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Limit Cycles of Planar Quadratic Differential Equations

Abstract

Since Hilbert posed the problem of systematically counting and locating lhe limit cycle of polynomial systems
on the plane in 1900, much ef Tort has been expended in its investigation. A large body of literature - chiefly by
Chinese and Soviet authors - has addressed this question in the context of differential equations whose field is
specified by quadratic polynomials, In this paper we consider the class of quadratic differential equations
which admit a unique equilibrium state, and establish sufficient conditions, algebraic in system coefficients,
for the existence and uniqueness of a limit cycles. The work is based upon insights and techniques developed
in an earlier analysis of such systems [ 1] motivated by questions from mathematical control theory.
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INTRODUCTION

;IhlSIlli‘l:leitHllblert posed the.problem of systematically counting and locating
_— :yg Zo_f p_olyr'xomna_l systems on the plane in 1900, much effort has
Chinesepa:des m.,nt? investigation. A large body of literature—chiefly by
oo oviet authors—has 'addressed this question in the context of

1al equations whose field is specified by quadratic polynomials. In

is pay i i
Paper we consider the class of quadratic differential equations which

mit i ilibri
& unique equilibrium state, and establish sufficient conditions,

llibraic i

\Cyile:alfr hm system. coefficients, for the existence and uniqueness of a limit
!I:Iier. e wprk is based upon insights and techniques developed in an
i ax}alysxs of such systems
tmatical control theory.

[1] motivated by questions from

ntil i i
he fifties, work on quadratic systems chiefly concerned the existence

a center, i
" er. In 1952, Bautin |2] showed that a given equilibrium state can

Pport a5 man

Th y as but no more than three limit cycles under a quadratic

re

. : years lgter, a paper by Petrovskii and Landis 3] purported to

planequ:(fram system could support no more than three cycles on the
- Although this result was called into question by several

insei
¥ Inspired a number of attempts to complete the Hilbert program

Wadratic g ;
Ry C differential equations [5-7). A
e ! . useful survey of the general
Wy, S 8iven by Coppel [8] in 1966, 5| o

1y Sumpas and Ye Yanquian [15] has

DTOble:an;ed the last'decade’s contributions to the quadraticllimit

tnti eq;lat' otably, Shi Songling [10] has presented a quadratic
ly of b on leth four limit cycles, finally demonstrating the

g, eve result in [3]. Thus, the Sixteenth Hilbert Problem remains
o vel for quadratic systems.

Quadragj

¢ system” we mean the differential equation
0022-0396/84 $3.00

]
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] w say at two symmetric matrici
the v or 4 e il
( Sx s=12 w1 that t H

. poth are either positive definite or negative definite; they oppose in sign if
e 0x 1. e s o on¢ is positive definite and the other is negative definite.

xTGx éAX+B(x)9
B(x)& [ xTHx]; and SIS  THEOREM 2. The conditions of Theorem

i is identicay, | jolloWinE’
er, that neither A nor B is i ally |/
and will assume, thfoug.hol::r ‘:;i;::zp as follows. In Section 2 we state th, () 1AL, is sign definite, 114} 0 and either
ke ?he Elrte S;::atzsr;h:;e agn example to illustrate the conditions listeg (iia) {4} >0, and [JD], and [DTJA], agree in sign, or
central res

AR

. . . algebraic results in R Which wj) " . s
Section 3 provides a bne{l Te:'i‘:i: f-,::/:;iiga%ion. Section 4 establishes (iib) tri4} <O, and [JD], and [D7JA), oppose in sign.
be very helpful throughot

< eometric interpretation of thg techniques fmlm § A few remz}rks are now in order. It is clear that systems of. the form (2)
existence of limit c‘:ycles.as a geon eness is proven in Section 5, and a brief fn not generic within the class of general quadratic differential equations,
the preceding section. Finally, uniqu %:ce the factorization of B(x) depends upon the resultant of its coefficients
conclusion follows in Section 6. ~nishing. There are problems in control theory—e.g., adaptive control [18]
md bilinear systems | 17]—wherein such systems arise naturally. However,
p‘l (2) deserves attention from a purely mathematical point of view. Earlier

tk {1, 11, 12] has established that homogeneous quadratic systems which
tatio $ay not be written in the form ¢"x Dx must be unstable. It may be shown
! . tions along with the central theorem. TO begin with, e !13], in consequence, that system (1) mlfst have unbounded §glutlons if it
terminological conventions & 3) that “almost all” quadratic systems whith §,,0t be written in the form (2). Imposing the added condition that the
will show (Lemma 2, in Section th the origin may be written in the form" ffear part of the field not be unstable and adjusting for special cases permits
admit a unique equilibrium state % following characterization of any globally asymptotically stable
é‘i]fiadratic differential equation.

1 are equivalent to the

2. STATEMENT OF THE MAIN RESULT

3 i tation and
F e of P! ition. it is hel ful to introduce some notat
or ease Ol exposit P

% =Ax + ¢ xDx, vl

where ¢ eR and D€ R . Thus, we Wi find it often necessary to referto
2 1x2 1t
D‘ }! hich ( 4 ) l ] HEOREM ( itschek and Narendra [l ) 5}’519111 (1) s glObally
the affine line {A + u 14 € R}, w we will call the pe il (4 D) (16 ; T 3 (Kod

i formation of the plane is nodal if 'it 'has.two Tleal elfenvectoirs, gwt tically stable if i
lm;,'fxr Itl;al“lts . ; : f Lif its ei s 4 otically stable if and or
critical if has a unique € genspace and focal if its € getivalues are compiet

. d () £ valu OfA have non-positive real
conjugates. We may now state the man result ! the eigen
JUg y es

(i) there exist a ¢ € R* and D € R**? such that B(x) = ¢"x Dx;

. (i) the pencil (4, D) includes stable nodal values with bounded eigen-
Wlies, and no other nodal values; any singular value of the pencil has a
Yemel in (c,) if and only if A is non-singular.

THEOREM 1. Sysiem (2) has one and only one limit cycle if

i) Ais focal, with non-zero trace; o g
g i ke e bo}u;izcieg::l}[al;szezf 4, and 1o e :]n fact, according to [13], conditions (ii) and (iii) of this theorem are
e e 0 e sntially necessary for the boundedness of solutions to any quadratic

i braic and essiis m (1) as well.? |
. he reader that P conditons are @ K mmell the sequel, we will confine our attention to quadratic systems of the
e e Ire o notation. Dencie ¢ oy A, b} (2), and specifically to those shown below (Corollary 3.2) to have a
cont“'mei’éw[e“ l’f?]“ and the symmetric part of any matrix, 4 K
matrix J2|1 o b

nodal values.

. The qualification “essentially” is required since there are some special cases of bounded

" h .
o (430t g.a.5. behavior, excluded by the theorem, e.g.. where D is critical and singular, 4 is

i ich ma
ingularity which
ue Sing lir, and AD = aD.

i i i uni
! 1¢ will be seen that no quadratic transformation with a unig
be written as (2) can give rise to limit cycles.

s




184 KODITSCHEK AND NARENDRA

single equilibrium state. It should be noted that the conditions of Theorem

1, 2, and 3 specify open sets in the space of coefficients of system 2).
We conclude this overview of the main result with an example. Consigy

the system

X =0x, =X+ x(x, — X))
£y =%, + 0%y + X, (%) + X2)

which may be written as (2) with A =0l +J, D=1+J, and c= (o} We
note that A is focal for all values of o, tr{d} =20, [JD} =-I i
|DTJA|, = (6 — 1)I. When o <O then the system satisfies the conditions of
Theorem 3, and, hence, is globally asymptotically stable. When ¢=0 i
system still satisfies the conditions of Theorem 3, even though the linear pat
of the field has pure imaginary eigenvalues. Systems of this nature, whost
linearized equations are critical, necessitated a separate proof in {,
Lemma 4.9 ] precluding the possibility of a limit cycle. When 0 < g < 1, this
system satisfies the conditions of Theorem 2: the origin is unstable; al
trajectories may be shown to be bounded; there are no other equilibriun
states—there exists one and only one stable limit cycle. When o =1 the field
vanishes on the line x, = —1: all trajectories are bounded, but there is
more limit cycle. Finally, for o > | it can be shown that all trajectories
(excepting 0) tend to infinity.

3, SOME ALGEBRA OF THE PLANE

We will use the following notation throughout the paper. If X, }’E'Rl'
then x7y denotes the scalar product of x and 1. |x, yi denotes the dete’
minant of the array formed by the coordinates of x and », x &Jx dﬂ“‘{“‘
the orthogonal complement of x, and (x) & {ax|a € R} denotes the 1¥
through the origin containing x. The following relation between innd
products, determinants, and quadratic forms in R? will be used extensiv f

xorl=r"x_=ylix

Lemma 1. The linear transformation of the plane, A, is focal, criticah?
nodal if and only if {JA |, is sign definite, semi-deflnite, or indefinite, respe
tively.

Proof. Since x is an eigenvector of 4 if and only if |4x, x| =0, A ht;sﬂ"
eigenvectors if x"JAx never vanishes for x # 0, a unique eigenspace if x4
vanishes on a unique line, and two eigenvectors if the quadratic o
vanishes on two lines. These are equivalent to the conditions that [JA]’U
definite, semi-definite, or indefinite, respectively. 1
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We may now show how Eq. (2) arises from the consideration of quadratic
gstems with a unique equilibrium state.

LemMa 2. If A is bijective then [(x) vanishes at a non-zero point in R?
wiless there exist a ¢ € R? and D € R2*? such that

B(x)=c"x Dx.

Proof. If for some A€ R and x, € R2, Adx, = B(x,) =0 then —1/4x, is
w equilibrium state of system (1). Hence, we require that |4x, B(x)|=0
implies B(x) =0 for any x # 0. Since |Ax, B(x)| = x]q(x,/x,), where g is a
abic polynomial in x,/x,, there exists at least one real zero of g (say, V)
The system has a unique equilibrium state only if B=0 on ([,}ﬂ|>. This, in
wm, implies that both quadratic forms in B share a common zero line, or
G=[cdT],, H=|cd}], where ¢=|,] and d|,d, € R Defining D = [;",}
we have the desired result. :

Since it has been shown |8] that no limit cycles may occur in (1) unless 4
is focal, Lemma 2 implies that (2) is the only quadratic differential equation
with a unique equilibrium state capable of supporting a limit cycle.

The following result establishes the connection between nodal values of the
pencil (4, D) and sign agreement or opposition of |JD]; and |DTJA],.

Lemma 3. If x is not an eigenvector of D then it is an eigenvector of
A +uD with corresponding eigenvalue, A, if and only if

|4x, Dx|

A |4x, x| _
|Dx, x|

U — in which case 18
| Dx, x|

8 Proof. Define a(x) & |4x, x| and 5(x) & | Dx, x|. Since | {84 — aD]x, x| =
fu"v.\‘\ —a|Dx, x| =0 for all x& R, it follows that |64 — aD]x = n(x)x
07 some real-valued function 7. But

R 754 — aDlx= 1 xTAx  x"Dx |
x'oy = x4 —aD]x = \ x'JAx x'JDx |
=[x J7x][4x, Dx]| = —x"x|4x, Dx|.

H
®Ce (x) = —|Ax, Dx} and the result follows. 1

C,QROLLARY 3.1, The conditions of Theorem 1 and Theorem 2 are
Aivalen;,

Pr°°f~ According to Lemma 1 the conditions labelled (i) in each theorem
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are equivalent. Condition (iia) of Theorem 2 gurantees that 4(x)’ is boungy
and always negative. This implies that the pencil (4, D) has bounded gy
stable and only bounded and stable nodal values according to Lemms},
Since the eigenvalues of 4 have positive real part, this satisfies condition (j
of Theorem 1. Similarly (iib) implies that the pencil has bounded ay
unstable and only bounded and unstable nodal values whose eigenvalu
have opposite sign to be real part of the eigenvalues of 4. Thus (iia) anf
(iib) both imply (ii) of Theorem 1.

Conversely, if [JD], is not sign definite then the pencil (4, D) has
arbitrarily large nodal values violating (i) of Theorem 2.* while if [D"J4], ‘
is not definite, a nodal value of the pencil has a zero eigenvalue, violatirg
that condition as well. The necessity of the sign agreement and opposition
condition is now evident. [

COROLLARY 3.2. The conditions of Theorem | or 2 guarantee that (U]}
has a unique equilibrium state at the origin.

Proof. f cannot vanish at y#0 unless |4x, B(x)|=0 on the line (o
Since |Ax, B(x)| = c"x |Ax, Dx| = ¢"xx” D"JAx, and the quadratic form is
sign definite under the hypothesis, f could only vanish on (c)- However,
B(c,) =0 while Ac, # 0, so this is impossible. 1§

4. Ex1STENCE OF LimMiT CYCLES

algebra of the preceding section to good geometric l:’
un

ment

We now put the
As shown in the proof of Corollary 3.1, the assumption that u(x) is bo
(and that 4 is focal) immediately implies that D is focal. The sign agree!
condition may be interpreted to show that the spiral curve deﬁned‘by"
single loop of the linear trajectory, e*®y, defines a positive-invariant region ¥
the phase plane for arbitrarily large values of y.

LemMa 4. Condition (iia) of Theorem 2 implies that all zmjectories"/
system (2) remain bounded.

Proof. Choose a point, y, on {c) whose sign is opposite to the sign of 1
real part of the eigenvalues of D, say, on the positive ray:
48Pyt |0, 6] e Py =yy; 0<y< 1} be a complete spiral looP
let AL Ly | L€ |7 1]} join its end-points as depicted in Fig. 1.

o
¥ In the sequel. we will denote the quadratic ratios in x defined by Lemma 3 28 4]
Afx).
4 Note that there can be no cancellation of factors in u since 4 is focal.
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Ax

FIGURE |

The normal to the curve at any point x € 4 lies in (JDx) and since
fIDx=|Dx,x|. JDx is either interior directed or exterior directed,
depending upon whether | Dx, x| is negative or positive, respectively. With no
loss of generality. we assume | Dx, x| < 0, hence JDx is the interior directed
normal to 4 at x. Similarly, Jy is the interior directed normal to A for any
€ A. We must now show that f7(x)JDx > 0 for x € 4, and fi(yyJy>0
for y€ A. This will imply that any trajectory originating inside the spi.ral
bounded region must remain within that region for all time. Since the region
may be constructed arbitrarily far from the origin, that demonstration
toncludes the proof.

Expanding the first inequality, we have

FTIDx =xT|AT +¢"xDT| JDx = xTATJDx
=|Dx,Ax|=—|Ax,Dx| >0
forall x g 2, Expanding the second inequality, we have
STy =—yTJf = —yTJAy — cTyvTJDy
=—|dy, y| =Ty |Dy, |

hence, because ¢Ty > 0 for y € 4, and |Dy, »] <0, the desired inequality
Olds when the second term dominates the first term far enough away from
® origin,

" LeMya s, Condition (iib) of Theorem 2 implies that system (2) has
,,"{’O“"dffd solutions Jor every initial condition outside a compact
“8hborhood of he origin.
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Proof.  Let y be a point on (c) whose sign i i
real part of the eigenvalues of D<, s>ay, on thegnegsat?vee Srz:;.eljlest tjesu::jgn of e
in the prof)f of Corollary 2.2, depicted in Fig. 1. Assume again withA e
f’f ggnerallty that JDx is the interior directed normal to 4 at x andn; b
mterlo]l: normal to A for y € A. We need to show that STDx <0 for Y
and fJy <Q for y € A. Since |Ax, Dx| has opposite sign to | Dx, x| iéd
.the assumption that the pencil has positive real eigenvalues ’the t'er
metqy;htyffollows for every spiral loop 4. The second inequality }’lolds o:j
ﬁ:TSJlA;/;Tjgie'. lalst loop for which |ye”y| is less than the constant

. Havx.ng elucidated the geometric implications of the apparatus developed
in Se'cFlon 3, we are now able to show that a limit cycle must exist under the
condmons' .of Theorem 1 or 2. According to the results of Lyapunov, the
local stablhty‘behavior of system (2) is entirely determined by the specill'um
of 4. According to Lemmas 4 and 5, and Corollary 3.1, the global boun-
fiedness of system (2) is determined by the spectrum of the pencil (4, D) it
its nodal range. The following result depends crucially on the special ,naturc

of limit sets of planar dynamical syste i L
; ms establ
Bendixson Theorem. 4 stablished by the Poincare-

'PROPOSITION 1. T}?e conditions (i) and (iia) of Theorem 2 guarantee the
existence of a stable limit cycle of system (2). The conditions (i) and (ib)
guarantee that an unstable limit cycle exists.

Proof.  Assume that (i) holds, and the eigenvalues of 4 have positive real
parts. Tl.len the origin is totally unstable, hence for some positive definite
symmetric matrix, P, R?—{x|x"Px <y} for any y>0 is a positiv
invariant set of system (2). If either version of (ji) holds, then the origin s
the sole critical point of system (2), according to Corollary 3.2 By
Lemma 4. if condition (iia) of Theorem 2 holds, then all solutions of {2) ¥
bounded: in particular, the Jordan Curve 4\U /4 bounds a positivc:-inval'ianl
set, 7 containing the origin. Thus .7~ ~ {x"Px < y} is a compact posilive
invariant set. free of critical points. In consequence of the Poincart”
Bendixson Theorem, the positive limit set of a trajectory in .7 — u’Px <
must be a limit cycle |14]. '

If the-exge'nvalues of A have negative real part and condition (iib) holds
then an identical argument concerning negative limit sets using Lemma 5 il
establish the existence of a limit cycle. R

‘ While the question of necesssity is not formally addressed in this paper t
is usgf'ul to remark upon the existence of limit cycles of (2) when e
conditions of Theorem 2 are not met. Assuming (i), condition i ¢
Theorem 1 or 2 is certainly necessary according to the results of Coppel [81

=
<.
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Note that when A has purely imaginary eigenvalues and nodal values of the
pencil (4,D) have negative eigenvalues, Theorem 3 guarantees global
symptotic stability, while a similar argument establishes that all non-zero
wlutions of (2) grow without bound when the pencil (4, D) has positive
dgenvalues in this case (see the example). If (i) holds and 4 + u{x)D has a
wro eigenvalue for some x € R? then system (2) has at least one critical
point distinct from the origin. On the other hand, given condition (i), there is
2 case where (ii) is violated due to a nodal matrix D, while the plane is left
fiee of additional equilibrium states, and the possibility of a limit cycle
remains. As will be seen below. there is good reason to suspect that system
2) cannot support a limit cycle unless D has complex conjugate eigenvalues.
If true, this would imply that the conditions of Theorem 2 are both necessary
and sufficient for a quadratic system (1) with a single critical point to
support a limit cycle.

5. UNIQUENESS

We finally show that the limit cycle established by Theorems 1 and 2 is
indeed unique. Along the way we will restate the conditions of that theorem
(Lemma 6, below) and provide a better intuitive sense of the mechanism
underlying the isolated periodic solution. This is achieved by a transfor-
mation to polar coordinates.

Assuming 4 has complex conjugate eigenvalues we may always find a
tordinate system (under linear transformation of the state) such that-
d=ol + wj—where =1} 91, J=|? 3'|. and 0. w € R—and c=1ol
Then, defining the polar coordinate transformation p L x+ x|
8% arctan x,/x,. Eq. (2) may be written as

p=(1/p) ST (x)x =plo + pd(6)] .
(3)

Ty
9'.__[__(';)_J£=w+pj(9)‘
x'x

“here d and d are functions of @ onty and are defined by

x" Dx - x'D'Jx
Bcos 852 IR
d(8) & cos 8 Pt d(#) & cos L

:J"der the assumptions of Theorem 2, d is sign definite for #€ |-7/2, 7/2)
lné) ‘Ze assume. with no loss of generality, that sgn w =sgnd > 0. We define
16)& odi(9) — wd(8) and assert the following.

Lemua 6. The Jfollowing conditions are equivalent to those stated in
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Theorem 2, and hence are sufficient for the existence of a limit cyele o

system (3): either

(a) ¢>0andn<0or,

(b) o<Oandn>0 Jor 8 &€ [—n/2, 7/2].

Proof. Since 4 =0l + wJ, condition (i) of Theorem 2 is equivalent to
one of the sign conditions on ¢. From Lemma 2, the eigenvalues of
A + u(x)D are given by

A(x)z—le,DX\_ -1 ©lx D
IDx,3] ~ |Dx, x| O 1% Dxl+ wlUx Dxl) =

EWE

Thus, for 6 € |—n/2, n/2), the sign conditions on d and # are equivalent to
condition (ii} of Theorem 2. |

As reported in 8], limit cycles of quadratic differential equations enclose
convex regions, hence, any periodic solution of (3) must have an angular
derivative, 6, of constant sign: no limit cycle may leave the region
# 4 {x€ R?|w+pd > 0}. Consider x(t; p,), a trajectory in # originating
at p,, a point on the negative x,-axis. For some ¢, >, > 0 we must have
X(f,: po) = p,, a point on the positive x,-axis, and x(¢,; p,) = p,, a point 00
the negative x,-axis, as depicted in Fig. 2. Denote the resulting curve in the
right half plane over the interval (0,¢,] as I, and the left half plane curve:
over the interval 1, t,], as I',. Evidently, I', may be expressed as x(s; pih

ris),
2

%BC a0
éfo p:0

FIGURE 2
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Jhere SE |0, 1, — ;). We will map I' into I, by reflecting a point in the
right-hand curve onto the unique point in the left-hand curve which intersects
Ie line through the origin containing the original point. This may be
justified as follows: since 6 is sign definite, for every 1 € [0, 1] there exists a
wique s € |0, £, — ] and { > O such that

X(s; py) = —Cx(t; po)-

For convenience we shall denote points on the right-hand curve, I',, by r(t),
and on the left-hand curve, I, by I(s), letting p & ||r(t)ll and 1 & | {(s)l| = &p.
The chief advantage of this map is the induced functional dependence of s on
,hence the ability to write a differential equation for p and 4 using the same
mgular interval. From (3) and the above, we have, for fixed initial con-
ditions,

—d—lnp- o+pd
de " i
wrrd g _a2a2). (4)
d . _o-id
—Ink=-——
df w—Ad

The restatement of Theorem 2 in Lemma 3 lends added insight into the
mechanism by which x(¢; p,) grows and decays on I, U T,. Considering
¢ (i) of Lemma 3, since od >0 on [-7/2,n/2], the condition 5 <0
tecessitates > O on that interval. Hence, from (4), while p must increase on
I 1 becomes negative when I, enters the region & 2 {xER’[x, <
~0(x" Dx/x"x)} in the left half plane. Moreover, # has a boundary, 0%, in
the left half plane and # < O implies 8% << —i.e., that certain trajectories
®ontained in % must enter . Since (d/df)L — —co as I(s) - I%, the growth
oa trajectory on I, is countered with increasing effect on a portion of I'y,
"Sulting in a limit cycle. Notice that if D has real eigenvalues then dis no
nger sign definite, hence d may not be sign definite, and these remarks are
F:c;:’"g(’-r valid, underscoring the importance of the requirement that D be

am?h; differential equations in (4) define two families of functions, p(6"; P")
t (0; 4,), parametrized by initial condition on the negative and positive
-uz-axeS, respectively. Observing that A, =p(1/2;p,)—i.c., that 4, depends
efop Pe—and that the vector fields in (4) are smooth when x € #, we may
irlchnly regard p and A as functions of 8 and p,, continuously differentiable
deﬁnOth arguments. Since distinct integral curves of autonomous systems
ang ed by smooth fields remain distinct over all time, we have (8/dpy)p > 0
©/8py)a > 0 for all B {=n/2, n/2]. Hence, the function

A/2,p0) _ A/2,p0)
p(—n/2,p,) Po

w(po) &

s
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which reresents the ratio of the magnitudes of the end-points of the cur
I, UT, (both on the negative x,-axis), is a continuously difTerentiab‘le

function of py. Evidently, I', U T, is the integral curve of a limit cycle jf ang |

only if w=1. The proof of uniqueness involves a demonstration thy vi
monotone in p, over an interval of interest, and hence may pass througp | N
most once. That demonstration depends upon the following computatioy :

LemMma 7. Conditions (a) and (b) of Lemma 6. respectively. impjy
8 A op ) [a . ]
Zn (22 2 — s
(a) Pl (apo Zn <2 ag(nAp) o/w
8 a1 ép ) [6 }
— - — {1 — .
(b} g n (5/70 o >2 Be(nlp) o/w
Proof.
2 (axa_p)_ G e & (o
" \Gp, o) 902py| Gp, 0 0pq py’

From (4) we have

o o é " a

— == —lni+l———:":|”_

e (a8 = [ o)
and

é yop é n }E’p

— (=)= ghp+p——s

20, (ae) [ae PP o+ pdy ) e

Since d>0, we have w/(w-Ad)>1, and w/(w +pd) < 1, for dl
6 € [—n/2.7/2]. Hence, if condition (i) of Lemma 3 holds then

i1 A _:—?—lnl—o/w
(w—AdY ww-—-id &0

and
ﬁ’—’7'-_—<i u ,=—(j-lnp—a/w.
(w+pd)? w w+pd 90

since 7 < 0 on [—7/2,7/2] and substituting from (4).
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gince O/ 8pos 0p/épy > O, this implies

g (04 I 23
70, (@)< (ZEInl—o/w)m
i 5_/’) ( 2 )

7 (90 < 299“1/)_0/“) e

yic]diﬂg (a). above. The identical argument holds for (b) with signs reversed.

since 11 > 0
we may now state the second principal result of this paper.

pROPOSITION 2. Under the conditions of Theorem 2, system (2) has only

one limit cvele.

proof.  x(t: pg) is @ limit cycle of (2) if and only if w(p,) =1 in system
(3 According to Theorem 2, » A {Pa> 0| wipy) =1} is non-empty, and

I pounded away from the origin, hence pgf £ inf ¥ exists and pF > 0. We will
. show that (d/dpg)y is sign definite for all p; > p¥, hence x(1: p¥) is the only

) limit cycle of (2)
[ :
Py

Note that
d !
We will show below that under condition (a) of Lemma 6,

i —

——y= Mn/2.p)— v |-
dp, P (M/2.py) — v

P
A 7 2. 2 - 2n0 m.
F/J“ ( / ﬂn) <y'e
and hence

<l fwe= e — .

-V
dpy Po

Since 6/w > 0 and w(pF) = 1. this is clearly negative for p, > p¥. Similarly.
under condition (b) of Lemma 6 the inequalities are reversed, and o/w < 0 so
that (d/dp, )y > O for all p, > p§.

To obtain the bound on (6/épy)A(r/2.p,) we recall that A(—n/2,p,)=
P2, po) and p(~-1/2, py) = p,. hence

(4 [4 [
In— A(n/2, p,) = - —_—
o A8/ =0 [ = 0872 90) - o200

I4 4
In|— A(—
n [ﬁpn A—=7/2, py) %oy p(—n/2, pn)]

[

/2 a
= =1
D58

1]
apy

A8, p,)

4
p,

P60 do.
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Applying Lemma 7 to case (a) yields

in - Az '"/22311/)110
— —_— — g/
n s M/ ,po)<J_x/2 (ae np

INELLYS
=ln (;»(—n/z, 2)

=In y? - 2n0/w,

>Z —2no/w

hence (8/8p,)A(n/2, po) < w'e!~1™/“) as claimed. Case (b) proceeds igy,
tically with the signs reversed. 1l

6. CONCLUSIONS

This paper presents sufficient conditions for the existence of limit cycles o
quadratic systems with a unique equilibrium state. The conditions guarante
that the limit cycle is unique. The results are based upon insights apg
techniques developed during an earlier investigation of the global stabiliy
properties of (1) [1], facilitated by the expression of that system in the forn
(2). They strongly suggest that these conditions are necessary as well, hence,
that no quadratic system with a unique equilibrium state can support mor
than one limit cycle. That result, the uniqueness of a limit cycle around any
equilibrium state of (2), the relation of limit cycles of (2) to those supported
by general quadratic systems (1), all remain to be rigorously established.
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