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A “Robust” Convergent Visual Servoing System

Abstract

This paper describes a simple visual servoing control algorithm capable of robustly positioning a three degree
of freedom end effector based only on information from a stereo vision system. The proposed control
algorithm does not require estimates of the gripper’s spatial position, a significant source of calibration
sensitivity. The controller is completely immune to positional camera calibration errors, and we demonstrate
robustness to orientation miscalibration through a series of simulations and experiments.
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Abstract

This paper describes a simple visual servoing conirol algorithm capable of robustly position-
ing a three degree of freedom end effector based only on information from a sierco vision system.
The proposed control algorithm does not require estimates of the gripper’s spatial position, a
significant source of calibration sensitivity. We show formally that the controller is immune to
positional camera calibration errors. Aditionally we demonstrate robustness to orientational

miscalibration through a series of simulations and experiments,
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1 Introduction

With the advent of affordable and computationally powerful computer vision hardware, it has become
abtractive to consider developing systems which make use of vision as their primary form of feedback.
This trend towards “visual servoing” systems stands in contrast to the traditional notions of machine
vision, In that tradition, a system uses vision as a means of statically planning future actions. Visual
servoing systems make continuous use of visual information both to evaluate their moment to moment
performance and to plan future action. Again, fraditional vision systems typically measure features
or target positions in a robot’s workspace in support of off-line motion planning. Inevitably the
performance of such a system is highly dependent on the accuracy of the calibration of both the
manipulator and camera subsystems, as the connection between them is open loop by design. In
contrast, if vision is used both for the planning and execution of manipulator motion, the desired
robot configuration can be described as a particular set of visnal observations, and possibly, the
need for exact calibration information may be relaxed.

Recently, a number of researchers have begun to report on such “visual servoing” systems [1]. In
a previous paper, two of the present authors [2] have futher classified these techniques into twe sub-
categories: one relying on a position-based approach and the other an image-based method. This
distinction is based on whether the servo error is specified in the image planes of the camera systems
or in the workspace of the manipulation system [3]. The methods described in this paper rely on
stereo viston to produce image-based servo errors which in turn generate (via the “visual servoing”
algorithm) velocity commands for what we will construe to be a point manipulator in space. The
only task considered will be “point positioning”: moving the manipulator in such a manner that its
point image coincides with a prespecified image target location.

The objective of this work is to explore the robustness issues surrounding such a visual servoing
system, In particular, we wish to understand the effects of miscalibration of extrinsic camera pa-
rameters on the performance of visually based control strategies. In this paper, we present a simple
control algorithm suitable for a three degree of freedom relative positioning problem — alignment of
an end effector with an identified target in space. Since the proposed algorithm does not require
an estimate of the spatial position of the end effector while carrying out such a motion, we can
avold performing algebraic triangulation from stereo image data, a significant source of calibration
sensitivity, The methods presented here, based on modified gradient and Newton descent of visually
measurable cost functions, accord particular attention to the descent structure in order to guaraniee
convergence while minimizing the calibration sensitivity. We believe that the work presented here
provides a starting point for the design of robust controllers for the more generic problem of visually

servoing the rigid transformation (six degrees of freedom) discribing the gripper.




2 Background

A number of researchers have developed control systems capable of achieving goals expressed only as
visual events. Predominantly this literatures uses a Newton like method to minimize the measured
visual error.

Espiau ef al. {4] introduced interaction matrices for primitive visual features, a concept similar to
the feature Jacobian introduced in [5], and used its generalized inverse for generating gripper velocity.
Papanikolopoulos and Khosla 6] encoded a tracking task as minimizing the sum-of-squared difference
optical flow. They used an adaptive mechanism to compensate for uncertainties in the model and
to determine the depth related parameters in tracking an object. This algorithm requires an exira
initialization process to align camera and target frames. Castano and Hutchinson {7} introduced
a new hybrid vision/position control structure. They decompose the robot’s task such that visual
servoing is used only to control motion in the plane parallel to the camera’s image plane, while errors
in depth are controlled by a trajectory planner. The success of task decomposition depends strongly
on the calibration of the camera,

More recently some researchers have introduced uncalibrated stereo cameras in their systems and
provided successful working demonstrations [8, 9]. Hollinghurst and Cipolla {8] propose a position
based servo algorithm using a static stereo vision system. Since they use an affine stereo algorithm
to estimate positions of a robot and an object, it is valid only when the depth of an object is small
compared to the viewing distance,

In the direct antecedent of this paper [9], Hager, el al. proposed a robust image based visual
servoing technique, which made use of a static stereo camera system. The vision system was used
to observe both the manipulator and target, forming the so-called ‘endpoint-closed-loop’ system.
The control error for this system was defined as a visual “distance” from the gripper to a target
(a similar problem was formulated in [10],{8]). The control system regulated this “visual error” by
commanding velocities of a manipulator’s end-effector. The particular control strategy chosen for
this system required knowledge of the manipulator’s Cartesian position - data expressly precluded
by the desire to work solely in image plane coordinates as described above. Instead, the authors
proposed a nonlinear observer that would estimate this data. Experiments demonstrate that the
proposed control scheme is robust in the presence of relatively large calibration error, however the
stability of the overall closed-loop system still remains unproven. We achieve the same result in
this paper without requiring any state observer, and we are able to {urnish a stability proof for the

proposed algorithm as well.




3 A New Family of “Local” Visual Servos

This section offers a brief overview of the models associated with visual servo systems, then goes on

to present a novel strategy based on insights gained from the structure of those models.

3.1 Stereo Camera Model

Consider two camera coordinate systems given by X,,, %., and a world coordinate system X, as
illustrated in Fig 1. The stereo projective transformation, g : R* — R?, maps a spatial point, r to

a pair of image plane points, 8. In general, this transformation can be written as [11]

T
& z fl %%T_‘ﬁ:
T
9 , fl [T:Cl_yl_
o= " | =gmy=| -0 (1)
92"1: 'f2 T“Cg Tz;,\

f. r-cj'y,
2P —CJT %,

where, ¢; and f; represent the location and the focal length of camera ; x;, y; and z; are the

orthogonal unit vectors defining the local coordinate system of camera i, with z; directed along the

optical axis of the camera. If we define I); := (r — ¢;)7 2;, then the Jacobian of g evaluated at 7,

Dyg(r) can be written as

~fillr ~ e1) x )T/ D}
fil(r — 1) x w:]"/ D}
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where x denotes the vector eross product. Finally, we note that this Jacobian will lose rank when

Dg(r) = (2)

(r —e1) x (r — e2) = 0, or equivilently, r € €163 or €1 = s

3.2 Problem Statement

Suppose a distinguished point on a robot gripper, », can be imaged by a stereo camera system as
defined above, 8 = g(r). Then the visual servoing task we wish to address is: given a desired image
plane point, 84 € g(r4), and a robot controller capable of commanding arbitrary velocities in the
Cartesian workspace,

o=,

find a velocity eontrol strategy, u(8,84) such that

g(r) — 84.




As stated this problem is a three degree of freedom positioning task for the manipulator’s gripper.
If we define ep := 83— 6 as the “visual” error, then the closed loop error dynamics for such a system

becomes

es = g(ra)—glr) (3)
ég = —Dg{r)u (4

3.3 Newton and Gradient Algorithms
Equation {4) takes a very standard form for which there are well understood solutions. In the sequel
we will distinguish between Newton and gradient based variants of these solutions.

3.3.1 Gradient Method

Consider a control strategy of the form
u = [Dg(r)]"es. ()

Since [jeg|? decreases along the motion of the resulting closed loop system, solutions of this form
can result in overall system stability. Unfortunately, such gradient based descent techniques suffer

from a number of well known shortcomings, the most relevant being:
Slow convergence: A property characteristic of gradient systems in general.

Calibration sensitivity: This follows from the dependence of [Dg(»)}¥ on 7, which in practice
must be computed as ¢(8) (i.c. requires triangulation), within the visual servoing assumption

of no Cartesian data.

3.3.2 Newton Method

Similarly, a control strategy of the form
u = [Dg(r)]tes, (6)

(here M1 denotes the generalized inverse of the non-square matrix Af) can be used to generate
stable motion. Moreover such an approach has the added benefit of producing uniform convergence,
overconing one of the drawbacks of the gradient method. Unfortunately, calibration sensitivity
remains unaddressed as it is still necessary to compute = via triangulation of stereo image plane

measurements.




3.4 Some Algebraic Identities

Before considering some alternative controller strategies we pause to review a number of algebraic
properties associated with the perspective projection.

Begin by noting that equation {1) can equivalently be written in the form

A(O)r = b(8), (M)
where
[ 0002 — fraa)T
[gl,yzl - flyi}T 4% 3
A(g) = € R™", 8
©) (62,222 — fama]T ®
\ [Bay22 — foura]™
[ e (01,021 — frwd]
Tt y21 — fry;)
be) = LUy ! R 9
( ) 05{92,47742 - f2=ﬂ2] © ( )
\ <3 (02922 — fauo)

From this it follows that Dg(r) in (2) can be factored inio state dependent and measurement

dependent matrices (as shown in Appendix A}:
Dg{r) = ~I'(r)" " A(8), (10)

where

T
27 (r —e)I o
I‘(‘F) o i( 1) 2 c R4>(4
g Zg('ﬂ" - 02)12
and I, denotes the n x n identity matrix. Note that whenever # is visible from both cameras (in
front of them), I'(») is a positive definite matrix.
Additionally we can develop an algebraic relationship between work-space errors and visual

errors. Giiven that A(8)# = b(8), it follows that
A — 7] = —T(»)[6 — 6] (11)
A(O)[# —v] = —T\(#)[0 — 6] (12)

as shown in Appendix A.
These properties of the projective transformation afford the design of simple controllers, as we

now show,



3.5 “Local” Newton and Gradient Methods

In place of the “global” controllers presented above, we propose here what may be thought of as
their “local” variants. These strategies have the property that the controllers use “fixed gain” laws
based only on the desired set point.

The Newton type controller which results from this approach takes the form
u=—AN0,)Key. (13)
While the corresponding gradient algorithm is given by
uw=—~A"(84)Key, (14)

In these equations K € R*** is an arbitrary positive definite diagonal gain matrix. Note that both
of these proposed control laws are independent of the current gripper position and that A(8y) is a
constant matrix for a given image plane target. Note that A(-) depends upon neither ¢; nor g, so

that (13) and (14) are completely immune to baseline miscalibration.

4 “Gzlobal” Stability Analysis of the “Local” Newton and
Gradient Variants

Consider, first, the case of perfect calibration information — that is the orientations of both cameras

are known'!

. We will show that the algorithms of Section 3.5 are asymptotically stable with a
large domain of attraction. Thus, despite their reliance on only local measurement data , these
“local” variants {13} and (14} have as large a domain of attraction as (5) and (6), assuming perfect

calibration.

4.1 Proof of Stability
Making use of (10), the error dynamics of (4) can be rewritten as
I(r)ées — A(@)u =0 (15)

The stability of this closed-loop system, using the local newton control law, can now be examined
by making use of
1
Vieg,?) = 583‘11(1’)11(1‘)69,

1Note that since the algorithms in question are independent of camera position we need not be concerned with

positional calibration information.



as a Lyapunov candidate function,

Taking the derivative of V along the systems trajectories yields

Viea,7) = efT(r){T(r)es +T(r)éo)
= el () (D{(Z+)es + A(O)F)
= esT(r)A(84)u
= —elT(r)A(82)AN(B4)es
= (ra—r)T AT(0)A(82) AN (Ba)es

where D(') denotes the diagonal matrix with its argument and Z as defined in (18).
If the orientations of the cameras are perfectly known — as has been presumed — it then follows

that

Vies,7) = (ra—r)T AT(84)es
= —83111(1')63

<0

and we conclude that ey — 0.
Similarly for the gradient control law of Section 3.5, we begin by choosing as a candidate lyapunov

function,

Virgr)= %(rd — Y (ra—r).
This leads to the derivatives of ¥ along the systems trajectory being
Vira,7) = —(ra—r)Tu
= (ra—7)TAT(84)eq
= —e‘{I‘(T)eg
< 0.

Again we conchide that the closed loop system converges (regardless of any positional miscalibration

of either camera), provided the gripper remains visible from both cameras throughout the motion.

4.2 The Need for Containment

Unfortunately the “global” results described in this section are conditioned by the fact that the
end-effector of the robot must stay “in front” of both cameras during its motion. However, none

of the algorithms presented have guaranteed this fact, and as a result, the exact meaning of the



conclusions must be carefully examined. Fortunately, the systems in question are all first order, and it
immediately follows that conservative estimates for the domain of attraction for any of the algorithms
can be derived directly from the Lyaponov functions used in the stability proofs. Specifically a
maximal Lyapunov ball may be found which lies completely in front of both cameras, and it follows
that any initial condition starting in that ball will remain in front of the cameras for all time, and,
thus, converge to the desired goal.

We believe that with some attention to this problem of containment ~ choosing a control law
such that the gripper does not leave either field of view — a class of visual servoing algorithms
could be developed which respect the “obstacle” (avoiding end effector motions that drift “behind”
a camera). In such a case, the meaning of “global” in this domain could be extended to include
all initial conditions which start in front of both cameras. Of course, we have not get studied this
problem carefully, and have no such result at present.

It is worth noting that we can show a direct correspondence between the proposed local (fixed
gain) controllers and the traditional Newton {essentially gain scheduled) method by recourse to a

time-varying change of coordinates (see Appendix B).

5 Robustness Experimentation and Simulation

The following section offers a short set of experimental results which demonstrate the notably better
robustness properties of the “new” local control strategies, followed by a more thorough evaluation

of the robustness properties of these controllers based on a series of simulations.

5.1 Experimental Data

The positioning task with respect to a target point in space was implemented on testbed, consisting
of a Zebra robot arm and two Sony XC-77 cameras with 12.5 mm lens and two pan-tilt heads. The
cameras are placed approximately 90 cm from the robot along the » axis and 30 em apart along =
axis. They are oriented to point back along the y axis of robot. A point target was chosen roughly
90 ¢cm from both cameras,

We test the proposed algorithm with tuned and detuned parameters by placing a gripper with
different offset positions from the target (see Table 1). The detuned system is obtained by rotating
the cameral 12 deg inward and camera2 8 degree inward. The entire visual control system runs at
a rate of 18.5 Hz. We are forced to limit robot velocities to a maximum of 5 cm/sec due to inherent

limitatation of robot control system.




Experiment | Offset from target

Expl +l0emin Y

Exp2 +10 cm in Z

Exp3 WeminX, +2cmin Z

Exp4d 10emin X, 42 cmin 2

Expbh -6 emin X, 46 emin Y, +6cm in Z

Table 1: Initial gripper Positions

The experimental results are shown in Fig 5. Each set shows the trajectories of the gripper

performing given task using tuned parameters (solid line) and detuned parameters (dashed line).

5.2 Simulation

A large sequence of computer simulations has been performed to evaluate the relative performance
of the controllers of Section 3.5 against the more traditional “Newton method” in the presence of
camera calibration error. As was noted in the previous section, the proposed controlier is immune
to displacement errors, and thus we will focus only on situations involving rotational miscalibration.

The simulation setup consists of a pair of cameras whose optical axis are parallel and perpendic-
ular to the base line. The separation between the cameras is, and 100 cim. The “task” we wish to
perform is to position the simulated robot gripper at a point between the two cameras, and 250 cm
from baseline.

A complete study of the domains of convergence for every possible type and magnitude of mis-
calibration would be near impossible to present due to the shear volume of data required. Thus
we choose to present a systematic set of miscalibration situations which covers a fairly significant
region of the space of possible miscalibrations. In particular we will consider situations where the
calibration data represents cameras which are rotated from the actual cameras about one of the
principle axis, and we will consider these in a pair-wise fashion (i.e. camera one is rotated up 5
degrees and camera two is rotated in 5 degrees and so on). Of the possible 36 such configurations
(two possible direction of rotation and 3 degrees of freedom} we will eliminate the symmetric cases
to limit ourselves to an evaluation of only 21 “types” of miscalibration, each of which is evaluated
over the range of 0 to 30 degrees in increments of 2 degrees.

For each such case, 1000 different initial gripper positions were uniformiy placed within a range
of 100 cm from a desired target position, and the percentage of trajectories which resulted in conver-

gence were measured for both the newton algorithm and the proposed local variants (13) of Section

10




3.5. A trajectory was classified as converging if it met the following criteria:
1. The position of gripper remains visible to both cameras throughout the trajectory,
2. The final position arrives within 1 cm of the desired target within 90 sec.

The overall gains were comparable? in both control algorithms.

Figure 2 demonstrates that the Newton method begins to fail when the magnitude of miscali-
bration approaches 6 degrees. In contrast, our newly proposed method performs successfully up to
10 degrees of miscalibration. Although not explicitly documented in Fig 2, we observed that the
drastic increase in failure rates between 10 to 20 degrees were the result of fotal failure for the case
when both of the actual cameras were pointed inward. Not surprisingly both methods demonstrated
significant robustness with respect to rotations around the optical axis.

Looking at the particular performance of both control algorithms for a particular motion allows
some insight in to the differences between the algorithms. Figure 4 show the motion of the gripper
from an initial position of (50,-100,0) to the desired position of (-50, -50, 100) when the estimate of
one camera is rotated (y;,15°%) and the estimate of the second camera is rotate (w2, 15°) from the

actual cameras.

6 Conclusion

We present a simple visual servo control algorithm for a 3 d.o.f positioning of gripper using stereo
vision. The proposed controller does not resort to a dynamic estimator or inverse transformation
in commanding gripper motion, distiguishing it from all previous approaches. We have shown that
the proposed control algorithm is globally stable regardless of the positional calibration error of
cameras. Bven though we cannot offer a formal characterization of its robustness to rotational
modelling errors, preliminary experiments and exhaustive simulation results show it is robust in the
presence of significant miscalibration,

Futher research will be directed toward the case of rigid transformations (the six d.o.f problem).
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A Proof of Algebraic Properties

1. J{r) = ~I(»)" 1 A(0)
Denote F(r,8) = A(8)r —b(8). Using the Implicit Function Theorem [12], the system Jacobian

Dg(r) can be written as

-1
Detr) = (apéz, 9)) apg; 6)

16



Since

OF(r,8) _ 0A(O)r  Ob(O)
a6 T 88 08
2T{r —e;)
T
= I #1(r—ei) = I{»r
( Tl — ) ) =I(r)
23 (r — ¢2)
oF(r,0)
ar = Al)

where D(-) denotes the diagonal matrix, we have

or

J(r) = ~I(r)"' A(8),

A(6) = —T(r) Dg(r).

. AB)F ~7) = -T()(6 - 6)
;From equation (8) and (9) A(8) and b(#) can be written as

where

AB) = A(B)+D(6-0)z

cfle
-~ CTZ} -
b6) = bE)+D(| 7 Do~
C2z2
Cgl.«?-'z
2
Z = &l € R,
2
%3

A@)F —7) = A(B)F — A@)r

= A(B)# - [A(8)+ D@ - 0)Z]r

= b(8)—b(8) — D(8 - 6)Zr
= —T(r}(8 - 6)
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3. A(8)(F — v} = —T(#)(§ — 6) Similarly,

A(B)F — 1) A(0)F — A(O)r
= [A(8) - D(8 - 0)Z]# — A(6)r
= b(8) - b(8) - D(8 — 8)Z+

= —TG)E—-8)

B A Change of Coordinates

Begin by define a new variable @ to be a transformation of the original error ey through a time-

varying positive definite matrix I'(»):

8 2 D(r)es.
Since
6 = D(r)es+T(r)és
= D{Z#) ()0 + I(r)éq,
ey becomes

&0 =T7(r) [0 - D(Z#)T ()] .
This gives tise to a new error system defined by

8 — D(Z#)I}(r)B — A(8)F = 0.
By making use of (16), we can further simplify this error system to be

6 — D(2#)T(#)8 — A(84)+ + D(es) Z#
A(82)7 — D(Z7)I~(r)8 + D(Z+)I " (r)

b
= B A8
0

Thus, we can write the overall error dynamic as
8= A(Ba)u. (19)

Equation (19) so could take w = A!(84)8.

18
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