Questions Arising From the Present
Work

The successful experiments reported here, along with the
prospects for useful extensions described previously,
convince us that a much more systematic theoretical
treatment of these ideas is in order. The chief burden
of work may be divided into two related categories. Both
aim at replacing the present intuitive controller design
with an automatic—or at least better guided—synthesis
procedure.

The first category concerns the effect of the synthesis.
Although the possibility of correctness proofs represents

5. The catch seems to have its application to legged robots as well. For
example, consider the problem of landing on the ground after a jump with
all feet touching at zero impact velocity. This capability is crucial when
moving on slippery ground. It also helps to minimizc the encrgy lost at
impact and to reduce mechanical stress in the leg at touchdown.
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one of the central virtues of programming in the geo-
metric style displayed here, the gulf between what works
experimentally and what we can show formally is still
quite large. For a one-degree-of-freedom model of the
one-juggle, we are able to propose a formal explanation
of why the mirror law works using the language of dy-
namic systems theory (Buchler and Koditschek 1990).
Furthermore, we are able o corroborate experimentally
certain strong predictions the theory makes about the jug-
gling behavior (Buehler and Koditschek 1990). However,
the extent to which this theory can be extended to more
realistic models of the one-juggle is not yet clear. More-
over, while it seems clear that the two-juggle should also
be represented and studied using the language of dynamic
systems theory, we have not yet understood how to do
s0. Most fundamentally, we do not presently know what
formal framework might be most appropriate for studying
such one-shot tasks as the catch.

The second category concerns the origin of the syn-
thesis. We have already acknowledged in Section 2.4.1,
and have tried to make plain throughout the article, that
the mirror laws we employ for Juggling and catching are
derived in an ad hoc manner according to intuition. Even
in the case of the one-juggle for which a proof of cor-
rectness is available, it is not yet clear how to placc a
priori design constraints on the class of mirror functions
to achieve the desired behavior. Clear design principles
arc even farther removed from the construction of our
two-juggle and catching laws, as might be expected in the
absence of correctness results for these behaviors.

There is every reason to believe that further informal
extension of these ideas to richer and more complex tasks
will succeed in practice. More than likely, such extensions
will help guide the process of theoretical explanation. We
are confident that at some point a formal rendering of
these techniques will surpass the limits of intuition and
yield general synthesis methods for dynamically dexterous
tasks whose complexity defies heuristic approaches.
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