
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

March 1984

Limit Cycles of Planar Quadratic Differential
Equations
Daniel E. Koditschek
University of Pennsylvania, kod@seas.upenn.edu

K. S. Narendra
Yale University

Follow this and additional works at: http://repository.upenn.edu/ese_papers

This is a post-print version. Published in Journal of Differential Equations, Volume 54, March 1984, pages 181-195.

At the time of publication, author Daniel E. Koditschek was affliliated with Yale University. Currently, he is a faculty member in the School of
Engineering at the University of Pennsylvania.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/446
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Daniel E. Koditschek and K. S. Narendra, "Limit Cycles of Planar Quadratic Differential Equations", . March 1984.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76389469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers/446
mailto:repository@pobox.upenn.edu


Limit Cycles of Planar Quadratic Differential Equations

Abstract
Since Hilbert posed the problem of systematically counting and locating lhe limit cycle of polynomial systems
on the plane in 1900, much ef Tort has been expended in its investigation. A large body of literature - chiefly by
Chinese and Soviet authors - has addressed this question in the context of differential equations whose field is
specified by quadratic polynomials, In this paper we consider the class of quadratic differential equations
which admit a unique equilibrium state, and establish sufficient conditions, algebraic in system coefficients,
for the existence and uniqueness of a limit cycles. The work is based upon insights and techniques developed
in an earlier analysis of such systems [1] motivated by questions from mathematical control theory.
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Limit Cycles of Planar Quadratic Differential Equations

Since Hilbert posed the problem of systematically counting and locating
lhe limit cycle of polynomial systems on the plane in 1900, much efTort has
been expended in its investigation. A large body of literature-chiefly by
Chinese and Soviet authors-has addressed this question in the context of
differential equations whose field is specified by quadratic polynomials, In
~is paper we consider the class of quadratic difTerential equations which
admit a unique equilibrium state, and establish sufficient conditions,

,Ilgebraic in system coefficients, for the existence and uniqueness of a limit
tydes, The work is based upon insights and techniques developed in an
IIllier analysis of such systems [II motivated by questions from

atical control theory.

he fifties, work on quadratic systems chiefly concerned the existence
ter. In 1952, Bautin [2] showed that a given equilibrium state can
as many as but no more than three limit cycles under a quadratic

Three years later, a paper by Petrovskii and Landis [3] purported to
that a quadratic system could support no more than three cycles on the
Plane, Although this re~ult was called into question by several

(and the authors later acknowledged an error in the proof [4 j) it
inspired a number of attempts to complete the Hilbert program

atic differential equations [5-7]. A useful survey of the general
I e Was given by Coppel [8] in 1966, and Ye Yanquian [15] has
Y summanzed the last decade's contributions to the quadratic limit
P~oblem, Notably, Shi Song ling [101 has presented a quadratic

lal equation with four limit cycles, finally demonstrating the
Yof the result in [31. Thus, the Sixteenth Hilbert Problem remains

a .: even f~r quadratic systems.
quadratiC system" we mean the difTerential equation
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The conditions of Theorem 1 are equivalent to the

qualification "essentially" is required since there are some special cases of bounded
g.a.s. behavior. excluded by the theorem. e.g., where D is critical and singular, A is
and AD = aD,
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EOREM 3 (Koditschek and Narendra [I J). System (I) is globally
otically stable if and only if

(i) the eigenvalues of A have non-positive real part;

(ii) there exist acE !'l' and D E !'l'Xl such that B(x) = cTX Dx;

(iii) the pencil (A, D) includes stable nodal values with bounded eigen-
and no other nodal values; any singular value of the pencil has a

in (c") ifand only ifA is non-singular.

t, according to [13], conditions (ii) and (iii) of this theorem are
ly necessary for the boundedness of solutions to any quadratic
I) as well.'

the sequel, we will confine our attention to quadratic systems of the
(2), and specifically to those shown below (Corollary 3.2) to have a

!fA +A T]. We will say that two symmetric matrices agree in sign if
are either positive definite or negative definite; they oppose in sign if

is positive definite and the other is negative definite.

[JA], is sign difinite, tr{A I * 0; and either

triA} > 0, and IJD], and [D TJA], agree in sign, or

triA) < 0, and [JDj, and [DTJA), oppose in sign.

few remarks are now in order. It is clear that systems of the form (2)
not generic within the class of general quadratic differential equations,

the factorization of B(x) depends upon the resultant of its coefficients
There are problems in control theory-e.g., adaptive control 118]

bilinear systems [17J-wherein such systems arise naturally. However,
(2) deserves attention from a purely mathematical point of view. Earlier

[I, 11, 12] has established that homogeneous quadratic systems which
not be written in the form cTx Dx must be unstable. It may be shown
3], in consequence, that system (I) must have unbounded solutions if it
t be written in the form (2). Imposing the added condition that the
part of the field not be unstable and adjusting for special cases permits

following characterization of any globally asymptotically stable
ratic differential equation.

, ' hich may~
. nsformation with a unique smgulanty w

I I '\I be seen that no quadratIc tra
t,WI (2) can give rise to limit cycles.

be wntten as

2. STATEMENT OF THE MAIN RESULT

, ' "hel ful to introduce some notation and
For ease of exposl~lOn, It IS ':the central theorem. To begin with, we

terminological conventlons alOng
3
;I~ t" almost all" quadratic systems which

will show (Lemma 2, m Sectlon t ~ "n may be written in the form'
admit a unique equilibrium state at t e ongl

T D (2)
x=Ax + c x x,

'II fi d it often necessary to referto
, d DE !'l2X' Thus we WI m D) [16] A

where c E!'l an . h' h we will call the pencil (A, '
the affine line (A + I'D II' E !'l i, w ~c d I 'f it has lWO real eigenvectors,

f ' of the plane IS no a I I
linear trans ormatlO~. dfocal if its eigenvalues are compa
critical if it has a umque eIgenspace, a~ It

, tes We may now state the mam resu .
conJuga .

(2) has one and only one limit cycle if
THEOREM I. System

(i) A is focal, with non-zero trace;d d nodal values whose eigenvalun

(ii) the pencil (A, D) includes bO;~h: eigenvalues of A, and no o/her
have opposite sign to the real part 0

nodal values.
, the reader that these conditions are

To convmce , orne more notation. Denote
computed, "w[e. r~~]ulrean~ the symmetric part of
matnx J"" I • '

lXTGX1 d f(x)flAx+B(x),
B(x) ~ xTHX; an

that neither A nor B is identically
and will assume, throughout the, padper, collows In Section 2 we state the

t' .s orgamze as I" , , ,
zero. The presenta Ion lito illustrate the condItions listed,

1 d' clude an examp e , !'l' h'central resu t an m. . f me algebraic results m w lch will
Section 3 provides a bnef review, 0 ,so tigation Section 4 establishes the
be very helpful throughout this m~es terpret~tion of the techniques from

" les as a geometnc m , 5 d bexistence of hmlt cyc is proven in SectIOn ,an a rief
the preceding section. Fin~lIY, uniqueness
conclusion follows in SectIOn 6.

182
!'l' x, and xTGx denotes the scalar product of the vectors x

whereA,G,HE ( ,
and Gx E !'l'). We adopt the convention
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single equilibrium state. It should be noted that the conditions of Theore
1, 2, and 3 specify open sets in the space of coefficients of system (2). ms

We conclude this overview of the main result with an example. Consid~

the system

.~, =ax,-x, +x,(x,-x,)

x, = x, + ax, + x,(x, + x,),

which may be written as (2) with A = aI + J, D = I +J, and c = [:1. We
note that A is focal for all values of a, triA I = 2a, [JD I, =-I, and
IDTJA I, = (a - 1)1. When a < 0 then the system satisfies the conditionsnl
Theorem 3, and, hence, is globally asymptotically stable. When 0=0 the
system still satisfies the conditions of Theorem 3, even though the linear part
of the field has pure imaginary eigenvalues. Systems of this nature, whose
linearized equations are critical, necessitated a separate proof in [I,
Lemma 4.91 precluding the possibility of a limit cycle. When 0 <a < I, this
system satisfies the conditions of Theorem 2: the origin is unstable; all
trajectories may be shown to be bounded; there are no other equilibrium
states-there exists one and only one stable limit cycle. When a = I the field
vanishes on the line x, = -I: all trajectories are bounded, but there is 111I
more limit cycle. Finally, for a > I it can be shown that all trajectoriQ

(excepting 0) tend to infinity.

We may now show how Eq. (2) arises from the consideration of quadratic

systems with a unique equilibrium state.

LEMMA 2. If A is bijective then f(x) vanishes at a non·zero point in IR'

uliless there exist acE IR' and D E IR' x, such that

B(x) = cTX Dx.

Proof If for some AE IR and XoE IR', }.Axo= B(xo) = 0 then -I/Axo is
an equilibrium state of system (1). Hence, we require that lAx, B(x)1 = 0
implies B(x) = 0 for any x#' O. Since lAx, B(x)1 =x~ q(x,/x,), where q is a
cubic polynomial in x,/x" there exists at least one real zero of q (say, vol·
The system has a unique equilibrium state only if B = 0 on ([ ,'" [). This, in
turn, implies that both quadratic forms in B share a common zero line, or

G=lcdil" H= !cdr I, where c= I,!"I and d"d,E R'. Defining D= I~il,
we have the desired result. I -

Since it has been shown [81 that no limit cycles may occur in (I) unless A
is focal, Lemma 2 implies that (2) is the only quadratic differential equation

with a unique equilibrium state capable of supporting a limit cycle.
The following result establishes the connection between nodal values of the

pencil (A, D) and sign agreement or opposition of IJD], and ID'JA I,·

3. SOME ALGEBRA OF THE PLANE

LEMMA 3. If x is not an eigenvector of D then it is an eigenvector of
A+~D with corresponding eigenvalue, A, if and only if

= I [x, J'x]IAx, Dx]1 = _XIX lAx, Dxl·

Henc (e 'I xl = -lAx, Dxl and the result follows. I

oProof Define a(x) ~ lAx, xl and D(xl ~ IDx, xl· Since IIDA - aDlx, xl =
IAx,xl_ a IDx, xl = 0 for all x E P', it follows that IDA - aDlx = 'l(x)x

for some real-valued function 1/. But

e COROLLARY 3.1. The conditions of Theorem I and Theorem 2 are
QUiva/em.

PrOOf According to Lemma I the conditions labelled (i) in each theorem

r T I .x.1Ax
x XI/=X IDA -aD]x= I lJAx x

xTDx :

x 1J Dx I

A~ _IAx,Dxl.
- IDx,xlin which case1l~_IAx,xl

- IDx,xl
We will use the following notation throughout the paper. If x, yER',

then x'y denotes the scalar product of x and y, Ix,)'1 denotes the deter'
minant of the array formed by the coordinates of x and y, x ~ Jx deno

tQ

the orthogonal complement of x, and (x) ~ lax Ia E R I de~otes the lin!
through the origin containing x. The following relation between inna
products, determinants, and quadratic forms in IR' will be used extens

ivdy
:

lx, yl = yTx _ = yTJX.

LEMMA I. The linear transformation of the plane, A, is focal, critical,~
nodal if and only if IJA I, is sign definite, semi-definite, or indefinite, respet'

tirely.

Proof Since x is an eigenvector of A if and only if lAx, xl = 0, A haS no

eigenvectors if xl'JAx never vanishes for x#' 0, a unique eigenspace if x
rJJJ

vanishes on a unique line, and two eigenvectors if the quadratic fO~
vanishes on two lines. These are equivalent to the conditions that [JAi,
definite, semi-definite, or indefinite, respectively. I
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are equivalent. Condition (iia) of Theorem 2 gurantees that A(x)' is bounded
and .always negative. This implies that the pencil (A, D) has bounded and
stable and only bounded and stable nodal values according to LemmaJ.
Since the eigenvalues of A have positive real part, this satisfies condition (ii)
of Theorem 1. Similarly (iib) implies that the pencil has bounded and
unstable and only bounded and unstable nodal values whose eigenvalu~

have opposite sign to be real part of the eigenvalues of A. Thus (iia) and
(iib) both imply (Ii) of Theorem 1.

Conversely, if [JD], is not sign definite then the pencil (A, D) h~

arbitrarily large nodal values violating (ii) of Theorem 2.' while if [D'JAj,
is not definite, a nodal value of the pencil has a zero eigenvalue, violatinl
that condition as well. The necessity of the sign agreement and opposition
condition is now evident. I

COROLLARY 3.2. The conditions of Theorem I or 2 guarantee thaI (21
has a unique equilibrium state at the origin.

Proof. f cannot vanish at .I' *' °unless lAx, B(x)1 = °on the line (y),
Since lAx, B(x)1 =cTx lAx, Dxl = cTxxTDTJAx, and the quadratic form is
sign definite under the hypothesis, f could only vanish on (c i)' However,
B(c1) = °while Ac1 *' 0, so this is impossible. I

4. EXISTENCE OF LIMIT CYCLES

We now put the algebra of the preceding section to good geometric use.
As shown in the proof of Corollary 3.1, the assumption thatl'(x) is bounded
(and that A is focal) immediately implies that D is focal. The sign agreement
condition may be interpreted to show that the spiral curve defined by!
single loop of the linear trajectory, elDy, defines a positive-invariant regIOn In

the phase plane for arbitrarily large values of y.

LEMMA 4. Condition (iia) of Theorem 2 implies that all trajectories ~
system (2) remain bounded.

Proof. Choose a point. Y. on (c) whose sign is opposite to the sign of~
real part of the eigenvalues of D, say, on the positive ray· and
Ll ~ leIDy It E [0, t* I; e"Dy = yy; 0< y < I} be a complete spiral loOP
let A ~ 1(1' I(E [y, I] I join its end-points as depicted in Fig. 1.

FIGURE I

The normal to the curve at any point x E Ll lies in (JDx) and since
x'JDx = IDx. xl. JDx is either interior directed or exterior directed,
depending upon whethe' IDx,xl is negative or positive, ,espectively. With no
loss of generality. we assume IDx, xl <0, hence JDx is the interior directed
normal to Ll at x. Similarly, Jy is the interior directed normal to A for any
YEA. We must now show that fr(x)JDx >°for x E Ll, and fT(y)Jy >°
for YEA. This will imply that any trajectory originating inside the spiral
bounded region must remain within that region for all time. Since the regIon
may be constructed arbitrarily far from the origin, that demonstration
Concludes the proof.

Expanding the first inequality, we have

fTJDx=xTIA T+c'xD'IJDx=x'ATJDx

= IDx,Axl = -lAx, Dxl >°
fOr all xE IF'. Expanding the second inequality. we have

fTJy = _yTJ! = -yTJAy - cTyyTJDy

= -lAy, .1'1- cTy IDy, .1'1

:ence, because cTy> °for .I' E A, and IDy, .1'1 <0, the desired inequality
olds when the second term dominates the first term far enough away from

Ihe origin. I

J In the sequel. we will denote the qUo adratic ratios in x defined by Lemma 3 as p(X) andI
A(x).

4 Note that there can be nD cancellation of factors in 1.1. since A is focal.

LEMMA 5. Condition (iib) of Theorem 2 implies
U/fbo"nd d ... I d't'n" e solutions for every /n/tta con I IOn

flghborhood of he origin.

that system (2) has
outside a compact
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Note that when A has purely imaginary eigenvalues and nodal values of the
'I (A D) have negative eigenvalues, Theorem 3 guarantees global

penci , .. . ., .
asymptotic stability, while a SImilar argument estabh~hes that all non-zero
solutions of (2) grow without bound when the pencil (A, D) has posItIve
eigenvalues in this case (see the example). If (i) holds and A + ll(x)D h~s a
zero eigenvalue for some x E R 2 then system (2) has at I~ast one cntlcal
oint distinct from the origin. On the other hand, given conditIon (I), there IS

Pcase where (ii) is violated due to a nodal matrix D, while the plane is left
;ree of additional equilibrium states. and the possibility of a limit cycle
remains. As will be seen below. there is good reason to suspect that system

I 12) cannot support a limit cycle unless D has complex conjugate eigenvalues.
If true, this would imply that the conditions of Theorem 2 are both necessary
and sufficient for a quadratic system (I) with a single critical point to

support a limit cycle.

LEMMA 6. The Jollowing conditions are equivalent to those stated ill

Under the assumptions of Theorem 2. il is sign definite for ~ E [-71/2, 71/2\
and we assume. with no loss of generality, that sgn w = sgn d > O. We define
1118)~ ail(IJ) - wd(IJ) and assert the following.

(3)

_ xTD/Jx
d(8) ~ cos IJ--/-,

X X

5. UNIQUENESS

x T Dx
d(8) ~ cos 8--T -;

x x

Where d and il are functions of IJ on ly and are defined by

We finally show that the limit cycle established by Theorems I and 2 is
indeed unique. Along the way we will restate the conditions of that theorem
(Lemma 6. below) and provide a better intuitive sense of the mechanIsm
underlying the isolated periodic solution. This is achieved by a transfor­

mation to polar coordinates.
Assuming A has complex conjugate eigenvalues we may always find a

coordinate system (under linear transformation of the state) such t~at­

A=al +wJ-where 1= 16 ~ \' J=.I ~ 0'[' and a. w E R-~nd,c= \ 0,);
Then. defining the polar coordinate transformation P = lx, + x,l .
9~arctanx,/x,. Eq. (2) may be written as

p= (l/p)!'(x)x=p\a + pd(IJ) I

. j'(x)Jx _ il(IJ)
IJ=~-w+p •

Proof Let y be a point on (c) whose sign is the same as the sl'g f ..
I fh' no.,erea part 0 t e eigenvalues of D, say, on the negative ray. Let Ll and A be

m the proof of Corollary 2.2, depicted in Fig. 1. Assume again with no I as
of g~nerahty that JDx is the interior directed normal to Ll at x and Jy ~~:
mtenor normal to A for yEA. We need to show that JTDx <0 for xEJ

and JTJy <0 for yEA. Since lAx, Dx I has opposite sign to IDx, xl under
the assumptIOn that the pencil has positive real eigenvalues, the first
mequahty follows for every spiral loop .d. The second inequality holds on A
outside of the last loop for which IycTyl is less than the constant
Iy'JAy/yTJDyl· I

. Having elucidated the geometric implications of the apparatus developed
m Section 3, we are now able to show that a limit cycle must exist under the
conditions of Theorem I or 2. According to the results of Lyapunov,)he
local stabtllty behavior of system (2) is entirely determined by the spectrum
of A. According to Lemmas 4 and 5, and Corollary 3.1, the global boun·
dedness of system (2) is determined by the spectrum of the pencil (A, D) in
Its nodal range. The following result depends crucially on the special nature
of hmlt sets of planar dynamical systems established by the Poincare­
Bendixson Theorem.

PROPOSITtON 1. The conditions (i) and (iia) oj Theorem 2 guarantee the
existence oj a stable limit cycle oj system (2). The conditions (i) and (iib)
guarantee that an unstable limit cycle exists.

Proof Assume that (i) holds, and the eigenvalues of A have positive real
parts. Then the origin is totally unstable, hence for some positive definite
symmetric matrix, P. IR' -Ix IxTpx < YI for any y> 0 is a positive
invariant set of system (2). If either version of (ii) holds, then the origin is
the sole critical point of system (2). according to Corollary 3.2. By
Lemma 4. if condition (iia) of Theorem 2 holds, then all solutions of (2) are
bounded: in particular. the Jordan Curve Ll U A bounds a positive-invariant
set. Y. containing the origin. Thusy -lxTpx < YI is a compact positive'
mvanant set. free of critical points. In consequence of the poincare­
Bendixson Theorem, the positive limit set of a trajectory in Y _ IxTpx <)'1
must be a limit cycle 114].

If the eigenvalues of A have negative real part and condition (iib) holds,
then an identical argument concerning negative limit sets using Lemma 5 wtll
establish the eXIstence of a limit cycle. I I

Wh'l th . f ., r it Ilee question 0 necesssity IS not formally addressed in this pape, I
is useful to remark upon the existence of limit cycles of (2) when the
conditions of Theorem 2 are not met. Assuming (ii), condition (i) of I
Theorem I or 2 is certainly necessary according to the results of Coppel [8j,
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Theorem 2, and hence are sufficient for Ihe exiSlence of a limil cycle 0/
syslem (3): either

(4)oE l-rr/2. rr/2J.

d a+pd
-lnp=---
dO w +pd

d a-Ad
-lnA=--_
dO w-Ad

For convenience we shall denote points on the right-hand curve, F" by r(t),
and on the left-hand curve, F" by I(s), letting p ~ Ilr(l)11 and A Q 111(s)11 = (,p.
The chief advantage of this map is the induced functional dependence of s on
t, hence the ability to write a differential equation for p and A using the same
angular interval. From (3) and the above, we have, for fixed initial con­
ditions,

where s E 10, I, - I,]. We will map F, into F, by reflecting a point in the
right-hand curve onto the unique point in the left-hand curve which intersects

I
the line through the origin containing the original point. This may be
justified as follows: since iJ is sign definite, for every IE 10, I,] there exists a

I

unique s E 10, I, -I, j and ~ >~ suc~ that .

x(s, P,) - -(x(I, Po)'

The restatement of Theorem 2 in Lemma 3 lends added insight into the
mechanism by which x(t; Po) grows and decays on T, U T,. Considering
case (i) of Lemma 3, since ad> 0 on [-rr/2, rr/2], the condition f/ < 0
necessitates d > 0 on that interval. Hence, from (4), while p must increase on
f" J. becomes negative when T, enters the region c/ ~ {x E R'I x, <
--a(xT Dx/xTxll in the left half plane. Moreover, 'if' has a boundary, o'if', in
the left half plane and f/ <0 implies O'if' C;; U -i.e., that certain trajectories
Contained in 'if! must enter Q. Since (d/dO))' -4 -00 as I(s) -4 o'?r', the growth
of a trajectory on T, is countered with increasing effect on a portion _of T"
reSUlting in a limit cycle. Notice that if D has real eigenvalues then d is no
longer sign definite, hence d may not be sign definite, and these remarks are
no longer valid, underscoring the importance of the requirement that D be
fOcal.

The differential equations in (4) define two families of functions, p((j;po)
and A(8; Ao). parametrized by initial condition on the negative and positive
·(,-axes, respectively. Observing that Ao = p(rr/2;po}--i.e., that Ao depends
uPOn Po-and that the vector fields in (4) are smooth when x E 'if!, we may
explicitly regard p and A as functions of 0 and Po' continuously differentiable
In both arguments. Since distinct integral curves of autonomous systems

i defined by smooth fields remain distinct over all time, we have (%Po)p > 0

I
,and (a/apo)A > 0 for all 0 E l-rr/2, rr/2J. Hence, the function

I/I(po) ~ A(rr/2, Po) A(rr/2, Po)
p( -rr/2, Po) Po

forOE [-rr/2, rr/2J.

FIGURE

8=0 P;.Q

-IAx,Dxl -1 f/

ID - I =-IDI (alx,Dxl+wIJx,Dxl)=-=-·x,x x,x d
).(x)

(a) a> 0 and f/ <0 or,

(b) a < 0 and f/ > 0

Proof Since A = aJ +wJ, condition (i) of Theorem 2 is equivalent to
one of the sign conditions on a. From Lemma 2, the eigenvalues of
A + i1(x)D are given by

Thus, for 0 E l-rr/2, rr/2 J, the sign conditions on d and f/ are equivalent to
condition (ii) of Theorem 2. I

As reported in [8], limit cycles of quadratic differential equations enclose
convex regions, hence, any periodic solution of (3) must have an angular
derivative, iJ, of constant sign: no limit cycle may leave the region
'if' ~ Ix E R'I w + pd > Of. Consider x(t; Po), a trajectory in Woriginating
at Po' a point on the negative x,-axis. For some I, > I, > 0 we must have
x(l,; Po) = P" a point on the positive x,-axis, and x(t,; Po) = P" a point on
the negative x,-axis, as depicted in Fig. 2. Denote the resulting curve in the
right half plane over the interval [0, I, I as T" and the left half plane curve,
over the interval 11,,1,1, as T,. Evidently, T, may be expressed as x(s;p,),
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which reresents the ratio of the magnitudes of the end-points of the eu
r, u r, (both on the negative x,-axis), is a continuously difTerentia~~e
function of Po' Evidently. r 1 U r, is the integral curve of a limit cycle if e

. f f' . 1 d . andonly If IiJ = l. The proo 0 unIqueness InVO ves a emonstratlon that ~ .
monotone in Po over an interval of interest. and hence may pass through 1 I;

most once. That demonstration depends upon the following computation. al

LEMMA 7. Conditions (a) and (b) of Lemma 6. respectively. imply

(a) -!!-In (OA !t....) < 2 [;-() (In Ap) - a/w].
i!() oPo oPo u

(b) ~In (~A ~P) > 2 [~()(lnAP)-a/w].
o() i!po oPo 0

Proof

From (4) we have

.!...- (~) = [~In A+ A_'1_]~
oPo o() o() (w - Ad)' oPo

and

o (OP ) [ 0 "] op- - = -Inp+p--- -.
cpo o() o() (w + pd)' OPo

Since d> O. we have w/(w - Ad) > I, and w/(w + pd) < 1, for all
()E [-n/2, n/2]. Hence. if condition (i) of Lemma 3 holds then

'1 A 'I 0
A---_-<---.=-lnA -a/w

(w-Ad)' w w-Ad o()

and

'1 P '1 0
P---_- <----.=-Inp-a/w.

(w +pd)' w w +pd o()

since '1 <0 on [-11/2, 11/2J and substituting from (4).

Since BA/Opo. op/oPo > O. this implies

o (OA) ( a CA
(ipo MJ < 2 MJ In A - a/w) CPo

o (iJP ) ( 0 ) cp
cPo MJ < 2 MJ In P - a/w cPo

yielding (a). above. The identical argument holds for (b) with signs reversed.

since '1 >o. I
We may now state the second principal result of this paper.

PROPOSITION 2. Under the conditions of Theorem 2. system (2) has only

Dlle limit cycle.

Proof x(t; Po) is a limit cycle of (2) if and only if liJ(Po) = I in system
(3). According to Theorem 2. Y ~ !Po > 0 IIiJ(Po) = II is non-empty. and
bounded away from the origin. hence pt ~ inf Y exists and p,f > O. We will
shOw that (d/dPo)1iJ is sign definite for all Po >pt. hence x(t; pt) is the only
limit cycle of (2).

Note that

d I [ C ]dliJ=- -;-A(11/2.Po)-1iJ .
Po Po cpo

We will show below that under condition (a) of Lemma 6.

-:- A(n/2. Po) < 1iJ' e - 2," 'a.
CPo

and hence

Since a/w >0 and 1iJ(Pt) = l. this is clearly negative for Po > P1f. Similarly.
under condition (b) of Lemma 6 the inequalities are reversed. and a/w <0 so
that (d/dPo)1iJ > 0 for all Po >pt.

To obtain the bound on (iJ/cpo)A(n/2.po) we recall that A(-11/2.po) =
p(n(2, Po) and p(-n/2. Po) = Po. hence

iJ [ C C ]In" A(n/2. Po) = In "A(n/2. Po) - p(n/2. Po)
upo ''Po cPo

[ c C ]-In aA(-n/2.po)-p(-n/2.po)
Po cPo

.,/2 iJ [iJ C ]
= I "()In "A(().po)-;-p((),po) d().

. -0[/2 U ~Po oPo
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This paper presents sufficient conditions for the existence of limit cycles of
quadratic systems with a unique equilibrium state. The conditions guarantee
that the limit cycle is unique. The results are based upon insights and
techniques developed during an earlier investigation of the global stability
properties of (I) [I], facilitated by the expression of that system in the form
(2). They strongly suggest that these conditions are necessary as well, hence,
that no quadratic system with a unique equilibrium state can support more
than one limit cycle. That result, the uniqueness of a limit cycle around any
equilibrium state of (2), the relation of limit cycles of (2) to those supported
by general quadratic systems (I), all remain to be rigorously established.

In~ A(n/2, Po) <(' 2 (fe In PA - a/w) dB
oPo -.1'

= In ( A(n/2, Po) )' _ 2na/w
p(-n/2,po)

= In ",' - 2na/w,

hence (%po)A(n/2, Po) < ",'e,-hulw' as claimed. Case (b) proceeds iden.
tically with the signs reversed. I

194

Applying Lemma 7 to case (a) yields
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