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Toward a Science of Robot Planning and Control

Abstract

Programming machines to operate flexibly and autonomously in the physical world seems to require a
sophisticated representation that encodes simultaneously the nature of a task, the nature of the environment
within which the task is to be performed, and the nature of the robot’s capabilities with respect to both. We
seek a scientific methodology of robot task encoding that encompasses the desired behavioral goals and
environmental conditions as well. The methodology must balance the need for flexible expression of abstract
human goals against the necessity of a eliciting a predictable response from the commanded machine. This
talk focuses on the problem of motion planning as an example of how we propose to say what we mean to a
robot and to know what we have said.
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Toward a Science of
Robot Planning and Control

Extended Abstract of a Talk Delivered at the AAAS Annual Meeling
Technical Workshop on Robotics and Mathematics
Washington DC, February 14-19, 1991

Daniel E. Koditschek *

Center for Systems Science
Yale University, Department of Electrical Engineering

1 Introduction

Programming machines to operate flexibly and au-
tonomously in the physical world seems to require
a sophisticated representation that encodes simul-
taneously the nature of a task, the nature of the
environment within which the task is to be per-
formed, and the nature of the robot’s capabilities
with respect to both. We seek a scientific method-
ology of robot task encoding that encompasses the
desired behavioral goals and and environmental
conditions as well. The methodology must bal-
ance the need for flexible expression of abstract
human goals against the necessity of a eliciting
a predictable response from the commanded ma-
chine. This talk focuses on the problem of motion
planning as an example of how we propose to say

hat we mean to a robot and to know what we
ave said.

2 Task Encoding

Roughly speaking, control theory has traditionally
postulated a plant and a reference trajectory, and
addressed the problem of how to force the plant
to “track” the desired trajectory. Speaking even
more roughly, artificial intelligence has tradition-
ally postulated some abstract (generally human)
goal and a symbol processing machine, and ad-
dressed the question of how to represent the goal
within that symbolic system, sometimes consider-
ing the problem of realizing that goal symbolically
as well. There is an obvious gulf between the (tra-
ditionally stafic) symbol system and (the usually
physical) dynamical plant: roughly speaking, one
must ask “where did the reference trajectory come
from?”

2.1 Desiderata

Arguably, then, the business of “intelligent con-
trol theory” should concern the generation of goal
representations that admit an automatic synthesis

*This work was supported in part by the National
Science Foundation under a Presidential Young Inves-
tigator Award.

of controllers whose effect upon the plant is prov-
ably correct. Thus, the term “task encoding” is
intended to encompass

1. a programming Iaanage based upon the dy-
namical geometry of the plant and its environ-
ment;

2. asynthesis procedure capable of generating con-

trollers for the plant automatically from the pro-
gramming language;

3. a proof that the plant fogether with the con-

troller ef&icts the correct behavior within its en-
vironment;

4. a generalization scheme for re-using, in “equiv-

alent” situations, task specifications and/or the
controllers that result.

The work my students and I have completed in
the field of robotics represents a very tentative and
incomplete effort toward a theory of task encoding
for a greatly restricted class of plants and environ-
ments. We have as yet no formal language for
any setting. In some areas our correctness proofs
lag far behind our experimental cbservations, in
ot%lers our proofs require such unrealistic assump-
tions that no fruitful experiments have yet been
attempted. Qur notions of generalization remain
narrowly specialized. Nevertheless, the program
of task encoding, however ambitious or even, pos-
sibly, wrong-headed, seems to represent one of the
few clearly articulated statements of what it might
mean to have a scientific program of research in
“intelligent control ”

2.2 Representation

One of the reasons that the program outlined
above is difficult to put into practice is the gen-
eral absence of models that are sufficiently accu-
rate to represenf{ the phenomena of interest but
sufficiently simple to admit some hope of subse-
quent analysis.

Of the fundamental representation issues intro-
duced at the beginning of this paper, only the last
may be said to be scientifically well founded at




present: the robot may be effectively modeiled as a
nonlinear control system using techniques of 19th
century physics. Accepting the standard physi-
cal model of the robot as a controlled dynami-
cal system, any language for prescribing its be-
havior must ultimately be resolved into force com-
mands at the actuator level. The resulting behav-
ior is then governed by certain nonlinear differ-
ential equations and it makes sense to model task
and environment in terms amenable to analysis by
dynamical systems theory.

The matter of representation now becomes knot-
tier. In all but the most trivial instances, the

robot’s, desired bel)av'or involves interaction with
an environment, £, that musl 1isell possess geo-

metric and dynamical properties. Moreover, in the
context of particular tasks, various aspects of the
robol’s operation in the environment will give rise
to a new set, P, that might be called the “plan-
ning set”, within which particular goals may be
formally represented. Finally, a robot operating
in a specified environmeni{ might be assigned a
variety of tasks. The specific task desired — an
abstraction meaningful initially only to its human
originator — must be encodéd in terms that re-
late to the robot in its environment. Thus, within
the context of the planning set there must be de-
vised a formal representation of the desired behav-
ior ~— the “encoding”. It is not at all clear how
to tell a robot to “lold the laundry” or “scram-
ble the eggs” or “make the bed”. For such tasks
neither the environment, £, nor the appropriate
planning space, P, nor the task encoding seem
very obvious. In contrast, this talk presents a pro-
gram of task encoding over a domain wherein the
ordinarily confusing issues of representation seem
relatively straightforward.

3 The Navigation Problem

Let a robot move in a cluttered but perfectly
known workplace. There is a particular location
i it is desired that ¢ bot t
ghirtsrsitang s desired that the yobot mov to

without colliding with the obstacles present.

3.1 Representation

The constituent pieces of the problem seem read.
ily apparent in this case. The robot model has
already been introduced. The environment, £, is
stmply the workplace — a subset of Euclidean 3-
space remaining after the cbstacles are removed.
Contained within the robot’s configuration space
is the free space, F — the set of all robot place-
ments which do not involve intersection with any
of the “obstacles” cluitering the workplace. The
appropriate planning set, P, for this problem is
now clear: it is the phase space formed over F,
that is, the union of all the robot’s configuration
space veloeity vectors taken over each configura-
tion in F. For present purposes this may be mod-

elled as a smooth manifold with boundary (but
see {20] for the case of sharp corners). The task
also seems straightforward to represent: a partic-
ular navigation problem results {rom the choice of
one particular destination point in the interior of
the freespace. The goal set, G, is a singleton: the
destination point at zero velocity. The problem

is pow to find a feedback controller under whose
%n uence the rgbote’s state wxhr approach G grom

as large as set of initial configurations as possible
while remaining in P.

A few caveats are in order before proceeding,
First, it is entirely likely that the robot’s freespace
is not connected — that is, there may be no col-
lision free path from some legal configurations to

the destination. In the more tradifional, version
olr thdls pro%tl‘em, the navirgatﬁon prog’lem includes

the decision task of whether a particular initial
configuration is in fact included in the same con-
nected component of F as the destination. In the
present formulation the robot must arrive (with
probability one) at the goal if a path exists. Thus
one can only conclude (with probability one) that
ro such path exists for a particular initial config-
uration only after the robot’s motion under the
controller ceases at some spurious location. Sec-
ond, a constructive representation of the planning
space, P, may be very difficult to obtain in prac-
tice, even when £ is perfectly known (which, of
course, it might not be in the real world). Yet this
work presumes that exact information concering
the boundary components of 7 is available,

3.2 Navigation Functions

Motivated by Lord Kelvin’s assurance that dissi-
pative mechanical systems end up at the local min-
ima of the potential field, a great deal of interest
e e ST St d ity sopatraction
problems. Initiated by Khatib a decade ago [8],
the idea of using artificial potential functions for
robot task description and control was adopted or
re-introduced independently by a number of re-
searchers {17, 1, 18]. Since the interest in artifi-
cial potential functions originally emerged within
the robotic control community, it is perhaps not
surprising that little attention was paid to the al-
gorithmic issues of global path planning in this
literature. The question of whether the method
could be used to guarantee the construction of a
path between any two points in a path-connected
space remained unexplored. Yet it is exactly this
kind of global property that would lend autonomy
from “higher level” intelligence to the controller,

A Practicable Global Stability Mechanism
In the present context, the utility of artificial po-
tential functions for path planning rests upon the
possibility of deducing global sta%ility propertics
from local computations. Because the potential
funtction serves as a global Lyapunov function for



its gradient vector field, it is easy to see that the
minima of a gradient system (that satisfies cer-
tain regularity conditions) will attract almost all
trajectories 7, 12}. Of course, the condition for
a minimum is a local one that may be construc-
tively checked via calculus and algebraic computa-
tion. Thus, if it can be assured that there is only

one mjnimum and, that it coincides with the de.

as a global path planner on the freespace, . Of
course, the appropriate planning space is P, the
space of legal configurations and all their possibie
velocities. But a slight extension to Lord Kelvin's
century old results on energy dissipation suffices
to make the same machinery work with a suitably
designed controller for the robot on P [12].

Existence Gradually, there seems to have
emerged a common awareness of several fun-
damental problems with the potential function
methodology First, researchers inevitably discov-
ered through simulations or actual implementa-
tions that progressive summation of additional ob-
stacles often lead to spuricus minima and their ac-
companying local basins of attraction into which
the robot would generally “stall out” long before
acheiving the desired destination. Second, the in-
finite value of the artificial potentials required to
prevent trajectories of the ultimate mechanically
controlled system from crashing through obsta-
cle boundaries obviously could not be achieved in
the physical world and there were no clear guar-
antees as to when the saturation torque levels of
the robot’s actuators would indeed suffice to pre-
vent collisions. Thus, an artificial potential func-
ton need satisfy a list of technical conditions in
order to give rise to a bounded torque feedback
controller that guarantees convergence to the goal
state, G, from almost every initial configuration.
‘This list comprises comprises the notion of a nav-
igation function introduced to the literature two
years ago [19].

The question immediately arises whether such
desirable features may be achieved in general. In
fact, the answer is affirmative: smooth naviga-
tion functions exist on any compact connected
smooth manifold with boundary [16]. Thus, in any
problem involving motion of a mechanical system
through a cluttered space (with perfect informa-
tion and no requirement of physical contact) if the
problem may be solved at all, we are guaranteed
that it may be solved by a navigation function.
There remains the engineering problem of how to
construct such functions

Invariance The importance of  coordi-
nate changes and their invariants is by now a well
known theme in control theory. Roughly speak-
ing, these notions formalize the manner in which
two apparently different problems are actually the

same. Their mgst familiar instanc? is undoubt-
edly encountered in the category oi linear maps

on linear vector spaces whose invariants (under
changes of basis) determine closed loop stability.
Of course, many other instances may be found in
the control literature and, more recently, the util-
ity of coordinate changes in robolics applications
has been proposed independently by Brockett {2}
as well.

The relevant invariant in navigation problems
is the topology of the underlying configuration
space [10]. In this regard, the significant virtue of
the navigation function is that its desirable prop-
erties are invariant under diffeomorphism {16].
Thus, instead of building a navigation function for
cach particular problem, we are encouraged to de-
vise “model problems”, construct the appropriate
model navigation functions, and then “deform”
{,hem into the particular details of a specified prob-
em.

4 The Construction of Navigation
Functions

4.1 A “Model” Problem

A “Euclidean sphere world” is a compact con-
nected subset of E® whose boundary is the dis-
joint union of a finite number, say M + 1, of
(n — 1)-spheres. We suppose that perfect infor-

mation about this space has been furnished in the

form of M + 1 center points {‘Ii}?io and radii

{Pt‘},‘Mzo for each of the bounding spheres. There
are two new ideas in our artificial potential func-
tion construction. First, we avoid spurious minima
by multiplying the constituent functions together
rather than summing them up. Namely, the “bad”
set of obstacle boundaries to be avoided is encoded
by the product function, 8 : M — [0, 00) is,

ﬁ g H;}ioﬁi:

where

fa) A .
Bo = po—lldll & B = la-gll*~p} i=1...M

are the outer boundary and inner obstacle func-
tions, respectively. The good set, the desired des-
tination, g4 is represented by an ordinary Hook’s

Law potential, v £ llg — gal|?*, raised to an even
power and the rough syntax “go to ¥ = 0 and do
not go to 8 = 0" is encoded by the intuitively
obvious product

v

¢ 2 1.
B

Of course, ¢ is unacceptable since it is unbounded.

The second new idea at work is to produce a

bounded potential and gradient by a smooth
“squashing” function,

e

r
14z

o(z) &



Note that the composition

oo @ os _’Y,m_.

v+ P

is everywhere smooth and bounded, and attains
its maximal height of unity only on the boundary
components of the configuration space. For tech-
nical reasons we find it necessary to take the k'A
root of this ratio with the following result.

Theorem 1 ( (16]) If the configuration space,
T, is a Buclidean sphere world then for any fi-
nile number of obstacles, and for any destinalion
point in the interior of 7,

,},k ¥
‘P=0d000¢2(m) ' (1)

has no degenerale critical poinis and allains the
its mazimal value of unily on the boundary, 07.
Moreover, there exists a positive integer N such
that for every k > N, ¢ has one and only one
minimum on J.

The function, N, on which the theorem depends is
given explicitly in [16].

Figure 1: Planar sphere world with nine inter-
nal obstacles [23]. Contour lines denote the level
curves of a navigation function constructed ac-
cording to Theorem 1.

4,2 A Class of Coordinate
Transformations

A star shaped sel is a diffeomorph of a Eu-
clidean n-disk, D™ possessed of a distinguished in-
terior cenier peint from which all rays intersect
its boundary in a unique point. A star world is
a compact connected subset of E® whose bound-
ary is the disjoint union of a finite number of star
shaped set boundaries. Now suppose the availabil-
ity of an implicit representation for each bound-
ary component: that is, let §; be a smooth scalar

valued function that is positive outside, negative
inside, and vanishes on the boundary of the ith
obstacle. Assume, moreover, that a known cen-
ter point location, g; has been specified for each
obstacle as well. Further geometric information
required in the construction to follow is detailed
in the chief reference for this work [21]. A suit-
able Euclidean sphere world model, M, is explic-
itly constructed from this data. That is, one de-
termines {p;, p;), the center and radius of a model

4% sphere, according to the center and minimum
“radius” (the minimal distance from ¢; to the j**

obstacle) of the j** star shaped obstacle.

A transformation, h : M — F, may now be con-
structed in terms of the given star world and the
derived model sphere world geometrical parame-
ters as follows. Denote the “j** omitted prod-
uct”, MM of; as f;. The “ith analytic switch”,
oj € C*[F, IR},

z on_Bj _ vafib ]
z+A vafBib 4+ AB;’

(where X is a positive constant) attains the value
one on the j** boundary and the value zero on
every other boundary component of F. The “j!*

star set deforming factor”, v; € C¥[F,IR],

1+ 5;(q)
fle - o1l

scales the ray starting at the center point of the
j** obstacle, g¢;, through its unique intersection
with that obstacle’s boundary in such a way that
¢ is mapped to the corresponding point on the jt*
model obstacle — a suitable sphere. The overall
effect is that the complicated star shaped obsta-
cle is is “deformed along the rays” originating at
its center point onto the corresponding sphere in
model space,

The star world iransformation is now given as

oi(g,2) 2

A
vi(9) = #j

me) £XMo0i(e, M vi(e) - (a—g5) +p1)
+oa(g, A [ (g—gd) +pa], @

where ¢; is the j** analytic switch, o4 is defined
by

M
o4 & I—ZO}', (3)
j=0

and ; is the j'* star set deforming factor. The
“switches”, make h look like the j** deforming fac-
tor in the vicinity of the j'* obstacle, and like the
identity map away from all the obstacle bound-
aries. With some further geometric computation
we are able to prove the following.



Theorem 2 ( [21] ) For any valid star world, F,
there ezxists a suilable model sphere world A, and
a postfive constant A, such thati if A > A, then

h)\ (F e M,
is an analytic diffeomorphism.

Thus, if ¢ is a navigation function on M, the con-
struction of k) automatically induces a navigation

function on F via composition, ¢ 2 woh,.

2\

4
I
=%
L=
| e

e v - v R

Figure 2: Planar star world with nine internal ob-
stacles [23]. The contour lines are level curves of a
navigation function induced by diffeomorphism ac-
cording to Theorem 2, modified to take account of
the “sharp corners” [22]. The model sphere world
is depicted in the previous Figure 1.

4.3 Navigation Functions for
Geometrically Complicated
Spaces

In a recent paper [20], we show how to extend sig-
nificantly this class of coordinate transformations.
Briefly, consider an obstacle O; which is a union
of several intersecting stars. The arrangement of
the stars in @; can be partially described by a
graph. If the graph is a tree, and the geometric
arrangement of the daughters to the parent starsin
the tree satisfies certain other regularity assump-
tions {20] then say that the obstacle is a iree of
stars; a foresi of irees of stars is a freespace, F,
consisting of the disjoint union of a finite num-
ber of trees of stars. It can be shown that any
deformed sphere world can be approximated arbi-
trarily closely by a suitable forest of trees of stars

(23). Such a forest, F has a purged version , F,
defined to be F with the leaves in trees consisting

of ?orﬁ than one star filled-in an “reattached”
to . Using the 1deas presented above, we have

shown how to define a change of coordinates from
any forest, F, to its purged version, ¥, [20]. Suc-
cessive purged versions of a forest result eventually

in a star world. Thus by composing successively
such “purging transformations”, we change coor-
dinates from the original {orest of trees of stars to
a star world on which a navigation function can
be constructed as described above.

Figure 3 depicts a two-dimensional (the resulis,
of course, work in arbitrary dimensions) forest of
stars resembling a building floor plan. There are
three internal tree-like obstacles, and the depth of
the deepest tree isd = 4. According to the method
described above, the purging transformation, fy,,
is applied d times, until a space whose obstacles
are the roots of the original trees is obtained.
This space is a star world: the the previously
constructed star-world to sphere-world transfor-
mation [21] may now be used to to obtain the cor-
responding model sphere world, A, on which the
simple navigation function may be used.

Figure 3: Planar forest of stars with three inter-
nal tree-like obstacles (bottom right), its “purged”
versions, and its model sphere world (top left). {20]

5 Conclusion

"This paper has presented an example of the task
encoding program that underlies all of our intelli-
gent controls work within the Yale Robotics Lab-
oratory. Its focus, the navigation function repre-
sents the broadest scope of application we have yet
found for any particular encoding. From the point



of view of traditional control theory this merely
represents an extension of proportional-derivative
feedback techniques to settings wherein global con-
vergence cannot obtain {rom linear methods be-
cause the state space is topologically distinet from
a Euclidean vector space. Nevertheless, this stm-
ple notion seems to have considerable power in ap-
plications [11] beyond the a control-theoretic refor-
mulation of the famous “piano movers’ problem,”
[24] treated here.

In the next few years it will be essential to de-
velop an adaptive version of these techniques in
order to tolerate uncertainty in 4 priori knowledge
of the environment. Moreover, some means of clas-
sifying the topological equivalence class of reason-
ably common free configuration spaces will be es-
sential if the constructive nature of the approach is
to be generalized further. Most broadly, the chief
need is to remove enough & priori assumptions in
the theory that reasonable physical experiments
may begin.

This program of research has been extended be-
yond the purely geometric task domain consid-
ered here. We have succeeded in encoding certain
primitive dynamically dexterous tasks as throw-
ing, catching, and juggling using a geometric for-
malism {8, 5], that seems to admit correctness
proofs in simple cases {3, 4]. The stability mech-
anism underlying the success of these computa-
tiona! structures has been understood only re-
cently within the “chacs” literature, and seems to
f;e]neralize to successful hopping algorithms as well
g].

There are present plans to extend the purview
of this methodology still further. Planning and
control of automated assembly may be cast as
the problem of controlling a nonholonomically con-
strained mechanical system [13, 14}. Recent think-
ing suggests that some combination of navigation
functions {25] and juggling theory {15} may offer
some help in solving such problems. This work is
still very tentative.
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