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Exploiting Passive Stability for Hierarchical Control

Abstract
The dynamics of a Spring Loaded Inverted Pendulum (SLIP) \template” [1] approximate well the center of
mass (COM) of running animals, humans, and of the robot RHex [2]. Running control can therefore be
ierarchically structured as a high level SLIP control and the anchoring of SLIP in the complex morphology of
the physical system. Analysis of the sagittal plane lossless SLIP model has shown that it includes parameter
regions where its gait is passively stabilized, i.e. with the discrete control input | the leg touchdown angle | held
constant. We present numerical evidence to suggest that an open loop \clock” excitation of a high degree of
freedom hexapedal robot model can lead to asymptotically stable limit cycles that \anchor” [1] the SLIP
model in its self stabilizing regime. This motivates the search for completely feedforward SLIP locomotion
control strategies, which we now speculate may be successfully used to elicit a self-stabilizing running robot
such as RHex.
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ABSTRACT

The dynamics of a Spring Loaded Inverted Pendulum (SLIP) “template” [1] approximate
well the center of mass (COM) of running animals, humans, and of the robot RHex [2].
Running control can therefore be hierarchically structured as a high level SLIP control and
the anchoring of SLIP in the complex morphology of the physical system. Analysis of the
sagittal plane lossless SLIP model has shown that it includes parameter regions where its
gait is passively stabilized, i.e. with the discrete control input — the leg touchdown angle
— held constant. We present numerical evidence to suggest that an open loop “clock”
excitation of a high degree of freedom hexapedal robot model can lead to asymptotically
stable limit cycles that “anchor” [1] the SLIP model in its self stabilizing regime. This
motivates the search for completely feedforward SLIP locomotion control strategies, which
we now speculate may be successfully used to elicit a self-stabilizing running robot such
as RHex.

1 INTRODUCTION

It is now well established that the centers of mass of running animals [3] and humans [4]
approximately follow the dynamics of the sagittal plane SLIP. It has recently been demon-
strated that the COM of the robot RHex [2] also exhibits pronounced SLIP characteristics
when its mechanical and control parameters are appropriately tuned [5]. Notably, this
stable dynamical regime is presently achieved in RHex by a feedforward controller that
drives the machine’s few (six) actuators without the benefit of any proprioceptive data
other than simple proportional derivative control at the motor shaft. A general framework
for “anchoring” the SLIP-“template” mechanics in the far more elaborate morphologies of
real animals’ bodies has been introduced in [1]. However, both the anchoring as well as the
control of SLIP seem to demand sensing, actuation, and computation that may be unreal-
istic relative to the resources that animals and practical robots might be expected to have
on hand. Is it possible to introduce sensorily-cheap, low-bandwidth robotic controllers on
the basis of the template-anchor paradigm [1]?



At present, outside the “expensive” active anchoring framework as exemplified in [6, 7],
we do not understand enough about RHex’s mathematical models to select desired gaits
by first principles analysis. Stable steady state SLIP behavior is adjusted at present by
systematic but almost purely empirical parameter tuning methods. Mathematical analysis
of the (simplified) horizontal plane mechanics of a running cockroach [8] has revealed that
self-stabilization can occur in two and three degree of freedom lossless and energetically
actuated mechanisms (lateral leg spring (LLS) models, see [9, 10]). These models are
mechanically very similar to a horizontal plane version of SLIP, motivating a search for
self-stabilized gaits in the sagittal plane. Analogous study of the sagittal plane SLIP
model now reveals that it too includes parameter regimes that yield self-stabilizing gaits
[11].1 In Sec. 2 we briefly review the SLIP model. In Sec. 3 we describe feedforward
control strategies [13, 14] for SLIP locomotion that are motivated by this discovery of
self-stabilized SLIP-gaits. Sec. 4 discusses the passive anchoring of SLIP in RHex and
outlines the applicability of the proposed control strategies.

2 REVIEW OF SLIP

The SLIP model is shown in Fig. 1a). It depicts a point mass m with a springy leg
attached to the hip H. Also shown are the angle ψ formed between the foothold O to
COM vector and the vertical (gravity) axis, and the distance ζ from the foothold to the
COM. The leg is endowed with a conservative spring with potential V (ζ). For most of this
paper, a Hooke spring potential with V (ζ) = (k/2) (ζ − ζ0)

2 is employed. It is assumed

(a) (b)

Figure 1. The hopping rigid body a) and the two phases characterising a full
stride b).

that the spring is at rest length ζ0 and the leg placed at angle β − π/2 at touchdown;
likewise, liftoff is defined as the event when the spring length resumes its rest length.
Once the leg has touched the ground, the leg pivots without friction around the foothold
O which remains fixed during stance (infinite friction between toe and ground). The body
is assumed to remain in the vertical (sagittal) plane and its state, at any point in time,
is defined by the position of H, (x, y) referred to a Cartesian inertial frame. Fig. 1b)
depicts the SLIP trajectory as a composition of two phases: stance and flight phase. For
a sustained forward motion, the leg angle must be changed during flight (e.g. when the
COM has reached its apex with apex height yAn ) from from ψLO to β− π/2. Since the leg

1Self-stabilizing SLIP gaits have already been used in [5] (Fig. 2) to compare SLIP predictions with
experimental data. Recently, numerical studies have independently discovered SLIP’s passive stability
properties [12].



is assumed massless, its angle can be changed with no energy expense during flight, and
without influencing the free flight dynamics of the point mass. The simplest feedforward
control strategy, namely a constant touchdown angle βn = β ∈ [π/4, π/2] ∀n, with n
enumerating subsequent stance phases, is used except when the flight phase apex falls
below the COM touchdown height ζ0 sin β, as we now describe.

3 CONTROL OF VIRTUAL SLIP

As detailed in [11], the dynamics of the flight and stance phase at an asymptotically stable

state are determined by three dimensionless parameters: g̃ = gζ0
v2 , k̃ =

kζ2
0

mv2 , and β, where
v is the speed of the point mass at touchdown. The control task under consideration is
the convergence to a certain apex speed v∗A =:

√
gζ0v̂

∗
A by changing the leg touchdown

angle β. A suitable parameter basis for this control at constant total energy E is γ = kζ0
mg

,

Ẽ = E
mgζ0

, and β. The passive stability discussed in [11] assumes constancy of all three
parameters during locomotion. However, the parameter regime that yields self-stable
gaits is limited; i.e. the Poincaré map as a function of the speed touchdown angle δ has
a stable fixed point with a connected domain of attraction only for touchdown angles
in an interval B = (β1, β2) (Fig. 2a). For β > β1, a gap opens corresponding to COM
trajectories that fail to reach touchdown height, and the hopper would stumble.
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Figure 2. a) The Poincaré map (relating the next angle of the COM velocity
vector to the previous) within the useful self-stable regime determined by
the leg touchdown angle setting, β. b) Region of stable, periodic forward

locomotion.

This gives rise to two surfaces in (γ, Ẽ, β)-space, which delimit the region of stable, peri-
odic forward locomotion (Fig. 2b). In the interval B, the variation in apex speed ∆vA is
in general so limited (< 5%) that total energy E must be altered as well, if the controlled
machine is to offer a usefully wide range of target apex speeds. Therefore we limit the
SLIP operating regime to a surface SO(γ, Ẽ, β) = 0 halfway (in terms of β) between the
two surfaces. The dimensionless apex speed v̂A is given by v̂A = VA(γ, Ẽ, β). Hence the
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Figure 3. Sample run of a three-stage reduced sensor bandwidth controller.

control is specified by

SO(γ, Ẽ, β) = 0

v̂∗A − VA(γ, Ẽ, β) = 0

which induces an implicitly defined forward control map Q2 : (γ, v̂∗A) 7→ (β, Ẽ).2

Control now proceeds in three stages. First, an energy changing feedback controller with
control targets vA and hA (apex height) and control inputs (β, ζTD) moves the SLIP state
into the desired energy regime, Ẽ∗. For ζTD 6= ζ0 energy is injected or removed from the
SLIP system. Second, an energy conserving feedback controller with control target vA and
control input β moves the SLIP state in the basin of attraction of the stable fixed point.3

Finally, the open loop self-stable strategy is engaged, guaranteeing that the desired apex
speed, v∗A, will be achieved and maintained in the face of small perturbations with no
need for further sensor involvement. Sensing and control need be reactivated only if the
state leaves the domain of attraction (or if a speed (energy) change is desired). This is
demonstrated in Fig. 3, where after the first stride the energy-conserving controller kicks
in, and is then turned off after the fourth stride, following which the system settles into
a “self-stable” periodic gait.

4 SELF-STABILITY OF SLIP IN RHEX

Stable runs with aerial phases as demanded by the SLIP template have been observed
at high speeds with the robot RHex [2]. The parameters of these stable runs seem to be
in the regime of self-stability of a virtual SLIP embedded in RHex, although, to date,
the absence of trajectory data for these runs precludes a rigorous establishment of a
SLIP anchoring along the lines of the procedures described in [5]. Firmer evidence for
the manifestation of a passively-stabilized SLIP system anchored in RHex’s morphology
comes from simulations of a RHex-like model with RHex’s open-loop controller (simulation
environment SimSect [15]). The robot RHex and a snapshot of the GeomView output of
a SimSect run is shown in Fig. 4.

2This map can be reduced to one strictly monotonic transcendental equation under certain approxi-
mations for the spring potential V (ζ) = (c/2)

(

1/ζ2 − 1/ζ2
0

)

[14]. For the Hooke spring with gravity in



(a) (b)

Figure 4. Robot RHex on a rock (a) and a snapshot of a RHex-like model on
flat ground in the SimSect simulation evironment (b).

4.1 Passive anchoring of SLIP in SimSect

SimSect simulations were run over a range of initial conditions and clock parameters of
RHex’s open loop controller (see [2] for a description of those clock parameters). Only
those simulations with flight phases (no legs on ground) between consecutive stance phases
were considered. Of those, only periodic motions that were stable over at least 10 stance
phases were used for further analysis. Here, stability is measured in terms of the maximal
deviation of averaged linear and angular velocities for individual stance and flight phases
with respect to the respective averaged quantities over 10 stance and flight phases. Fitting
a virtual SLIP as in [16] in a range of RHex clock parameters (tc ∈ [0.23, 0.24]s, φs ∈
[0.68, 1.2]rad, ts ∈ [0.046, 0.12]s, φ0 ∈ [−0.04, 0.02]rad) yielded an average rms error of
(5.3 ± 3.0)% over 434 stable runs, with an average fitted spring stiffness κ = (5130 ±
510)N/m and an average relaxed spring length r0 = (0.172 ± 0.003)m. A naive SLIP
anchoring in SimSect would give κ = 5400N/m and r0 = 0.17m, thus establishing strong
evidence for the passive anchoring of SLIP in stable, periodic SimSect simulations with
flight phases. However, in order to show the stabilizing influence of the anchored SLIP
template in SimSect, we must identify the attractor and its nature that makes our notion
of stability in terms of averaged quantities more precise. For this, we selected an operating
point with clock parameters C0 = (tc = 0.24s, φs = 0.92rad, ts = 0.1056s, φ0 = 0.02rad).

4.2 Attractors in SimSect

In order to gain insight into the attracting nature of stable SimSect runs as time-trajectories,
we record 10 of the 12 dynamical states of the robot’s 6 degree-of-freedom rigid body, at
100 consecutive minima zi i ∈ {1, ..., 100} of the z(t) trajectory. Then the average and
the standard deviation for each quantity is computed over all minima and is normalized
by the range of the corresponding time trajectory spanning the last 100 minima. This is
listed in Table 1, where x, y, z are the COM coordinates, θp, θy, θr are the pitch-, yaw-, and
roll-angle, and X stands for any of those quantities. The normalized standard deviations
are all smaller than 0.01, strongly suggesting the existence of a period 1 orbit.

We also want to characterize the basins of attraction for the above determined attractor.

stance, VA must be obtained by numerical fitting.
3Note that both of these controllers can be realized as modifications of the deadbeat controller dis-

cussed in [6].



Table 1. Mean and normalized standard deviation of the coordinates of the
robot’s Poincaré map, defined by żi = 0.

x z ẋ ẏ θp θy θr θ̇p θ̇y θ̇r

av({Xi}) -0.297 0.1422 0.0017 2.078 0.0063 -0.108 -0.0281 1.2765 0.1056 0.2764
std({Xi})

Range(X(t)) 0.009 0.0001 0.0002 0.002 0.0001 0.002 0.0003 0.0002 0.0004 0.0003

Table 2. Initial conditions that flow to an attracting manifold.
z ẋ ẏ ż θp

0.175,0.177 -0.01,0.01 1.59,1.61 -0.01,0.01 -0.01,0.01

θy θr θ̇p θ̇y θ̇r
-0.01,0.01 -0.01,0.01 -0.2,0.2 -0.2,0.2 -0.2,0.2

To this end, a neighbourhood around an initial condition I0 at the operating point C0 that
resulted in stable motion is explored. For vertices on the boundary of the open region
defined in Table 2, SimSect runs converged to period 1 orbits in the neighbourhood of the
one characterized in Table 1. The fact that period 1 orbits for different initial conditions
with different initial total energy are not identical is in accord with the neutral stability
of a virtual SLIP with β = const policy with respect to energy perturbations (see [11],
but note that we have not as yet characterized the dimensionality of the attracting set in
this far more complex setting).

To have confidence that the observed phenomenon is not in some sense “exceptional”
we wish to ascertain that the qualitative behavior of interest persists within an open
ball in parameter space. To that end, we have confirmed that period 1 orbits persist over
variations in the clock parameter space around C0 with initial condition I0 as characterized
in Table 3.

It must be emphasized that while this period one behavior is not “exceptional” it is by no
means clear that the behavior is “typical”. Namely, we have not yet found such a regime
in the clock space that affords significant variation over the physical states of the anchored
SLIP. Often - i.e., from many clock parameter settings, the high dimensional system seems
to exhibit a period two attractor. However, the physical variations (i.e., forward speed,
apex height, etc.) between the two components of the attractor are small enough as to be
satisfactorily “constant” in applications settings. A more rigorous investigation of those
attactors is currently in progress.

4.3 Passive stability of anchored SLIP

For each stable SimSect run, the dimensionless SLIP quantities (γ, Ẽ, β) and the touch-
down velocity angle δn can be computed by fitting a virtual SLIP as in Sec. 4.1. Then
by numerically computing the SLIP return map (in terms of the COM velocity vector
angle δn) with these parameters, self-stabilizing behaviour and the location of the fitted
virtual SLIP in terms of δn in the return map can be determined. Only one out of the 434

Table 3. A neighbourhood in clock parameter space with similar orbits.
tc [s] φs [rad] ts [s] φ0 [rad]

0.235...0.24 0.911...0.938 0.101...0.108 0.0196...0.0204



runs resulted in a fixed point free return map, and all other runs had touchdown velocity
angles δn to the left of the unstable fixed point (see Fig. 2a), indicating that the virtual
SLIPs operate inside the basin of attraction of the self-stabilizing fixed point. However,
in only five of those 433 runs was the return map without gap — the interval wherein the
literal SLIP model fails to return to the next apex (see Fig. 2a). These five cases included
the operating point C0. In most other cases the gap extended from its right boundary
to δn = 0, “swallowing” the attracting fixed point. From a theoretical point of view, the
constant leg touchdown angle control is then inconsistent and the return map does not
even have a locally attracting fixed point.

However, in contrast to the literal SLIP, RHex as well as SimSect do not stumble when
the gap is encountered by the virtual SLIP because their physical legs recirculate around.
Hence the touchdown angles of RHex’s six legs are determined by the open loop controller
and the interaction with the ground. It seems that the gap is an artefact of the SLIP
abstraction which is avoided by recirculating the massless leg driven by a clock. Moreover,
as is discussed in [14], return maps with gaps can be made globally consistent, if the β = β∗

control policy is modified to β = min(β : β ≥ β∗) where the minimum is taken over the
physically allowed touchdown angles β.4 If this modified control is used, new attractors
arise which include period 2 orbits and a “degenerate” SLIP gait with convergence to
δn = 0 and no flight phase. This might explain the frequent appearance of stable period 2
gaits amongst the 434 stable runs. In summary, taking into account the modified constant
touchdown angle control, the specific parameter regimes that characterize anchored virtual
SLIP models do indeed operate in the “self-stable” regime of interest.5

5 DISCUSSION

These preliminary simulation results together with the established SLIP anchoring at
lower speeds of RHex in [5] suggest: a) For running gaits, SLIP is anchored in RHex
by a not (yet) understood coupling of RHex’s morphology, the open-loop controller and
the environment; and b) the virtual SLIP anchored in RHex can operate in its passively
stabilized regime. These observations provide the begining of theoretical framework to
explain the ”self-stable” gaits of RHex at high speeds with aerial phases. To complete
this explanation, we must establish exactly how the open loop “CPG” signal succeeds in
driving RHex into a dynamical regime from which the SLIP template emerges, as may be
done in the far simpler one degree of freedom setting [17]. The control application is clear
from the previous section: we want to drive RHex automatically into the (SLIP-) basin of
attraction of the desired (self-stable) apex speed. Although the required state feedback for
a deadbeat controller runs contrary our goal of developing sensory cheap low-bandwidth
controllers, the deadbeat controller can be turned off after the basin of attraction has
been reached, thus lowering the average feedback bandwidth and, potentially, eliminating
it entirely if subsequent perturbations do not throw the state outside the basin.

4This gives rise to a 2-dimensional return map.
5A similar observation in the case of human runners was made in [12].
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