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Abstract
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defined on a configuration space which admits a trivial tangent bundle. Previous results are derived in a
simpler form, namely, that such systems are exponentially stable, hence BIBO stable, and steady-state ouptut
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Strict Global Lyapunov Functions for Mechanical Systems

" Daniel E, Koditschek *

Center for Systems Science

Abstract

This paper presents a strict, global Lyapunov function for the
class of dissipative mechanical systems defined on a configura-
tion space which admits a trivial tangent bundle.

1 Introduction

The “mechanical systems” define a large and important class of
highly nonlinear dynamical equations. For example, all robat
dynamics are are modeled by such systems, Since there can be
no “operational calculus®, Lyapunov theory offers ap attrac.
tive alternative approach to a constructive control methodol-
ogy for this class of systems: it is not hard to translate many
frequency domain insights into this language in the linear case,
[8], Generalizing such an approach obviously depends upon the
availability of “adequate® Lyapunov functions.

Here it seems on first impression as though nature has been
kind. There is a “canonical® Lyapunov function for dissipa-
tive mechanical systems — the total energy — as has been
knowsn for since the ninetecenth century, This scalar valued
map enjoys the property of glebal defnition, since it is con-
structed in terms of the intrinsic Riemannian geometry of the
configuration space. Unfortunately, it results in a semi-definite
derivative along trajectories of a mechanical system, and the
full strength of Lyapunov’s method is lost.

Recently, Arimoto (2], Bayard and Wen [15], and the present
author [5,6] have, all independently, devised strict Lyapunov
functions for “PD” compensated mechanical systems. All three
constructions are remarkably similar, and share the common
fault of achieving only a locally negative definite derivative
{the local domain may be arbitrarily enlarged} on the phase
space. The central contribution of this paper, Theorem 1, is
the construction of a new Lyapunov function for the dissipa-
tive mechanical systems which is global -~ defined in terms of
the intrinsic Riemannian geometry of an arbitrary mechanical
aystem — and africt — the derivative is negative definite
on the phase space of (tangent bundle over) any parallelizable
configuration space, vanishing only on the equilibrium states
of the vector field, !

This paper, being of an essentially aralytical nature, will
make only illustrative use of the new construction to re-derive
{hopefully in a simpler form} the useful results concerning PD
compensated {quadratic potential} mechanical systems on the
“Euclidean n-disk” reported in the conference papers cited pre-
viously [2,15,6}. Namely, such systems are exponentially sta-
ble, hence BIBO stable, and steady state output magnitudes
may be shown to be proportional to input magnitudes with a
constant of proportionality depending in a simple fashion upon
the PD gain magnitudes. The larger motivation for this work is
the hope of applying the construction to more general robotic
problems where the corfiguration space is not homeomorphic
to a disk and the potential energy is not quadratic. This work
is currently in preparation.

IThe limitation to parallelizable spaces — f.e., those whose tangent
bundle is trivial — seems o be an artifact of the present proof rather
than an intrinsic Hmitation In the construction. This issue is presenily
under investigation,
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The next section presents the ingredients leading to the
standard definition of a dissipative mechanical system on a
smooth configuration space. Section 3 introduces the new Lya-
punov function. Finally, Szction 4 treats the PD compensated
mechanical system, as an example of the construction in the
familiar case, A variety of technical results and computations
are not included in this paper for lack of space — the reader
is referred to the background technical report [4] for further
details,

2 Dissipative Mechanical Systems

The geometry of classical physics has been extensively studied
for decades, and recent years have witnessed the publication
of numerous expository texts containing the background ma-
terial required for the present paper. This section sketches
the relevant ideas, appealing frequently to the excellent text of
Abraham and Marsden f1],

2.1 Notation

The tangent bundle over a manifold, J, will be denoted T with
projection map 1 : TJ — J. The coordinate representation of
a map wiil be denoted by underlining. For the purposes of
this paper, the manifold, J, will be a simply connected open
subset of IR", which admits a single global chart, and, when
there is no chance of confusion, coordinate representations of
maps will often be denoted by the same symbol as the origina}
map. Taking the jacobian of a map between Euclidean Vector
spaces is denoted by D, in contrast to taking the differential
one form of a scalar valued map on an arbitrary manifold, d.

Following Hirsch [3], if X',V are two vector bundles over Jy
then define the morphisms between them, MPLX, Y], to be
the set of all smooth {i.e. continvously differentiable r times)
fiber preserving maps which are linear on each fiber, i.e.,

N, Y] E{afecr|x,yl
Minz'{g) e B(w}l(q},:rg‘(q)) forallge J}.
Transpose, symmetric, and positive definite morphisms are

presented in [4], along with the notion of upper and lower

magnitude functions, and the group of scalar comparison func.
tions, ’ :

K &« € C'[R*, R¥) :
limgok{t) = Oand limo &{f) = o
and ) <ty = x4} < &{l3)},

which are used to define Lyapunov functions on manifolds.

2.2 Moechanical Systems
2.2.1 Kinetic Energy as a Rlemannian Metrie

Define a mechanteal system to be the Lagrangian dynami-
cal system resulting from a cost functional specified by a Rie-

LThis work is supported in part by the thionat Science Founda-
fon under grant no. DMC.8505180




mannian metric — a positive definite symmetric morphism
M € MY[TJ,T"J], as discussed in {4] — which specifics an
inner praduct {- | -} on TyJ for every point of configuration
space, ¢§ € J. The author has presented a a quick derivation
of the Riemannian metric resulting from the sort of physical
system which motivates the paper — the kinetic energy 2,
N(v) = ’I("’ | v} of a “kinematic chain” encountered in robotics
-~ in a recent encyclopedia article [8}. +

A Riemannian metric induces an  ¢ffine connectton, v,
with respect to which parallel transfation preserves the metric
juner product [1}.This implies that for any two curves, e;, ¢z,
in TJ over the same base cutrve, b = r o ¢y = 70 ¢z, we have

Lierten) =(Tyer fead+ (ea] Fyea ),

taking the covarfant derivative , along the curves ¢, consid-
ered as vector fields aver the base curve, b [9].

2.2.2 Coordinate Representation of the Lagrangian
Vector Field

Each point, ¢ € J, admits an open neighborhood, 0 C J, on
- which the “local phase space at 47, is a Buclidean vector space.
Thus, a point, v & T admits a local coordinate representation,

A1 h
p"{m

For the purposes of the present paper, the configuration space
may be presumed a subset of R", thus, T'J is trivial — i.e. it
is a subset of R"” x IR" — and this local coordinate system is
valid on the entire phase space, TJ. -

The equations of motion in the local coordinates result-
ing from application of the “Euler-Lagrange” operator, to the
kinetic energy, k, take the form

e R,

B+ FP:(PAhPIE) =0,

where I represents the Christoffel symbols for the given coor-
dinates. The relation of T' to the coordinate expression of the
morphism, M, is derived in [4] as

Tp(z,y) = M"(P:)C(P:,I)y
Clpn 2y & (M (2)y + My, (9)2 — B, (2173
M, () B(zenTDM®,

where it is also shown that I' is symmetric — I'(z, v} = [(y, 2)

— so that this is the expression of the unigue torsion free

metric connection, ¥ This results in the local representation

of fx as ) .
P:l P (1
g2 = ~M"p)Clp1, pa)pa.

White T/ is endowed with a natural metric induced by the
Riemannian metric, M, as described in [4], the present paper
will require only a local notion of distance, for purposes of
applying comparison functions to TJ [4]. In such applications

inetic Energy is formally defined as a scalar valued map on ™/
{1}{Del, 4.5.2], however [t will ease the discussion and do no technical
harm in the present paper to |penk of x aa & mapon T/,

4In earlier papem, [7,8], the suthor has unwittingly used the local ex-

pression for a metric connection with non-zero torsion, While the geodesics
of two connections which differ only by tosion are identical, the non-zere
torsion necessitates annoying additional cancellation of “defect” terms in
control applications. It is worth pointing out that other authors have in-
dependently made use of the preferable 2ero-torsion connection in their
control applications [15,12].

it suffices to use the Euclidean norm topology induced by the
metric of the local coordinate system, A metrie, p, having been
chosen, any morphism, F, gives rise to scalar valied maps
on J, vplg),pr(g), as introduced in [4], which measure its
smallest and greatest “magnitudes” on each fiber, and lead to
an obvious construction of a quadratic comparison function on
each fiber,

Lemma 1 For every g € J, the Knetic energy, &, {3 a non-
degenerate positive definile funciion on TyJ, possessed of a
quadratic lower ¢comparison function, in coordinales,

J\C(pi: P?) > W{'”P?”g,

2.3 Gradient Vector Flelds in Mechanical Sys-
tems

2.3.1 Morse Functions and Their Gradlent Vector Flelds

Consider the class of twice differentiable real valued functions
p € C"’[J,IRE. The co-veclor field, dp, is related to the
gradient vector ficld , grad o, of v by the identity

grad p 2 M~ ldp.

Note that the “hes.sian of the original function is obtained
from the jacobian, &) = dp., in local coordinates,

Eilp) = [D%) (m). (2)
One calls ¢ a Morse function if its hessian is non-singular at
every critical point {3].
2.3.2 Lifting Gradient Vector Flelds

Any smooth real valued function,  : J — IR may be “pulled

back” to TJ in a matural fashion by defining & = wor. This
defines a new Lagrangian function,

{\g"c—é) (3)

whose Lagrangian vector field, fc_3, tan be shown to include
2 “lift” of the gradient vector field of ¢ in the following sense.
It can be shown [1] that ¢ is a trajectory of f4_ if and enly if

its base integral curve, b 2 oc has the property
Vib=—gradp ob. (4)

‘This implies that the resulting Lagrangian vector field may be
written as

Jr-p(2) =[xz} - Vi lgrad v ) 0 7(2),

where V is the vertical lift.
2.3.3 Coordinata Representation of a Mechanical Sys-
tom with Good Potentlal Energy

Say that p & CQ[J,W] is a good potential function at qqgif it
is a Morse function on J, positive definite at gg, and bounded

- away from zero everywhere else on J. This means that there

can be found a lower comparison function, Ay, € Ky, for ¢, in
the sense defined in [4].

'\p°Pl(qu{?) < ',G(q) (5}

In such a case, g0 is a local minimum of p — an éttracting
equilibrium state of —grad p . It follows that * |ldpl| is

‘The metric, M, on T/ Induces s metric on T*J, with respect lo which
the norm of a co-vector is well defined,




decrescent positive definite function at 40, admitting the Ifzppcr
comparison, vy, € K\, with the property

Vg @ prigo, q) 2 Jldyil. (6}

Using the same arguments as in [3}{Lem.6.1.1], given any
local coordinate system on a meighborhood, O,olge J, p
induces a smooth map i, : R" — £(m",m'?)?auch that
M p ) K1 (p1)p1 is a representation of grad g, It now follows

that the vector field, fx_s admits the coordinate representa.

tion

P:l = P2 (7)
Pr o= =M""p) (Clpr, p2}p2 + Ky (p1)pr.)

2.4 Strict Dissipative Veetor Flelds and Exter-
nal Forces

Following Abraham and Marsden, once again, say that a smooth
vector field, fq, on TJ is dissipative [1] if it is vertical and
has the property with respect to the kinetic energy, «, that

d;cfg < 0.

Since fg is vertical, it may be uniquely associated with a smooth
fiber map, kg : TJ — T*J, via lifting

Ja(v) B ~V, 0 M~1ks(v).

If the product ke{v) - v is a positive definite map on T,/ for
every ¢ € J, then say that fy is a  asirict dissipative vee-
tor field . In this case, there may be found a smooth map,
Koy : TypJ — LTy, 7] J) such that k2 (v) = Ka(v)v, and (Ka),,
the symmetric part of {2 as defined in [4] is always positive
definite,

Lemma 2 Jf f4 13 a strict dissipative vector fleld on TJ, then
—dK f4 12 a positive definite function on T,J with a quadratic
lower comparison function, in coordinates,

ka(pr.p2) - p2 2 DR pall?

2.5 Dissipative Mechanlcal Systems

To summarize, a kinetic energy law, x, determined by a Rie-
mannian metric, M, on J, induces a mechanical system {1}
through the Lagrangian vector field, fs, whose base integral
curves are geodesic with respect to M, The addition of a po-
tential function, o results in a new Lagrangian vector field,

frwp = fx=V(grad p)or,

whose integral curves conserve total energy, n = x+¢. Finally,
the choice of a dissipative vector field, f4, completes the list
of ingredients. We will limit attention to following class of
mechanical systems:

Deflnition:
A dissipative mechanical system is defined by the vector fleld

S8 fumg Sy {8}

where
1. K i3 the kinefic energy induced by a Riemannian melrie,
M, on J;
N
2, @ ia a “good potential function” in the sense of Section

2.8.%;

8. f1 ts a “strict” dissipative vector field in thc._scnae of
Section 2.4.

In local coordinates, the disturbed dissipative mechanical
system can be written,

ﬁ; i izﬂ_-f"(ps) ([C{p1,p2) + Ka(pr,pa)lp2 + ﬁx(m)pt) )

3 The Stability of Dissipative Mechani-
cal Systems

Lord Kelvin showed that total energy, n = & 4+ p, is a Lya-
punov function for z dissipative mechanical system in 1886 (4],
Arimoto and colleagues {10,13] contributed a precise demon-
stration that every minimum of the potential field is a local
attractor by application of LaSalle's Invariance Principle. Sim-
ilar independent work of Van der Schaft [11] and this author
{7} appeared subsequently. Of course, the central idea of en-
ergy dissipation is to be found in the standard texts as well,
{1]){Prop. 3.7.17]. Since 5 is not a strict Lyapunov function —
that is, the Lie derivative, L7{n) is negative semi-definite —
conclusions about asymptotic properties of the flow near {g, 0}
require the application of LaSalle’s Invariance Principle. This
limits application to autonomeus dynamics, precluding any in-
put/output analysis of the effects of the external disturbance.
“This flaw will now be corrected: we will “fix® Lord Kelvin’s
formula by adding a “cross term” to the total encegy function
which makes its derivative along the motions negative definite.

3.1 The “Potential Angle” and Energy Scaling
Function

Tle concern of this section, is the construction of a new scalar
valued map on TJ whose co-vector field acts on the portion
of f which is “ignored” by dn — the “vertical lift” of the po-
tential gradient vector field. Namely, a map, o € CTJ, R},
is constructed to measure the “angle® between the desired ve.
locity of the lifted gradient flow, and the actual velocity of the
dissipative system,

The Riemannian metric is a symmetric isomorphism in
MY{TJ,T*J]. By choosing 2 morphism in the other direction
one obtains the desired angular comparison, as follows, Say
that a morphism, F € M*[T*J,7J), is a pre-melric if its
symmetric part is a “positive definite” operator on each fiber.
Given a a manifold, J, with a Riemannian metric, M, on the
tangent bundle, r : TJ — J, a pre-metric, F, and a scalar
valued map, ¢ € C[J, IR}, define the polential angle map,
a € CHTJ, R} by

a(v} 2 { Fdpor{v) |viar. {10)

Lemma 3 The Lie dertvative of the potential angle map, «,along
the dissipative mechanical system, [, {9}, is a scolar valued
mep en TJ which may be ezpressed as

Lya{v) = (B |v) = (Fdpor{v) | kelv)) — (dep- Fdip} o r{u}).
where B € M¥[TV, TV}

Proof: If ¢ is any smooth curve in TV, then it may
considered as vector Reld along the base curve, roc¢ £y,
Thus,

%aocm(vi Fdpob e} 4+ {Fdpob|V;c},




since ¥ is the Riemannian connection. If ¢ is the tra-
jectory of any second order system then

b="Tr oé =g,

hence
daoc =(V,,ngoob{c)-}—(ngoobE.V;ny)
={Be|c)+{Fdpod|V;b), ;
where B € MY[TJ,TJ] denotes the morphism V Fdp .

Since b is the base integral eurve of a dissipative mechan-
ical system it foliows that

Vib = —gradyp ob — kalc),
hence

j"-aoc = {Bcic)—(Fch’blk?{C))
—{Fdpob|gradp ob)
= (Bele}~{Fdpob]|ka{e))
”’(dp'Fd'p] Ob,

and the result follows
ju

The pre-metric property of F insures that the last term of
Ls(a) is globally non-positive, vanishing only on the critical
points of i, since F, defines a positive definite quadratic form
on the co-tangent bundle. Thus, adding a to 5 introduces a
negative term in the derivative which does not vanish auto-
matically on the zero section of TJ. Unfortunately, &, itself,
is sign indefinite, and its derivative along trajectories of f in-
curs two additional sign indefinite terms as well as computed
by Lemma 3. Tt will now be shown that a “rescaling” of 5
obtained by composition with a suitable comparison function,
~ € Ky, serves simultaneously to dominate the indefinite terms
of both o and its derivative. Specifically, define

2% -
x) =vox +nvi, 0 A1) {x)

+92 [fox (V{MB]. oAy 1)_ (0)40} '
where 0,741,772 are positive non-decreasing scalar functions
to be chosen below, and v(arpy, i8 2 smooth non-decreasing
function which satisfies the inequality

{11)

vy (x} 2 sup  poum), (o)
(\IB)( ) " pofeo)sx (M E)

where p(arpy, denotes the “tensor magnitude” of the symmet-
ric part of the morphism M B on each fiber, as defined in [4],
and wvyg, is an upper comparison function for ||dp|f as defined
in Section 2.3.3.

3.2 Verlfication of the Construction

First observe that 4 preserves the sign definite properties of n
when their composition is added to a. :

Propositlan 1 For every dissipaiive mechanical system, f,
(8} and potential angle map, o, (10), there can be found a
comparison function, v € Ky, of the form (11), such that

ﬁgqo:]-{-a

1s a positive definite function in C‘{TJ,-EF:[.

Preoof: Note that ¢ vanishes at vg = (gg,0) as re-
quired, We first seek to show that ¥ is positive definite.
Note that, in coordinates,

> 2 ?
n 2 4= Ap{llall) + orllplf?,

according to (5). Moreover,

a -
100) 2 #(X) = 7ox + M{vd, 0 251 x),
from the definition of v and (6) — it follows that

oz g0 2 vPallpall’ + vl Ul

Notice, moreover, in coordinates, that

lof < [P (p)ET M| < valllpil) - 8pp (01) - sl

where oy, {p) is again the tensor magnitude function
defined in [4]. It follows that
9 2 i, = tptpvaplipel + voT5|palf?

and it suffices ¥ to find non-decreasing functions, You 1]
such that ~; o 7 is smooth and

1(n) %FJFT.\{(P&)
tempe(p) (nvm(pr)

For this, the conditions
. 1 -1
T2 4 M2 ZU_'_A.[_U;*T“; oAq ' {12)

are sufficient, where v.r,, Is a smooth non-decreasing
function satisfying the inequality
W}

The addition of the “angle measurement” in J results in a
locally negative definite derivative, 8. In fact, the appropriate
rescaling of n affords dominance of the negative definite terms
“as globally as the potential function can allow®, This is made
precise by the following central result.

Theorem 1 Let f be o dissipative mechanical system. Then
for every valid potential angle map, o, {10), and a compari-
son function, 4 € Ky, of the form (11), the positive definite
Junction,

i} é qon + o
has o derivative along trajeclories of f,
0= Ly(9),

which iz nen-positive on TJ and vanishes only on the equilit-
rium states of f.

Proof: Let v € K| be chosen as in (11}, so that 3 is
positive definite in consequence of Proposition 1. We
have, along any curve, ¢, in 7/,

O (’1100)& + &.
If ¢ is a trajectory of f, then, in coordinates,

1 = =} Kq(pr, p2)pa

¥The sufficiency depends upon the fact that vy, is an upper compar
ison function for |[dip]], hence {in contrast, for instance, to a lower com.
parison function) may be guaranteed not to vanish except at the point go.




Now 4, the derivative of v , satisfies
7' (x) 2 70+ v2vpany, © A5 ()

since all constituent functions of 4 are non-decreasing.
From A7V o > [Ip|l, it follows that .

vaim, @ A7t o n > viaggy, (Ipl]) > varmy, (11 If)
hence,

2 < —pl i, (‘ro + ‘72#(1«3),) + &

Using the results of Lemma 3 » expressed in coordinates,
we have

=-Dp ETDg T~ Do FTME1p2 + pY BT Mp,

S ~TRIDL* + pprygillmall - | Do |f + Harny el

where

&

b,
TF, = infur,(g)

Is a positive constant according to the assumption that
F is a pre-metric, It now follows that

9 < =B QP (p)+ugpr. () (= (PR el

va[Iogi} o ool  om
e) _[ fipall }’Q(p)h{%ﬂpf.w,(ﬂpﬂ) {105

The second term is negative as long as 43 is greater than
the constant function,

13
T 13
Pk, (13)
where 7 is specified in Lemma 2 .« The 2 x 2 matrix
is negative definite when

1 2 -1
Ta > 1+ ('M*. VK,) vFTMKg ° A

Vetaric,(X) £ SUPpI<x SUPYay=t IETAL Kolpy, po)aff.

(14)
which satisfies the earlier condition (12) as well, 5 Un.
der these conditions, ¢ ig negative except at the critical
points of p as identified in the zero section of TJ — the
equilibrium states of f.

0

In the next section we consider the application of this con-
struction to disturbed mechanical systems on a configuration
space which is guaranteed to admit Morse functions with a sin.
gle critical point — an open disk in IR", The application to non-
autonomous mechanical systems on 2 configuration space with
non-unity Buler characteristic — ¢.g., the punctured manifolds
whick result from robot obstacle avoidance problems with mov-
ing obstacles — is the subject of a separate paper,

®Nate that 7o 5 is still ©' with these definitions, following the same
argument as in Proposition 1,

%ﬂp?;\,{]{z(”pﬂ) } .

A

4 Application to a PD Controlled Me-
chanical System

There axe relatively few occasions when J admits a Morse fune.
tion with a single critical point. In this section we examine in
detail one such {practically significant) case where J is a an
open n-disk. In such a case, ||dplf being radially ubounded, ¢
is radially unbounded as well.

All symbols will refer to the local coordinate representa-
tion. The kinetic energy remains in the general form,

A
&{p) = plM (p)pa,

where M is analytic in p1, and takes values in the set of posi-
tive definite symmetric mattices. The only further restriction
{imposed for computational convenience, and because it cor-
responds the situation in robotics) is that both Af and its
derivatives are bounded on phase space, so that there exists
an upper bound, fiz7, on the the morphism norm as well as a
lower bound, D7, and there is a linear spread estimate with
constant gx, 2 VI /g as defined in [4].

The potential encrgy is defined to he that of a “perfect”
Hook’s law spring,

e(m) & pT iy p,

where K is a positive definite symmetric matrix, The dissi-
pative field is defined to be a Rayleigh field, k;{p}p, & Kap,g,
where iy is 2 positive definite symmetric matrix as well, There
is an external force, as well, Note that the operator hounds on
Ky, K3 are all constant, according to the definitions in [4].

This corresponds to a “linear proportional and derivative
feedback compensator™, applied to a pure mechanical system
(1}, the entire closed loop subsequently “forced” by the con-
trol input, u(t}, giving rise to the nonlinear control system, {9},
where K, Ky are constant positive definite symmetric matri-
ces,

4.1 Construction of a Strict Lyapunov Function

Applying the definitions from Section 3.1, the various bounding
functions associated with e are

- X -
Aty = ‘/H; vap(X) = s X wdperzt(x) = BE\Th X,

The construction of ¢ depends upon the angle map, a,
which, in turn, requires the choice of a morphism, F e M@ITI, T,
whose symmetric part s positive definite. In the present case
a convenient choice is specified as F ; (P1,p2) »s {p1, K{tpy),
for this leads to the simple angle map (77)

a2 Dy FTMpy = pTatp,,
The coefficient functions, 4;, may all be chosen constant as
shown in [4]. The morphism, B(z), is now computed as
V. Fdp = (D,,EFDp)’x +T(FDp,z)
= FPD*pa + F(Dp )z + L1~ (a1 + I FDp)z
=I+0+ MM+ J) (py) e,

and it follows that
1
ey, (i) = uae (o) + ghan(led).

Applying the assumption that M and DA® have bounded
magnitude on the configuration space yields the affine function

e

1
vy, (x) = FR7 + 2ManX 2 p(arsy, (%),




hence
3 Fiar) a2
2

X - .
d¢ < + =)
/0 varpy, © Ay (6)d¢ < FRIX s

The complete Lyapunaov function is given by

o +yan/?) K1 yM
92 Py P& ( : ) ) |
M ('Yo + YR ) M

(15)
where the constant coefficients are defined in [4]. Compare this
to the total energy function,

A A I 0
n=p Hp H:[G M}'

4.2 Input/Ouiput Analysis of the PD} Compen-
sated System

In this section we will refer extensively to the language and
detailed computation in the technical report (4] in order to
extract explicit relationships between inpit and output bounds
from the globally strict Lyapunov function, ¥.

Although it was shown in Theorem 1 that the construc-
tion has a negative definite derivative along the motiens of the
pd compensated unforced mechanical system (9}, we are now
interested in displaying an explicit quadratic lower comparison
function for the specific case defined by {15).

Lemma 4 The negative derivative map, —Lg(¥), admits a
quadratic lower cornparison function,

&
25(x) 2 vax®s
where Q) is a positive definite symmeiric matriz defined by
the “feedback gains®, Ky, IC1, and “energy scaling constants®,
j'p,'y;,,qQ, used in {15).

The lower comparison function, Aj, may now be used to
find a “f-descent region” (defined in [4]} — ie. a region
wherein the Lyapunov function, ¢, and, ultimately, the dis-
tance to the origin, along solutions to the forced system 9 is
guaranteed to be decreasing as long as the forcing function is

bounded by 5.

Propositlon 2 For every # > O there ezists 06 > 0 such that,
if Jul] € B then 1y is strictly negative on the set

P-REEper:pllz8)

This result leads immediately to the construction of a “de-
scent rate estimate” as defined in [4}, which, in turn, demon-
strates that J is not only globally strict, with a radially un
hounded Lie derivative, but, when restricted to any compact
domain, is uniform as well.

Propositlon 3 For all x; € R¥, 9, as defined inAPrapost'lz'on
1, is a uniferm lyapunev function for f on 3 = Pox”’".
This yields the desired bound on the magnitude of the state
of the forced system, expressed in terms of the “feedback gain®
magnitudes and scaling coeflicients.

Theorem 2 The motion afit PD compensaled mechanical sys-
tem (D} from the initial condition |ipofl = Xo, in response to
inputs of magniiude less than & < co iy bounded by

Io(0l § &0y + L5(a).
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