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Level Sets and Stable Manifold Approximations for Perceptually Driven
Nonholonomically Constrained Navigation

Abstract

This paper addresses problems of robot navigation with nonholonomic motion constraints and perceptual
cues arising from onboard visual servoing in partially engineered environments. We focus on a unicycle
motion model and a variety of artificial beacon constellations motivated by relevance to the autonomous
hexapod, RHex. We propose a general hybrid procedure that adapts to the constrained motion setting the
standard feedback controller arising from a navigation function in the fully actuated case by switching back
and forth between moving "down" and "across” the associated gradient field toward the stable manifold it
induces in the constrained dynamics. Guaranteed to avoid obstacles in all cases, we provide some reasonably
general sufficient conditions under which the new procedure guarantees convergence to the goal. Simulations
are provided for perceptual models previously introduced by other authors.
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Level Sets and Stable Manifold Approximations
for Perceptually Driven Nonholonomically
Constrained Navigation

Gabriel A. D. Lopes
EECS Department, College of Engineering
University of Michigan, Ann Arbor, MI
Email: glopes @umich.edu

Abstract— This paper addresses problems of robot naviga-
tion with nonholonomic motion constraints and perceptual
cues arising from onboard visual servoing in partially engi-
neered environments. We focus on a unicycle motion model
and a variety of artificial beacon constellations motivated by
relevance to the autonomous hexapod, RHex, We propose
a general hybrid procedure that adapts to the constrained
motion setting the standard feedback controller arising from
a navigation function in the fully actuated case by switching
back and forth between moving “down” and ‘“across” the
associated gradient field toward the stable manifold it induces
in the constrained dynamics. Guaranteed to avoid obstacles
in all cases, we provide some reasonably general sufficient
conditions under which the new procedure guarantees con-
vergence to the goal. Simulations are provided for perceptual
maodels previously introduced by other authors.

[. INTRODUCTION

The literature on navigation of nonholonomically con-
strained bodies is extensive. Most work has been focused
on systems with no sensory constraints. Khennouf et al.
[9] and Luo et al. {13] use invariant manifolds; Astlofi [1],
makes the system discontinuous and stabilizes it by contin-
uous feedback control; Tayebi et al. [21] use back stepping
design; Monaco et al. [15] apply multi-rate digital control;
Sordalen [20], Pomet [17] and Samson [18] propose time
varying feedback control laws.

In general, applying a smooth feedback control law to a
nonholenomically constrained system introduces a center
manifold in the configuration space. The goal lies on the
center manifold and attracts all initial conditions on its
(generically transverse) co-dimension one stable manifold
(a leaf of the foliation [6] generated by the constraints),
Ikeda et al. [7] introduced the notion of Variable Constraint
Control (VCC) in which a feedback controller is designed
to achieve an invariant manifold that goes through the goal,
in effect, picking out a distinguished trajectory lying within
the goal’s stable manifold. The elegant formulation allows
reaching the goal in two steps but has some shortcomings:
the first step aims only at a specific, one-dimensional tra-
jectory, instead of the entire goal’s co-dimension one stable
manifold. Moreover, it is not obvious how to integrate
perceptual limitations in the resulting control law.

Other authors focus specifically on problems of percep-
tual limitation. Ostrowsky [22] uses a blimp equipped with
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a camera, maintaining a ball on the center of the camera’s
field of view. Chaumette [14] positions a fully actuated
camera arm in relation to a collection of features. Cowan
[4] uses navigation functions [10] to position a 6dof arm.

More recently Murrieri et al. [16] and Kantor et al. [8]
combine both motion constraints with perceptual limita-
tion. Both authors assume a particular set of nonholonomic
constraints. Then, a feedback control law is built taking
into account those constraints. Kantor et al. extend Ikeda’s
work by using a sequential composition of controllers to
reach a zone where it is safe to apply VCC. This approach
can result in optimized trajectories but can be hard to reuse
on systems with different motion models and/or different
perceptual constraints.

In this paper, we seek 10 decouple the (typically holo-
nomic) perceptval comstraints from the (typically non-
holonomic) motor constraints by adapting an *‘arbitrary”
navigation function [10} to an “arbitrary” nooholonomi-
cally constrained first order mechanism operating in the
configuration space comprising the navigation function’s
domain. The encoding of holonomic constraints via navi-
gation functions is a very effective means of constructing
“designer” basins around specified goal points for fully
actuated first and second order mechanisms. For example,
in visuzl servoing applications, the navigation function
takes into account external constraints like timited field of
view, obstacles and so on. We are particularly interested in
extending Cowans work on navigation with visual beacons
to the robot RHex [19], but we will introduce a consider-
ably more general framework for solving such problems.

We introduce a two step controller: the first moves on
level sets of the gradient function so as to reach the goal’s
stable manifold; the second uses the gradient control law
to reach the goal. If, as is generally the case, a closed
form representation of the stable manifold cannot be found,
an approximation can be used. In any case, by iterating
successive applications of both controllers the robot is
guaranteed, under fairly general conditions, to reach the
goal without hitting any obstacle along the way.
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II. CoNTROL LAW

A. Adapting navigation functions to noholonomically con-
strained systems

As in [7] consider the first order drift free underactuated
system described by:

¢ = Blg)u

Where u € B™ are the velocity inputs of the system and
D is a compact set. Suppose that B : D — R™ x R™ is
rank m < n. Define the nonholonomic projection matrix
M : D — R™ as follows, where B(g)! = (B B) “1pT
is the pseudo-inverse of B(g):

M(g) = B()B(a) = B(q) (B@TB(a)) ™ BT @

M can be interpreted as a projection into the available
directions of motion with constraints defined by B. Then
if we let w = B(g)Tv rewrite equation (1) as:

¢=M(gv; veR" ®

Suppose the control Lie algebra [2] on M spans R™ on the
configuration space. Now consider the navigation function
@ : D — R such that the following system is globally
asymptotically stable at the goal ¢™:

§=—Vylg) )

A Navigation function [10] is a G2 artificial potential
function on a compact manifold D, such that ¢ : D —
[0,1}. It must encode a goal set G as the unique global
minimum, @{G) = 0, and achieve 4 maximum of 1 on
the entire boundary of P, i.e., ¢(dD) = 1. (For more
information on how to construct Navigation functions see
[10]). Apply  to equation (3) to get:

§=—-M(q)Ve(q) (5)

Define the set W¢ = {g € D : M(q)V(q) = 0}. Using
as a Lyapunov function on system (5), and noticing that
M by construction is a positive semi-definite matrix, the
derivative of the Lyapunov function is negative outside W/°
and zero at W¢

geDCR® ueR™, (1)

do - <0, Yggwe
== Vilg)T M(q)V(q) { =0, VgeWe ©

By La Salle’s theorem every solution of (5) approaches
Q C W€, where Q is the largest invariant set of W¢
at some fixed level, ®, = @ '[a], of @. In this case
Q = W€ by definition of W*. Moreover, the Center
Manifold Theorem for Flows [6] shows that if ¢ is C” then
system (5) has a C" invariant stable manifold W* at ¢* of
dimension m and a C7~! center manifold of dimention
n — m, in this case W°.

B. Moving on a level set of ¢

Since (3) drives the robot to a point on W¢ that will
generally be removed from the goal, we find a controller
that first reaches the stable manifold W* by moving on
level sets ®,,. By doing so the robot is guaranteed not to
hit the obstacles.

Suppose we can find a vector field f such that:
f:D=TD | HeeTl(gnsM) (D

Where T'L'(g) is the tangent space of the level sets of ¢ at
g and (M) is the image of M. By construction, ¢(g) =
const is an invariant sub-manifold of the system ¢ = f{g).
To see this, we simply take the total derivative of ¢ and
notethat = Vi - § = Vi - fand f € TL (g)NI(M) =
f € TL/(g). Hence, by definition of the orthogonal
complement Vi € (TL'{(@)) = Vo - f=0=¢=0

Since B(g) is assumed to be full rank, there exists a
matrix A of dimension » — m % n, also full rank, such
that A(g)B(g) = 0. Moreover, span[A(g)] = ker(B) =
ker(M).

If dim(ker M) = n — 2 then' f can be implemented
using a generalized cross product:

= cih (V@) (A@1)k - (A@n-2)éi ()

4,k d=0

€;5...1 denotes the permutation tensor [5], &; are the canoni-
cal basis vectors, A(q); is the ith line of A(g) and (A(g):);
is the jth element of line i of 4. This applies to a fairly
extensive class of systems including the unicycle, carts
{with or without multiple trailers [11]), etc. In particular,
for the RHex motivated planar unicycle described in the
examples section, we have n = 3 and m = 2. Therefore
the vector field f reduces to:

flgy = Vilq) x A(g) M)

Given such a construction for f whose flow moves along
level sets, ®, of ¢ within the span of A, we now seek
to reach the stable manifold at the goa! of eqguation (5).
Consider the system;

i=ol(g)f(9)

Where ¢ : D - R is a scalar function. Any vector field of
the form o(q)f(q) verifies the requirements of (7) since
TL' NS(M) is a linear space. Suppose we can find a
C? scalar function p : D — R such that p~[0] = W*
and u(q) > 0,Vg ¢ W°. Let a{q) := —Vulg) - f(g). If
Vulg) - f(g) £ 0,Vg ¢ W then the vector field a(q)f{q)
is guaranteed take its limit set in W?, as we now show
by noting that i plays the role of a Lyapunov function for
(10): .

(10}

o > 0, Vg We
i = Vilg) -4 =—(Vaule) - [{@)° <0, Vg g W’

La Salle’s theorem states that every solution of (10) ap-
proaches the largest invariant subset of W* as £ — oo.

UIf dim{ker M) < n — 2 then on¢ has more directions (o move on the
level sets of ¢ within the span of M, and questions of involutivity arise
thar lie beyond the scope of the present study.
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C. Two step controller

Using the previous notation and constructions, defire
two vector fields:

H1:D—=TD suchthat fi{q) = —M(g)  Vel(g)
f2:D—-TD suchthat folq) = olg)fla) (1D

Let f7(go) and f7 (go) be the flows generated by f1 and f3,
respectively, i.e., f7(qo) are trajectories of the solution of
the differential equation ¢ = f{g) with initial condition gg,
7 denotes time. Since D is positive invariant under both f;
and fa, both of these vector fields take their forward limit
sets in D, hence we get two maps f° : D — D such that:

17°(a0) = Jim. £ (q0)

Assume that x~1[0] = W*. Knowing that for all g0 ¢
W we have ||falgo)]l > 0, then f$(gg) € W*. But
W) = q* = ff° o f5°(gp) = ¢*. Therefore, for
any initial condition outside the center manifold W¢ of
system (5), applying controller f> followed by controller
J1 reaches any neighborhood of the goal ¢, so long T is
made large enough.

D. Ierative controller when W* is unknown

In general it may not be easy to find a closed form
representation of the stable manifold W?*. A sufficient but
not necessary condition for convergence to the goal is that
we can find an approximation of the stable manifold of the
form W* = {g € R™ : (g) = 0}, such that % = ‘PJN{WS}
(the restriction of ¢ to an open neighborhood of W“-‘) is a
Lyapunov function.

Proposiion 1: For every initial condition outside the
center manifold W of system (5}, applying f followed
by fa intermittently converges to the goal q*.

Prooft Let f7 be the flow generated by &(q}f(q).
Let P, n(q) = f Ti(q) € N{W*) by choosing
a sufficiently large 5. If 7; is made a function of g,

ie., 7i : D — RY then define the recursive time-invariant
equation: i
Gh+t = Promy(g) = 7799 0 f11%)(g) = Plar).  We

are now ready to apply the standard Lyapunov analysis
for autonomous discrete-time systems.

Claim I: Yo<r(g)<oo Ya& € N{W°}/W° then
Pagrs1) < olax)

Proof: Since g ¢ W€ then ||M - Vo (gi)| > 0.
Equation (6) guarantees that f;%(g.) # g, ¥71(qs) >
0 and @(f7"(gi)) < p(ge). Then we get:

Plaerr) = o(f79 o f719) ()
= p(f7 ) < (k) = Plax)
O
For a scalar valued function, v D — R, and

a map, P':D — D, define the “discrete derivative”
Av := v o P' — v. The Lyapunov criteria for discrete-time
systems states that the origin of pri1 = P/(py) is asymp-
totically stable if, in a neighborhood of the origin, there is a
continuous positive definite function v(p) so that Au(p) is

negative definite. Make v(p) =
and p=g—gq".

@(p), P'or) = P(pk-&q*&

III. APPROXIMATING STABLE MANIFOLDS

In this section we find k-order local approximations to
the stable manifold at the goal of system (5), by recursively
solving a parameter matching equation. In particular, the
curvature of the stable manifold at the equilibrfum point
can be obtained as a function of partial derivatives of
the vector field h(q) described next (6]. We start by
“normalizing” the system so that the goal is at the origin
and the tangent of the stable manifold is spanned by vectors
of the cancnical base. In doing this, we seek to represent
the stable manifold explicitly as [Tmi1 - zn)? =
g{Z1,...,2m). Consider the system:

¢ = —M{(q)V(q) = h(q)

Apply a change of coordinates to get:
p=fp)=Rn(R7p—q")

Let J = Df{0). The Center Manifold Theorem for
Flows states that the eigenspace generated by the eigen-
vectors with negative eigenvalues of J is tangent to the
stable manifold W* at the origin. Let /' be the change of
basis for the real Jordan canonical decomposition:

(12)

Ay 0 -0 0

J=R"! ? R =R7'AR
: Ay
0 0

where A; are real eigenvalue blocks. Notice that A; are
sorted so that the zero eigenvalues are on the bottom. Next,
apply the Gram Schmidt ortogonalization to find a rotation
matrix B = Gram{R’). At this point the tangent to the
stable manifold of system (12) ( W*) is the span of the
canonical base vectors [&;,...,8n,]. Let p = (x1,...,25).
Define the function G : R® — R" ™ such that G(p) =
g1, o, Em) — Emt1 - a:n]T, with g : R™ — R*™™.,
Let G = 0 be the implicit representation of W*° at
the origin and [Zpp1 -0 Ta)? = g(T1,...,Tm) s
explicit representation. We proceed by finding a polynomial
approximation of g on partial derivatives of f. Let gy and
fr be k-order taylor approximations of g and f at the
origin:
o zhm

y(l:m) :E ?.,;—"_‘1—721, oim

i1 im 20

i1+ t+im sk

T o o
ml; Scn) Z‘">ﬂ (axgl 6&3:1" f)
01+ ~+inZk

gk(zli"'

0

Since & = 0 is an invariant manifold of (12), its total
derivative is zero:

G=1[Dg —I]-f=0 (13)
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level set

(a) 1st order approximation of stable manifold

Fig. L.

level set

(b) 2rtd order approximation of stable manifold

Simulation of a two step controller using different order approximations of the stable manifold. The initial position is £g. The controller

switches at £5 and the final position is 5. Due to the high curvature of the stable manifold W* at the origin the Ist order approximation requires a

higher number of iterations to reach the proximity of the goal.

To find an k-order approximation of W* replace g and f
by gx and fi on equation (13):

(ipg =11 fi) o (@1, 2m, drar,- s 2m)) = 0 (14)

(14) is a system of n — m equations with variables
T1,...,Tm. By construction, the 0 and Ist order co-
efficients are equal to zero. The 2nd and upper order
coeffictents are computed recursively by matching the
z; coefficients of equation (14), in effect, solving linear
equations recursively.

A. Example 1: W* is a surface on R®

Here we have n = 3 and m = 2, therefore (14) reduces
to one equation:

0= (Un % + G - () o (o.minte )

The 2nd order coefficients can be computed by solving the
linear set of equations:

&r &r 02T
(—2:0/\——:0/\-—2=0
dx drdy oy 2y=0
Resulting in:
) ) “1rag?
S 15R
Jo2 8fs BA BN Bf1 8% J:
i - Tﬁlz& 6:1+ 8y 8; Bxa:;,:
72,0
[} a 2
o ¥ E] iz

x=0
y=0

The 3rd and higher order coefficients are computed in a
similar fashion. Note that the curvature of W* at the origin
is computed by 77 1 — Yo, 72,0

B. Example 2: approximations of W?* with high curvature
Jor a unicyele

If W? has a high curvature at the goal, then the order of
approximation becomes relevant, especially if the number
of steps necessary to reach a fixed neighborhood of the
goal is desired to be minimized. Let ¢ : R* —+ R be a
potential function with goal at the origin and M be the
nonholonomic projection matrix for the unicycle:

o(z,y,0) = z° +4°+6° (15)
sin® @ cosfsing 0
M(z,%,0) = B-Bt=| —cos@sing cos®d 0
0 0 1

(16)

The ker M is the span of A(g) = [cos(#) sin(#) 0]. Using
the potential function (15) with M results in the the cen-
ter manifold We = {(z,y,8) € R®ly = 0A 6 = 0}, Using
equation (14) we get the following k-th order approxima-
tions to the stable manifold at the origin:

Wf = {z=10}
= —__ﬂ
WQ = {1‘7 2
Y ___y_a_y_aa._ﬂ
We = le=-5 " "m0}

Figure 1 illustrates numerical simulations of the vector
fields (11) using 1st and 2nd order approximations of W?°.
Due to the high curvature of W? at the origin, the 1st
order approximation results in a poor final position after
one iteration. More iterations are required to reach the goal.
The 2nd order controller reaches the proximity of the goal
in one iteration.

IV. SIMULATIONS

This section provides numerical simulations of two in-
stances of navigation with visual constraints.
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Fig. 2. Simulation of a unicycle using a navigation function introduced by Cowan. The initial position is ¢p. The controller switches at £s and the
final position is ty. A st order approximation of the stable manifold W* is used. Due to the low curvature of W the robot reaches the proximity
of the goal in two steps. a) Top view. The beacons are represented by the large black dots. The gray areas violate the visual constraint obstacles, b)
Configuration space plotted on (&, y, 50 — 5 arctan(y/z)) for legibility purposes.

A. Example 1: registration of robot using set of 3 beacons.

Cowan et al. (4] introduced the problem of a robot
registering itself against a set of 3 beacons. A smooth
change of coordinates (h : R? — R?) maps the projection
of each beacon on the image plane to the robot’s location
in SE(3) (for detailed information on h see {12j). A
navigation function  is built in the image plane taking
into account the two types of vision constraints:

1) Field of view obstacle: the coordinates of the pro-

jected beacons are bounded.

2) Self-occlusion: the coordinates of the projected bea-

cons are not allowed to intercept.

Consider the following potential function:

i (G- )+ G-+ (G-

O G =~ GG — ) — GG — Ca + Ca)

Where (s and (;n are the Field of View obstacles and (4
is introduced to limit the distance away from the set of
beacons. &k is a “shaping” parameter. ¢ by construction
explodes at the obstacles and is zero at the goal. The
resulting navigation function is a squashed version of @:

@(61, €2, Ga)
€ + @(C1, 62, C3)

The final system uses the pullback of % to bring the
velocities Vi back to SE(3):

0(61,¢2,63) == an

¢=DhT(g) - Voo h{q) (18)

The previous navigation function was developed for a fully
actuated body and implemented on the robot RHex [19].
However, the strength of empirical experience suggests that
RHex’s horizontal plane behavior is modeled by a quasi-
static unicycle. Figure 2 illustrates a simulation of the
system (3) using the following set of controllers, where
M and A are defined for the unicycle in (16). ¢ is given

by a 1st order approximation of W2,

fi = —M(g)- DhT{q) - Vo h(g)
J2 = o(q) (DhT(g) - Voo h(g)) x Alg)

The numerical simulations show that the navigation
function introduced by Cowan can be reused with no
modifications. Notice that on the plane the robot executes a
parallel parking maneuver. Although it is well known that
for the unicycle the parallel parking motion is required
to move sideways, the trajectory obtained on the plane
is a natural consequence of moving on a level set of the
navigation function, The navigation function enforces that
the robot does not hit the obstacles, since doing that would
require puncturing the level sets away from the goal.

19

i

i

B. Example 2: registration of robot using a single beacon.
Kantor and Rizzi [8] solved the problem of positioning
a robot in relation to a single engineered beacon by
using the notion of Sequential Composition of Controllers
[3]. The final approach to the goal is implemented using
Ikeda’s Variable Constraint Control. Let / be a change of
coordinates from SFE(2) to double polar coordinates:

7 arctan (y/x)
g | =h{z,y,80)=| #—arctan(y/z)
d /x2 + y?

Obstacles are introduced on the field of view so that the
robot maintains a range of distances to the beacon and
keeps facing it:
Mo <P ppry A < d < dpy
Consider the following potential function:
_ (2 cos(n— ) — cos(— u*) + (d—d")3)*
(1 = cos( — pm))(1 — cos(p — par))
1

(d—dm)(d — dn)
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Fig. 3. Simulation of a unicycle on the visually constrained setup introduced by Kantor and Rizzi. The initial position is o. The controller switches
at ts and the final position is £5. A 1st order approximalion of the stable manifold ¥¥* is used. Due to the low curvature of W?* the robot reaches
the proximity of the goal in two steps. a) Top view. The beacon is represented by the large black dot. by Configuration space plotted in (z,y, 1)

A squashed version of ¢, as in (17), is used on the
controllers (19). Figure 3 illustrates the resulting numerical
simulations. Once again, the robot executes the paral-
lel parking maneuver. Simulations suggest that the robot
reaches the stable manifold WW* more efficiently if it moves
on a level close to the obstacle.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduces the idea of reusing navigation
functions developed for fully actuated bodies on motion
constrained systems, The resulting switching control law
guarantees that the system converges to the goal, even
if an approximation of the stable manifold is used. Due
to the nature of the switching controller, the obstacles
encoded on the navigation function are guaranteed to be
avoided. Remaining work includes the implementation of
the algorithms presented on the robot RHex on navigation
applications.
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