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Heterogeneous Leg Stiffness and Roll in Dynamic Running

Abstract
Legged robots are by nature strongly non-linear, high-dimensional systems whose full complexity permits
neither tractable mathematical analysis nor comprehensive numerical study. In consequence, a growing body
of literature interrogates simplified “template” [1], [2] models—to date almost exclusively confined to
sagittal- or horizontal-plane motion—with the aim of gaining insight into the design or control of the far
messier reality. In this paper we introduce a simple bounding-in-place (“BIP”) model as a candidate frontal
plane template for straight-ahead level ground running and explore its use in formulating hypotheses about
whether and why rolling motion is important in legged locomotion. Numerical study of left-right compliance
asymmetry in the BIP model suggests that compliance ratios yielding lowest steady state roll suffer far longer
disturbance recovery transients than those promoting greater steady state roll. We offer preliminary
experimental data obtained from video motion capture data of the frontal plane disturbance recovery patterns
of a RHex-like hexapod suggesting a correspondence to the conclusions of the numerical study. Fig. 1. EduBot
[19], a RHex-like [20] hexapedal robot.
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Heterogeneous Leg Stiffness and Roll in Dynamic Running

Samuel Burden†, Jonathan Clark‡, Joel Weingarten‡, Haldun Komsuoglu‡, Daniel Koditschek‡
†Department of Electrical Engineering, University of Washington, Seattle, USA

‡Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA

Abstract— Legged robots are by nature strongly non-linear,
high-dimensional systems whose full complexity permits neither
tractable mathematical analysis nor comprehensive numerical
study. In consequence, a growing body of literature interrogates
simplified “template” [1], [2] models—to date almost exclusively
confined to sagittal- or horizontal-plane motion—with the aim
of gaining insight into the design or control of the far messier
reality. In this paper we introduce a simple bounding-in-
place (“BIP”) model as a candidate frontal plane template
for straight-ahead level ground running and explore its use in
formulating hypotheses about whether and why rolling motion
is important in legged locomotion. Numerical study of left-
right compliance asymmetry in the BIP model suggests that
compliance ratios yielding lowest steady state roll suffer far
longer disturbance recovery transients than those promoting
greater steady state roll. We offer preliminary experimental
data obtained from video motion capture data of the frontal
plane disturbance recovery patterns of a RHex-like hexapod
suggesting a correspondence to the conclusions of the numerical
study.

I. I NTRODUCTION

As our understanding of the dynamics of running animals
has increased, so has our ability to develop fast and stable
running robots. Particularly important has been the develop-
ment of theSpring-Loaded Inverted Pendulum(SLIP) model
[3], [4], which captures the center of mass motions and
ground reaction forces for a wide range of animals. Under-
standing how animal legs act like springs [5]—absorbing ki-
netic energy during touchdown and restoring it at liftoff—has
encouraged [6] or led directly [7], [8] to the design of many
dynamic runners. More recently, the development of the
Lateral-Leg Spring(LLS) model [9], [10] has given insight
into how the lateral forces exhibited by running animals can
act to stabilize the lateral and yaw motions in the horizontal
plane [11]. These models can be combined to suggest many
salient features of legged locomotion dynamics.

In addition to oscillations in the sagittal and horizontal
planes, animals and dynamic robots of various morphologies
typically exhibit rolling motions not captured in either the
SLIP or LLS model. The observation of a roll component in
legged locomotion has a long history in robotics, stretching
back at least two decades [12], and contemporary empirical
research seems to confirm [13] the seeming inevitability
of a substantial roll-pitch synchrony in legged trotting.
More analytically inclined investigations of passive (down-
hill, gravitationally-driven) bipedal walking [14], [15]have
shown that roll oscillation is unstable in spatial instances
of these gaits [16]. Simple pelvic [17] or step-placement
[16] feedback (the latter reminiscent of observed human gait

Fig. 1. EduBot [19], a RHex-like [20] hexapedal robot.

control mechanisms [18]) can be shown to stabilize roll,
but these “energetically natural” controllers do not seem to
diminish its magnitude, notwithstanding the apparent ener-
getic inefficiency it harbors through the exercise of seemingly
inessential but inevitably lossy degrees of freedom. Beyond
its seeming energetic inefficiency there are “higher level”
objections to roll in steady state legged gaits. Such motion
makes exteroceptive and even proprioceptive sensing more
difficult. Visual data incurs a significant rotational overlay
that necessitates extra processing; gyroscopic effects are
harder to measure; and even tactile sensing by antennae
or legs is complicated by alterations in touch-down timing
arising from roll. From these perspectives, any design change
that would reduce roll might seem to make the control of the
robot more straightforward.

However, our intuition and experience with legged robotic
systems leads us to an opposing hypothesis. In our previous
work tuning RHex [21] and Sprawlita [22] it has always
seemed that the best gaits incur significant roll dynamics. We
suspect that these frontal plane oscillations actually confer
significant dynamic benefit. In particular, we suspect that the
attractors (hybrid limit cycles) associated with alternating
tripod gaits in hexapedal runners have speedier restorative
time constants in rough correspondence with the magnitude
of their in-phase roll component.

In this paper we seek to investigate that hypothesis.
To explore the effect of leg design on the frontal plane
dynamics of running we introduce a candidate template -
the bounding-in-place(“BIP”) model. We explore numer-
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Fig. 2. Bounding-in-place(“BIP”) model for legged rolling motion. In
general,k1 6= k2. We setB1 = B2 = 0 when we wish to study a
conservative model.

ically the empirical fidelity of this model with respect to
the EduBot [19]—a hexapedal RHex-like runner shown in
Fig. 1. Like RHex [21], EduBot’s reliance on an alternating
tripod gait introduces an asymmetry to the frontal plane
dynamics, since one side of the robot has two legs in contact
with the ground, effectively doubling the stiffness of that
side. Section II introduces the BIP model, and Section III
describes a numerical study focused on the effect on roll
stability of the relative stiffness between the alternating left-
and right-weakened leg spring. Section IV describes the
experimental setup and empirical consequences of varying
the stiffness of the middle legs on Edubot. The model
and experimental results are then compared and conclusions
drawn in Section V.

II. B OUNDING-IN-PLACE MODEL

We now introduce a hybrid dynamical system—the
bounding-in-place(“BIP”) model—intended to capture the
salient aspects of EduBot’s frontal-plane roll. Like the SLIP,
LLS, and Buehler bounding models [23], we assume the
robot’s dynamics are decoupled and model roll independently
of pitching, yawing, and translations along the ground plane.
As in those prior simplified models, we combine several legs
into a singlevirtual leg, in this case one on either side of
the robot.

The BIP model consists of a rigid block with a Hooke’s
Law spring attached to either end. The center-of-mass is con-
strained laterally, thus allowing the body to move vertically
and rotate about its center; it has width2w, massM and
moment of inertiaJ . The springs are oriented vertically and
are allowed to slide frictionlessly across the ground; they
have nominal lengthγ, spring constantsk1 and k2, and
damping constantsB1 andB2, respectively (see Fig. 2)). The
system proceeds through four distinct dynamical regimes:
flight, left leg stance, right leg stance, and full stance.

EduBot runs using analternating tripod gait, where the
front and rear legs on one side of the robot cycle in phase
with the middle leg on the opposite side. Due to the structural
similarity between the legs, one side of the robot will have a
virtual leg stiffness of effectively twice that of the other.

We model the alternating aspect of the gait by exchang-
ing the spring and damping constants—(k1, k2, B1, B2) 7→
(k2, k1, B2, B1)—when the body transitions from full flight
to partial stance.

The BIP model bears a striking schematic resemblance
to Buehler’s bounding model [23], but differs significantly
in that Buehler’s model allows the legs to rotate and the
body to translate horizontally. As we will demonstrate, these
differences are significant enough to eliminate the passive
stability properties observed in the Buehler model.

A. Conservative BIP Model

Motivated by the discovery in the LLS model [9] and
Buehler’s bounding model [23] of stable open-loop gaits in a
conservative model, we begin with no energy dissipation or
addition in our model. We choose to describe the system’s
equations of motion in terms of the height of the block’s
center-of-massh and its rotationθ. Straightforward analysis
yields the governing equations,

ḧ(t) = 1
M

[

−gM + (γ − h(t))(k̃1 + k̃2)+

w sin(θ(t))(k̃1 − k̃2)
]

,

θ̈(t) = −w
J

cos(θ(t))
[

(γ − h(t))(k̃1 − k̃2)+

w sin(θ(t))(k̃1 + k̃2)
]

.

(1)

wherek̃i := σiki andσi is a Boolean variable set to 1 or 0
depending upon whether legi is in stance or in flight.

Transitions between states are detected usingthreshold
equations, which we’ll describe using theleg displacement
coordinatesgiven by

x1 = γ − (h − w sin θ), x2 = γ − (h + w sin θ). (2)

In particular, a necessary condition for a transition to occur
is that a leg either touches down or leaves the ground,

x1 = 0 or x2 = 0. (3)

When this condition is triggered, the pair(σ1, σ2) transitions
according to certain functions of state. Specifically, letz =
(x1, ẋ1, x2, ẋ2)

T be the system state and letH(σ1,σ2)(z) be
the transition function out of the pair(σ1, σ2) so that when
(3) is triggered,(σ1, σ2) := H(σ1,σ2)(z).

H(0,0)(z) =


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(1, 1) if x1 = 0, ẋ1 ≤ 0,
x2 = 0, ẋ2 ≤ 0;

(1, 0) if x1 = 0, ẋ1 ≤ 0,
x2 6= 0 or ẋ2 > 0;

(0, 1) if x1 6= 0 or ẋ1 > 0,
x2 = 0, ẋ2 ≤ 0;

(0, 0) otherwise.

(4)
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(0, 0) if x1 = 0, ẋ1 > 0,
x2 = 0, ẋ2 > 0;

(1, 0) if x1 6= 0 or ẋ1 ≤ 0,
x2 = 0, ẋ2 > 0;

(0, 1) if x1 = 0, ẋ1 > 0,
x2 6= 0 or ẋ2 ≤ 0;

(1, 1) otherwise.
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(0, 1) if x1 = 0, ẋ1 > 0,
x2 = 0, ẋ2 ≤ 0;

(0, 0) if x1 = 0, ẋ1 > 0,
x2 6= 0 or ẋ2 > 0;

(1, 1) if x1 6= 0 or ẋ1 ≤ 0,
x2 = 0, ẋ2 ≤ 0;

(1, 0) otherwise.
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(1, 0) if x1 = 0, ẋ1 ≤ 0,
x2 = 0, ẋ2 > 0;

(0, 0) if x1 6= 0 or ẋ1 > 0,
x2 = 0, ẋ2 > 0;

(1, 1) if x1 = 0, ẋ1 ≤ 0,
x2 6= 0 or ẋ2 ≤ 0;

(1, 0) otherwise.

Recall our statement that when the body transitions from full
flight to partial stance its spring constants are exchanged;
(k1, k2) 7→ (k2, k1). In terms of the transition functions
defined above, this means the transitionsH(0,0) = (1, 0) and
H(0,0) = (0, 1) trigger the exchange.

An analytical account of this hybrid, tightly coupled,
nonlinear dynamical model promises to be very complicated
and lies well beyond the scope of the present paper. Instead,
we turn to numerical simulations to study the system’s
behavior.

We used numerical simulations of the flow defined by (1),
(3), and (4)) to generate system trajectories from a variety
of initial conditions (see Appendices A, B). In particular,we
searched forequilibrium gaits(defined as periodic orbits of
the hybrid dynamical system defined by (1), (3), and (4)).
We found several such gaits and chose to analyze the one
that most closely mimics EduBot’s. The EduBot-like gait has
a full-flight phase and allows the derivative of the height to
change sign only once during stance (i.e. the system’s center-
of-mass roughly traces out a sinusoid; see Fig. 4).

Using an iterative algorithm, we estimated thetouchdown
state—the body state when one leg touches down from
flight—associated with the desired gaits to within one part
in one million. We do this by computing the touchdown-to-
touchdown Poincaré mapP [24] at points with equal energy;
periodic gates are determined by the fixed points of this map.
Because the system is conservative, givenh, θ, and one of
ḣ or θ̇, the other can be determined. Also, given eitherh
or θ at touchdown, the other is determined by (3). Thus we
need only search, for instance, over an interval inh-ḣ space
to estimate the locations of the fixed points ofP. At each
step in our search algorithm, we compute the magnitude of
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Fig. 3. Typical height and roll trajectory starting near an equilibrium
gait in the conservative model. After only 6 strides, the body’s rolling
motion becomes extremely aperiodic, supporting the hypothesis that the
conservative BIP model supports no stable equilibrium gaits.

P on a grid in some rectangular region ofh-ḣ space, then
shrink the rectangle around the point(h̃∗,

˜̇
h∗) corresponding

to the smallest value of|P(z) − z|. Assuming there is only
one fixed point ofP in the initial region, this algorithm will
estimate the touchdown state of the desired equilibrium gaits
to arbitrary precision.

No matter how stringent our error tolerances, however, we
always found these gaits to be unstable, as Fig. 3 illustrates.
This is interesting because it is nota priori unreasonable to
imagine that the conservative model’s hybrid dynamics could
have generated an asymptotically stable gait (as occurs in the
LLS and Buehler models). However, given that errors on the
order of1×10−6 in the touchdown state estimate cause large
trajectory deviations after only a few strides, we considerthis
a poor model to study stability properties of EduBot’s gait,
and introduce damping to try to capture the robot’s stable
periodic behavior.

B. Dissipative BIP Model

In an effort to make the equilibrium gaits of this model
attracting, and to better approximate the physical system,
we add viscous damping to the conservative model, so that
the equations of motion include a term proportional to the
negative of the velocity of the point of attachment of each
spring. The constants of proportionality are thedamping
constantsB1 and B2, which we fix atk2/70, smaller than
that measured in EduBot’s legs. Even using this rough
approximation to the complex physical interactions that drive
EduBot’s motion, we observe qualitative agreement between
body trajectories in the model and EduBot trajectories (see
Fig. 4).

Since energy is continually removed from the system with
the addition of damping, we restore the possibility of a peri-
odic trajectory by adding energy to the system in a manner
similar to that employed by Koditschek and Buehler [25]
in analyzing one-dimensional hopping. When a leg spring
reaches maximum compression in the model, we temporarily
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Fig. 4. Typical height and roll trajectories from EduBot andfrom the dissipative model. Both data sets were sampled at 120 Hz and filtered with a
5-sample median filter as described in Section IV. The model deviates in magnitude and precise shape in both coordinates, but qualitatively captures some
of the distinctive behavior exhibited by the robot. We attribute the difference in the shape of the roll trajectories largely to EduBot achieving a smaller
flight phase than the model.

increase its spring constant, thus increasing the energy stored
in the spring. This actuation scheme was chosen because
it is easy to implement and can facilitate analysis better
than many other methods. Maximum compression is detected
when a leg’s velocity goes to zero from below,

ẋ1 ↑ 0 or ẋ2 ↑ 0. (5)

At that instant, the leg’s spring constant is increased by a
factorη > 0 chosen to yield gaits qualitatively similar to the
physical robot. When a leg leaves the ground in simulation,
its spring constant is reset to its initial value.

For the case of our tripod-based runner we increaseη twice
as much for the stiffer (double support) leg, reflecting our
observation that in the physical system each of EduBot’s legs
imparts a roughly equal vertical force on the ground during
stance. This observation is consistent with the biological
literature [26], and is qualitatively corroborated by the profile
of the vertical ground reaction forces exerted on EduBot’s
front, rear, and middle legs (see Fig. 5).

As we demonstrate in the next section, adding damping to
the model indeed produces the expected stable equilibrium
gaits (isolated period-one attracting orbits). This removes
the necessity to use an iterative method when searching for
periodic orbits, since we can simply allow the simulation to
settle into equilibrium and record the touchdown state at that
point.

III. D ESIGN MODIFICATIONS AND STABILITY

Having established our model for rolling dynamics, we
proceed to investigate modifications that eliminate roll and
the effect of these modifications on the stability of equilib-
rium gaits. Our model was designed assuming that roll is
introduced primarily by a difference in effective leg stiffness
between the two sides of EduBot. Thus we investigate the
effect that stiffening the softer leg has on roll. In the model,
we fix k2, start withk1/k2 = 0.25, and increase that ratio
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Fig. 5. Vertical ground reaction force profile for EduBot’s left side.
Measured with a commercial force plate [27], sampled at 200 Hz, averaged
over 12 trials.

to 1. In the physical system, we affix middle legs of varying
stiffness to the robot.

Fig. 6 displays the roll and its velocity at touchdown
for the equilibrium gait associated with different values of
k1 when all other parameters are held fixed (k2 = 1440
N/m). Because there is no energy loss in flight the roll
velocity at touchdown is a reasonable measure of the roll
velocity magnitude averaged over an entire orbit. Hence,
the plot suggests that roll magnitude at touchdown is a
surrogate for the intensity of the rolling associated with a
given equilibrium gait. Ask1/k2 → 1, both roll and its
velocity at touchdown increase monotonically, passing near
the origin at k1/k2 ≈ 0.7 (k1 ≈ 1010 N/m). Thus the
model predicts that as EduBot’s middle legs are made stiffer,
the robot’s roll magnitude will decrease until the ratio of
stiffnesses is near710 , then increase as the ratio increases to
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unity1.

A. Stability Prediction

Based on our experience with EduBot and RHex, we
hypothesize that increasingk1/k2 → 1 makes the robot’s
gait less dynamically stable. We investigate the effect of
this parametric change on stability in two ways: first, we
test the time to recover from a disturbance; second, we
numerically compute the Jacobian of the touchdown-to-
touchdown Poincaré map [24] and use the magnitude of the
eigenvalues of this matrix as a stability metric, as in [23],
[28].

1) Disturbance Response:We allow the body to settle into
an equilibrium gait, then disturb it by applying an instanta-
neous vertical force and angular torque at touchdown; this
is qualitatively similar to the disturbance applied experimen-
tally (see Section IV-C) and produces qualitatively similar
response trajectories (see Figs. 7 and 8), though we do not
have a quantitative comparison. We record thedisturbance
recovery timeas the time between the disturbance and the
next stable touchdown. When the body touched down on
its left leg spring, its vertical velocity was increased by
0.75 m/sec and its roll velocity was decreased by 3 rad/sec.
We define a stable touchdown as having the property that
the average touchdown state over the subsequent five half-
strides is within 0.3% of the equilibrium touchdown state.
We then compare these responses for different choices of
k1 by plotting recovery time against the ratiok1/k2. Fig. 7
shows an example disturbed trajectory.

Fig. 9 shows the results of the disturbance study. As can be
seen in the figure, recovery time reaches a minimum around
k1/k2 ≈ 0.5, with a large spike neark1/k2 ≈ 0.7. Thus the

1Note the zero crossing occurs well beforek1/k2 = 1 since with evenly
balanced legs, the relevant periodic gait (associated withzero roll) is
unstable in consequence of our simplified energy restorationmodel. The
legs would have to repeatedly achieve maximum compression at precisely
the same moment in order to preserve the gait—clearly unsupportable at
steady state for numerical as well as dynamical reasons.
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Fig. 8. Experimental results: trace of the physical robot’s body height and
roll variables over time taken from a typical disturbance run.

model predicts that as EduBot’s middle leg is made stiffer,
it will become less dynamically stable untilk1/k2 exceeds
≈ 0.7, at which point the stability will increase again, though
the gait will still be less stable than it was whenk1/k2 ≈ 0.5.

2) Numerical Jacobian:As another estimate of the stabil-
ity of equilibrium gaits, we numerically compute the Jaco-
bian of the numerically integrated touchdown-to-touchdown
mapP at its fixed pointz∗ (which corresponds to an equi-
librium gait) and compute the magnitude of the eigenvalues
of this matrix.

We compute the Jacobian using the following method.
First, we identify a fixed pointz∗ to within a desired
toleranceǫ in each coordinate; hereǫ ≤ 1 × 10−8. Then
we compute the system’s trajectory for a half-stride starting
from two pointsz∗+δj

, z∗
−δj

a small displacement1 ≫ δj ≫ ǫ

ahead of and behind the fixed point in thejth coordinate.
We then estimate the partial derivative of the stride map with
respect to thejth component as
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ḣ
= 0.01, δθ = 0.001, δ

θ̇
= 0.02.

∆j =
P(z∗+δj

) − P(z∗
−δj

)

2δj

(6)

and form the(4 × 4) Jacobian matrix

∆P =
[

∆h ∆ḣ ∆θ ∆θ̇

]

. (7)

Because the return map is defined over a three dimensional
“section”—specifically,h and θ are related algebraically at
touchdown by (3)—we do not look at the eigenvalues of
the full Jacobian matrix, and instead work with the(3 × 3)
submatrix that excludes the row and column associated with
the “dependent” variable,h.

Fig. 10 shows the result of this computation. This plot
corroborates roughly the corresponding account in Fig. 9,
strengthening the hypothesis that the model predicts a re-
duced quality of dynamic stability ask1/k2 → 0.7, followed

by a small increase in stability in the range0.7 < k1/k2 < 1.
The apparent discontinuity in this figure occurs at the same
value of k1/k2 as caused the the touchdown state to cross
the origin in Fig. 6. This discontinuity is explained by the
fact that the two sides of the origin correspond to two
qualitatively different gaits in simulation.

3) Summary: By adding viscous damping to the con-
servative model of Section II-A, equilibrium gaits in the
system become stable. By increasing the ratiok1/k2 in the
dissipative model, the body’s roll decreases to nearly zeroat
k1/k2 ≈ 0.7, but increases as that ratio is increased further.
In addition, ask1/k2 → 1 from 0.5, gait stability decreases
significantly, and this result was demonstrated using two
different stability metrics. The fact that the minimum touch-
down roll doesn’t occur whenk1/k2 ≈ 1 seems to be an
artifact of our energy addition scheme, and may not appear
when other schemes are used.

IV. EXPERIMENTAL RESULTS

In order to evaluate the dissipative model’s relevance to
the robot and to check whether the relationship between the
magnitude of the roll and the stability of the rolling motions
holds for the robot, we perform experiments to investigate
the effect increasingk1/k2 has on EduBot’s gait. Specifically,
we collect trajectory data to compute the average rotational
displacement as well as EduBot’s disturbance response ask1

is increased.

A. Experimental Methods

Our experimental platform is EduBot [19], a RHex-like
hexapedal robot. EduBot measures approximately 30 cm
long and 11 cm wide, its legs are 8 cm long, and its
mass is approximately 1.4 kg. Similarly to RHex, EduBot’s
legs are semicirular and revolve about their hips and the
robot employs analternating-tripod gait, where the front
and back legs on one side of the robot cycle in phase
with the middle leg on the other side. In contrast to RHex,
EduBot’s legs are made from polyurethane resins, affording
easy experimentation with a variety of leg stiffnesses. We
tune the robot’s gait by adjusting a variety of parameters as
in [21], and use the same gait parameters for all experiments.
The particular gait we selected has aduty cycleof less than
50%, meaning all the robot’s legs leave the ground for a
short time during a stride. We call this ajogging gait.

Trajectory measurements for the robot were recorded with
a video-based motion capture system that uses Vicon 6
strobed cameras. The system treats EduBot as a rigid body
in R

3, recording the robot’s position and rotation along three
axes at approximately 120 Hz with sub-millimeter accuracy.
Occasionally the motion capture system loses track of the
robot for up to five samples; in this case, we interpolate
linearly across the lost samples. We then apply a 5-sample
median filter to smooth jump discontinuities in the data that
appear to be introduced by noise. This filter has the effect
of rounding cusps in the roll trajectory data, but otherwise
alters the data minimally.



TABLE I

EDUBOT ROLL DISPLACEMENT, THREE MIDDLE LEG STIFFNESSES.

k2 k1 (N/m) Maximum roll (deg) # of Strides
1454 604 4.1 ± 0.4 42
1454 727 2.5 ± 0.6 42
1454 851 1.9 ± 0.5 68

TABLE II

EDUBOT DISTURBANCE RESPONSE, TWO MIDDLE LEG STIFFNESSES.

k2 k1 (N/m) # of strides to recovery # of experiments
1454 727 4.5 ± 0.9 8
1454 851 5.75± 0.5 8

B. Gait Trajectory

We allowed the robot to settle into an equilibrium jogging
gait over 6-20 strides and recorded its trajectory using the
motion capture system described above. We then extracted
the roll trajectory data and computed the average roll dis-
placement over several experiments. Table I shows that the
average roll decreases by 50% from 4.1 to 1.9 degrees as
k1 → k2.

C. Disturbance Response

We disturb the robot in a manner similar to simulation.
First, EduBot runs across a four-foot-long platform until it
achieves an equilibrium jogging gait. Then, when it crosses
the middle of a platform, we manually actuate a see-saw
platform segment, lifting and retracting the platform under
one side of EduBot several centimeters in approximately
a half a second, imparting a vertical force and angular
torque; Fig. 8 presents the sample traces of body height
and roll recorded during a typical disturbance experiment.
Since EduBot’s trajectory is not as consistant as that of the
simulation, a coarser stability metric is required. Specifically,
we use the period of EduBot’s gait as a discrete unit of
time and count the number of full leg cycle periods required
for the robot to return to an equilibrium gait; we identify
equilibrium gaits visually.

We performed two sets of these disturbance experiments,
one with k1/k2 ≈ 1

2 and the other withk1/k2 ≈ 6
10 .

The results are summarized in Table II. As can be seen in
that table, our preliminary results suggest that disturbance
response time increases as the fractionk1/k2 is increased
from 5

10 to 6
10 , which is consistent with the result from the

model.

V. D ISCUSSION

In this paper we have begun to explore the function of roll
in dynamic legged locomotion. We have hypothesized that
oscillatory roll motion will prove to play a significant role
in the overall stability of the system. We have developed a
novel, greatly simplified, hence, tractable model of the roll
component in a running hexapod. Numerical results from this
model match reasonably closely preliminary experiments on
our physical robotic platforms, that demonstrated the strong
effect of varied relative leg stiffness on the characteristic roll
dynamics. More interestingly, the simulations corroborate

(and the few preliminary experiments do not contradict) our
hypothesis that as the magnitude of the periodic roll motion
goes to zero, the system’s ability to reject disturbances is
reduced.

As stated, the results of experimentation on the physical
system are preliminary. In particular, more systematic empir-
ical work may reveal that the very simple energy restoration
strategy introduced in this model may diminish the quality
of more symmetrically sprung roll oscillations as an artifact
of simulation along the lines of the observation in footnote
1. In the near future we will conduct more exhaustive
experimentation on our systems to further probe the central
hypothesis. We will examine the correlation between reduced
roll and the energy efficiency and other dynamics of the
system as well as the system’s ability to traverse rough or
broken terrain as roll dynamics are altered. Finally, we hope
to work with biologists to verify these results on biological
systems.
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APPENDIX

A. Model Parameters

The model parameters were chosen to approximate those
of Edubot, with:w = 10.75 cm, M = 1.2 kg, J = 1

6Mw2

kgm2, γ = 8 cm, k2 = 1440 N/m, k1 varies between 360
and 1420 N/m,B1 = B2 = k2/70, and η = 2500 N/m;
these values roughly match the robot’s, though the moment
of inertia is computed as if EduBot were a uniform rod and
η is chosen to make the model behave qualitatively similar
to the robot.

B. Numerical Methods

We use the Matlabode45 solver to compute the flow
of (1) that advances the state until a transition event (3)
is flagged by the Matlab root solver [29]. The transition
function (4) is then applied and we return to the computation
of (1).
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