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Abstract 

This paper presents some preliminary results from a 
recently initiated research collaboration concerning the 
modeling and control of color xerography. In this first 
communication of our work, we describe our efforts to 
develop a model for a monochrome marking engine. We 
adopt the technique of principal component analysis for 
choice of output coordinates and demonstrate preliminary 
experimental evidence suggesting that this procedure 
yields accuracy in data reconstruction superior to present 
industry practice. Preliminary analysis of the experimental 
evidence suggests that the process has a nonlinear 
component that we will seek to model using a mixture of 
physical and empirical insight. 

1 Introduction 

In the last year we have established a joint research 
collaboration between the Xerox Corporation and the 
University of Michigan devoted to modeling and control 
of xerographic processes. The objective of the Xerox-UM 
collaboration is to address basic control systems problems 
to obtain significant improvements in stability and 
performance. Color is typically specified in a three 
dimensional space - (L*,a*,b*) - wherein each point 
corresponds to a particular “color.” In a digital document 
representation, the color at every location on the page is 
specified by a triplet of quantized coordinates in this 
space. The metric that is normally used to measure the 
color consistency is AE , the Euclidean distance norm, to 
determine the difference between two colors in the color 
space being considered 111. The human visual system can 
distinguish colors separated by roughly one unit of 
distance. 

One metric of color print quality is the ability of the 
printing system to reproduce and maintain every color to 
a specified tolerance. Typically, printers are capable of 
keeping individual color variations within a sphere of 

radius of 5-10 in the (L*,a*,b *) space (in some absolute 
units) for a single print run. For high quality color 
reproduction, variations within a radius of approximately 
3 are required. Currently, no printing technology has 
demonstrated this level of color stability. 

The aim of this paper is to present some of our initial 
results on modeling of a monochrome xerographic 
process. Typically, four monochrome colors - cyan, 
yellow, magenta and black are used in a dry powder color 
printing process. We need to get every color right every 
time, to meet the challenges of the color printing market. 
We first present a brief qualitative description of the 
xerographic process. This is followed by a discussion of 
representation, specifically, coordinate transformations in 
the input and output spaces, Next, we present some 
preliminary experimental results on input-output 
modeling of a monochrome xerographic process. 

2 Overview of the Xerographic Process 

For the purposes of this paper, we find it convenient to 
break the process into two principal components 
connected in series to form a xerographic printer, as 
depicted below. 

i 
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2.1 Principal Subsystems 

2.1.1 Plant A - Charge/Expose/Develop: The 
xerographic process centers around a photoreceptor (P/R), 
a multi-layer belt or drum which retains charge in the 
dark but discharges when exposed to light. Plant A 
begins with an uncharged P/R and finishes with the 
customer page (in mirror image) expressed as a pattern of 
small colored particles (toner) on its surface. The first 
step in the xerographic process is to “charge” the surface 
of the P/R uniformly by varying the voltage, u g ,  on a 

parallel ion emitting wire grid. Second, the “expose“ step 
of the process involves discharging the charged P/R 
surface using a laser modulated according to a bit stream 
representative of the desired image which leads to a 
dimensional electric charge distribution on the P/R. The 
magnitude of the voltage reduction is a function of the 
illumination intensity, U[, of the laser. In the 
“development” process, the binary electrostatic image 
residing on the P/R is developed using a bias voltage ub 
into a visible image of toner particles whose mass density 
distribution mirrors the exposed charge density 
distribution, and, hence, the original image. The physics 
underlying many of the development methods used in 
xerographic engines is discussed at length in the book by 
Schein [2].  The three control signals are denoted by U A  . 

2.2 Representation of Photoreceptor State 

Denoting by PA the uncontrolled sources of variation in 
the charge/expose/develop process (for example, surface 
feature variations on the P/R), we may now represent 
Plant A by the equation 

where md is the toner mass density and m, is a 
representation of the customer image to be reproduced. 

2.1.2 Plant B - TransfedFuse: In the “transfer” 
process, paper transported on a conductive roller is 
brought in contact with the developed toner image on the 
P/R. A voltage, u t ,  opposite to that of the toner charge is 
applied to the roller so that the reversed electric field 
breaks the electrostatic force between the toner particles 
and the P/R surface, thus transferring the particles to the 
paper. The “fusing” process fixes the toner to the paper. 
The most common process is hot roll fusing system [3] 
which consists of a pair of rollers, one of which is heated 
internally with a quartz lamp to a setpoint temperature. 

The composite xerographic system may be regarded as a 
series interconnection of Plant A followed by Plant B. 

The combination of Plants A and B results in an effective 
spatial distribution of points in (L*,u*,b*) across the 
printed page. Indeed, ultimately, it is this visual 
appearance of the marked paper that counts. However, as 
may be imagined, the full measure of the impact of the 
various signals on the xerographic process and, in 
particular, on the optical output, (L*,a*,b*), is 
imperfectly understood. Industrial experience indicates 
that a far simpler abstraction of the vast quantity of 
information contained in the state of the P/R can be used 
instead to deal with the interrelationships between these 
signals. This reduced representation of the P/R state is 
called a reproduction curve which we will now describe. 

2.2.1 Halftone Dots and Reproduction Curves: A 
halftone dot is the printer’s unit of area on a page - for 
high quality printing roughly 150 dots to the inch are 
needed. It is traditional in the photographic industry to 
measure gray level in terms of a continuous scale of image 
density, which we will call contone value, at each dot of 
the image perceived at normal reading distance. The 
contone scale is represented by the interval [O,:] where 0 
denotes the reflection of the bare substrate and I denotes 
the reflection from a fully developed solid area patch. 
Intermediate image densities are accomplished through 
digital halftoning. 

At each step along the xerographic process one may 
define a function, called a reproduction curve (RC), that 
relates contone value at a dot to the appropriate measure 
of the image at that step. For example, the “developed 
reproduction curve” (DRC) is a function, c d  , that maps 
contone values into the percentage of total possible toner 
mass at a dot in the toned image on the P/R that comes 
out of the developer stage. The most important of these 
functions is, C,, the customer‘s “desired tone 
reproduction curve” (TRC, to follow industry parlance) 
that maps contone values into the percentage darkness 
that the user wishes to ascribe each dot on the output 
fused image in advance of seeing the results of the 
physical printing process. This plays the role of a 
reference command in the xerographic process. It is 
important to note that each reproduction curve maps the 
interval [O,l] onto itself in a monotonic fkshion. 

2.2.2 Plant A As a DRC Generator: Having introduced 
the notion of a reproduction curve, we may now rewrite 
(I), as 
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where U = [ug,zq,ub]7’ E R3 now replaces ZLA in (I) ,  

p replaces P A  , C denotes c d  , and we have simply taken 
the representation of the customer’s image, C, to be the 
identity reproduction curve. 

While C has the physical character of a monotone 
function from the interval [0,1] into itself, the sensors 
available to read this function will deliver a discretized 
version. Hence we consider the developed reproduction 
curves (DRC) to be C E r:= Rn where n denotes the 
discretization of a continuous DRC. This discretization 
arises from the data representation of each halftone dot 
density as an 8 bit integer. Typically in commercial 
printing the process sensors observe only a small fraction 
of the 256 states available. For the experiments reported 
inthispaper n = l l l .  

3 The Modeling Problem 

Roughly speaking, there are three aspects to developing a 
useful experimental model of a plant (2). One needs to 
choose coordinates for the output space, coordinates for 
the input space, and, of course, adopt a strategy for fitting 
input output models to the experimental input output pairs 
when expressed in those coordinates. In the present study, 
we have wncentrated on the first of these and merely 
mention in passing our ongoing efforts regarding the 
second and third. 

3.1 New Coordinates for the DRC Space 

Because r , being a space of functions, has such high 
dimension, it is imperative to replace it with a much lower 
dimensional projection of the DRC space. Otherwise, 
useless computational effort might be expended in 
accounting for degrees of freedom far greater in number 
than can be compensated for by the authority of the 
available xerographic actuators. Thus, we are led to 
introduce a projection, 

where v is a suitably chosen transformation onto a low 
dimensional vector space. 

It has been traditional practice to sense DRCs at a fixed 
small set of sample points, so that the measured output 
takes the form 

(4) T c:=n c 
where each column of II is a vector of zeros with a 
single unity value stuck in the slot corresponding to the 

quantized value at which the DRC is to be sampled. Thus, 
this particular “Boolean” projection, common to many 
machines has long been embraced in general industrial 
practice. 

We will use instead in out input/output experiments an 
alternative projection that enjoys certain optimality 
properties. In particular, if we take the notion of 
optimality to be least squares with respect to a calibration 
sample, then this results in a choice for yr dictated by the 
principal components of the covariance matrix as we will 
outline below. The reduced output space is thus D = R‘ , 
where r is the number of principal components and 
d E D takes the form 

d =w(C):=Y’ c. (5) 

In section 4, we will present experimental results 
comparing the traditional practice with these “optimal” 
coordinates. 

3.1.1 Principal Component Analysis: Denote the matrix 
resulting from a set of output measurements - N - as 

and define its associated (non-central) sample covariance 
matrix 

1 
N 

c:= -QQT 

Since C is a positive semidefinite symmetric matrix it 
admits the singular value decomposition 

(7) 

where Ar E Rrxr is a diagonal array containing the r - 
largest eigenvalues of C in descending order, 
0 = An-r E R(n-r)x(n-r) contains the smallest n - r 
eigenvalues, and, hence, we may approximate 

where ‘P E Rnxr is the matrix of r “principal 
component” vectors that we may take as our basis vectors 
for D as used in (5).  

3.1.2 Data Reconstruction: In order to compare our 
choice of output coordinates, (i. e., d )  against the 
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standard industrial practice, denoted by c , we will use 
certain metrics which capture their power to retain 
information relative to the original data. Thus, if we 
desire to reconstruct the DRC implied by the D-space 
coordinates, d E R' , then the obvious computation is 

=Y ' ( d )  =Yd. (9) 

However, a particular commercial machine may not afford 
data in this form. Instead, given any other linear 
projection .n , as in (4), there is a corresponding least 
squares optimal reconstruction, z+ , with the property of 
best recovering (again with respect to the set of N sample 
vectors that form the columns of Q). That is, if we 
consider among all linear reconstructions 

e:= n:+(c)= a+(nTc> 
that one which minimizes the sum of squared 
reconstruction errors, then the optimum takes the form 

n+ (c) = n +c 

where ll' minimizes the Frobenius norm of 

Q - rI+rI TQ. 

Using standard facts from linear algebra, 

Notice that if ll were chosen to coincide with the first I' 

eigenvectors of 2 then we would have II' =Y , 
justifying the obvious choice in (9), presuming the 
availability of sensed data in the form (5).  As a matter of 
fact, the least squares optimal choice for II itself is 
precisely the principal components basis given by Y [5]. 
In principle, then, the alternative reconstruction (lo), 
would only be indicated if available sensor data takes the 
form (4) rather than (9, as in indeed the case in some 
commercial machines. 

The reconstructions described above are least squares 
optimal - the mathematical preference for (9) over and 
against (10) only relevant in the face of an appropriately 
richer sensory system, that might yield outputs of optimal 
form ( 5 )  rather than (4). In contrast, for present standard 
industrial practice, DRC reconstruction from the sampled 
values contained in c as sensed by (4) proceeds according 
to spline fit (that we denote by TC (spline) in the sequel). 
Therefore, as a matter of significant interest independent 

of input/output models, we will compare experimentally 
the reconstruction accuracy of these three variant methods 
in Section 4.2.. 

3.2 New Coordinates for Actuator Space 

In recent years there has emerged in industrial practice 
the suspicion that U should be more properly transformed 

v = S(U) (12) 

by a nonlinear change of coordinates, S , into what are 
called the soft actuators, V . 

This view of the xerographic process holds that the 
physical actuators 1 4 ,  affect the DRC through an 
intermediate set of soft actuator values, 

v = [VI 172 v3] E R 3 ,  in a manner that depends upon 
a nonlinear change of coordinates involving ratios of the 
grid voltage and bias voltage as well as the so-called PIDC 
- photo-induced discharge c i i e s  - which capture the 
relationship between the surface potential of the 
photoreceptor and the light exposure [4]. 

T 

Unfortunately, there is no first principles based reasoning 
on which to develop a model for the PIDC curve. Since 
the soft actuator values, v , corresponding to a particular 
hard actuator setting, U ,  are easily experimentally 
available in the laboratory we are preparing a separate 
study wherein we will attempt to fit a model for S . 

3.3 Parametrization of FA 

We anticipate that the input coordinate study may have a 
significant impact on the choice of models for the plant, 
(2). In the meantime, however, we have adopted the 
obvious framework of Taylor series expansion, and will 
consider various models that entail increasingly high 
order expansions. The results of these experimental 
studies are presented in Section 4.3. 

4 Experimental Results and Analyses 

4.1 The Experiments 

4.1.1 Experimental Vehicle: A Xerox 4890 highlight 
color commercial printer, was modified for experimental 
work. It was instrumented with a state-of-the art data 
acquisition and measurement system to obtain the DRCs 
each time a custom built image capable of sampling the 
area coverages between 0 to 1 is developed on the 
photoreceptor. DRCs were measured optically on the 
photoreceptor using a method closely resembling that 
covered in [6]. Various combinations of input settings of 
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the hard actuators were developed by externally disabling 
the intema! machine control functions. 

I Study I Coordinates I MSE,, I MSEf 

4.1.2 Experimental Design: We have undertaken a full 
factorial design with five levels, so that prints were made 
at each of the 125 combinations of the five input settings 
for the three actuators. Of these 125 experiments, the 
results of four had to be discarded because of 
experimental failures, leaving a total of N = 121 input- 
output pairs { ( ~ j , C j ) ] ~ = ,  N , where iii E H 3 and Ci E R” , 

n = 11 1 , as related by (2). 

MSEp 

4.2 Output Coordinates 

2 

From a practical standpoint, implementing our proposed 
new coordinates (3), along with the accompanying 
optimal reconstruction (9), might necessitate a new sensor 
(5) for certain machines. Even given the standard sensor 
(4), implementing its accompanying optimal 
reconstruction (10) would necessitate a calibration 
experiment (to obtain S L ,  from which the optimal 
reconstruction, z+, might be derived) that is not 
presently required in standard practice 
reconstruction, n (spline). Thus, to assess the potential 
improvement offered by our proposed methods relative to 
their increased implementation costs, we present a 
comparative cross validation analysis of the three 
reconstruction techniques applied to our experimental 
output data. 

w I 0.2961 I 0.2810 I 0.3479 

4.2.1 Cross Validation Studies: We proceed as follows: 
We partition the original data set of No = 121 DRC 
curves into two disjoint populations - N f ,  a sub- 

population “fitting data” that will be used to obtain a 
“calibration”, X f -  and N ,  , a sub-population that will 

be used as test data. Using Z f  we compute y r ]  andn) 

according to (10) and (11). Then the resulting yf) 

andn) inn (spline) are applied to N ,  to compare the 

quality of representation. 

2 

We must take care to insure that N f  is large enough to 

ensure a good fit, but not so large that the prediction test 
population,Np is uselessly small. Our criterion of 

adequate fit will be based upon the ratios of mean square 
errors as follows. Given a population, N , of DRC data, 
define the mean total sum of squares to be 
M S T  = SST 1 N where the total sum of squares is defined 
by 

n: I 0.5136 I 0.5381 I 0.5064 

N 2 
SST: = llCj - c// 

i=l 
and 7 defines the sample mean. 

Further given a reconstruction procedure and a set of DRC 
curves, define the mean error sum of squares to 
be M S E =  SSE 1 N where the error sum of squares is 
defined 

and ti is computed by one of the reconstruction method. 
Thus, MSE, will denote the MSE resulting from using 
N = N o ,  MSEf will denote the MSE resulting from 

applying the reconstruction procedure to the fitting 
population, N f ,  and MSEp to be the MSE resulting 

from applying the reconstruction procedure to the test 
data, N ,  . We will make sure that the fitting population 

percentage, N f  / N o  is sufficiently large that 

‘MSEf f MSE, is within 10 percent of unity. 

Giben an adequate fit relative to the original population, 
we may now assess the predictive capability of the 
reconstruction by considering the various mean squared 
errors - that of the predictive population being the most 
important. We expect (except under peculiar 
arrangements of data within the populations) that MSEf  

should be smaller than MSE, . However, a much smaller 

MSEf casts suspicion on the predictive adequacy of the 

proposed reconstruction. 

4.2.2 Comparitive Study of Reconstruction Accuracy: 
The accompanying tables summarize the results of six 
different randomized cross validation studies comparing 
the three methods of reconstruction introduced in Section 
3.1. For each of the six pairs of rows a different fitting 
population of size, N f  = 85 was chosen at random from 

the original. 

I 0.2961 I 0.3013 I 0.2890 

1 I n: (spline) I 0.7235 I 0.7963 I 0.5516 I 
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I 2 1 n(s~line) I 0.7235 I 0.6877 I 0.8080 I 

3 
3 
3 

w 0.2961 0.2441 0.4326 
7c 0.5136 0.4241 0.7710 

7~ (spline) 0.7235 0.6672 0.8564 

4 
4 
4 I  spline) I 0.7235 I 0.7926 I 0.5603 I 

w 0.2961 0.3 163 0.25 16 
n 0.5 136 0.5679 0.4079 

5 

5 I  spline) I 0.7235 I 0.7323 I 0.7026 I 
w I 0.2961 I 0.2911 I 0.3233 

5 

6 I  spline) I 0.7235 I 0.8060 I 0.5287 I 

n; 1 0.5136 I 0.5112 I 0.5336 

We see from the MSEf values that the optimal 

coardinatization/reconstruction, Y , yields roughly 
double the accuracy of the best possible reconstruction 
.n+ for the traditional method of sampling the DRC at 3 
points. Also, the optimal reconstructionx+ is 
approximately 30% better than the spline fit. Moreover, 
we see from the last column that the optimal 
coordinatization/reconstruction has predictive value 
roughly one third better than that of the optimal 
reconstruction n+which in turn is roughly one fourth 
better than a spline fit. 

6 

4.3 Input Output Modeling 

v I 0.2961 I 0.3035 I 0.2817 

As mentioned above, we have carried out a full factorial 
experimental design and collected input-output data on 
Plant A (2). Having derived the optimal output 
coordinates, d = w(C), given by Yo , from above, we 
have fit successively higher degree polynomial models to 

the projected data, {zij,dj}i=l,zq N E R 3 ,dj e R 3 with results 

that we now discuss. 

6 

4.3.1 Fitting Polynomial Models to the Data: We 
considered five different polynomial models for (2) with 
degree as summarized in the accompanying table 

7c I 0.5136 I 0.5705 0.4023 

Model 
1 1  

2 
1 3  

4 
5 

Since each of these models is linear in parameters, 
standard techniques of linear regression apply, and we 
obtain the least squares optimal fit in each case by 
application of the appropriately formed pseudo-inverse 
matrix function of the input data to the matrix of output 
data, !2 . To test the relative merit of the five models, we 
have again performed six sets of comparative cross 
validation studies. In presenting the results of these 
studies, we will again take recourse to the data spread 
statistic, MST , and model residual statistic, MSE from 

above. We also consider the traditional “adjusted” R2 
statistic 

MSE, I M S E ~  I M S E ~  I Rr2 1 
2.6879 2.6787 2.8675 0.3501 
1.2119 1.2456 1.2343 0.7266 
1.7344 1.6865 2.0193 0.5670 
0.6704 1 0.6716 1 0.8070 0.8515 
0.5742 1 0.5819 1 0.7674 0.7742 I 

where N is the population size and p is the number of 

parameters in the model. Note that the adjusted R2 
statistic approaches unity as the spread of the residuals 
decreases relative to the spread of the experimental 
outputs. However, note as well that models with a greater 
number of parameters are “taxed” more by this measure. 

Model 
1 
2 
3 
4 
5 

4.3.2 Comparison of the Five IO Models: In each of 
these five studies we take a different randomly selected 
sub-population of Nf = 85 and compute the best model of 

each polynomial degree for that population. We then 
compute the prediction mean sum of squares, MSE, by 

applying the fitted model to the new data, 
N ,  = No - N f  = 36 and adding the norm squared of the 

residual errors. The results are summarized in the 
accompanying tables. 

Terms 1 Parameters 
linear 

affine, linear I 12 I 
pure quadratic 18 I 

affine, linear, quadratic, cubic 54 I 
affine, linear, quadratic 30 

For study number one, we find 

1 2  1 1.2119 

4 1 0.6704 

1.2185 I 1.3223 1 0.7389 

0.6420 1 0.8048 0.8688 
m- 

for study number two, 

1 2  1 1.2119 

4 1 0.6704 

1.2185 I 1.3223 1 0.7389 

0.6420 1 0.8048 0.8688 
m- 
1 5  1 0.5742 ~ 0.5446 ~ 0.7610 

for study number three, 

0.8136 1 

4842 

1 5  1 0.5742 ~ 0.5446 ~ 0.7610 0.8136 1 



5 I 0.5742 1 0.5449 1 0.8067 1 0.8241 1 

1 
2 
3 

for study number four, 

I Model I MSE, 1 M s E ,  I MSE, I Rf2 1 
2.6879 2.4804 3.2176 0.4064 
1.2119 1.2113 1.3305 0.7391 
1.7344 1.6957 1.7514 0.5673 

4 
5 

0.6704 0.6831 0.7605 1 0.8511 
0.5742 0.5449 0.8724 I 0.8088 

for study number five, 

As can be seen from these tables, model 4 (a Taylor series 
out to second degree) produces the best fit in all studies, 

both with respect to initial fitting capability, R2, as well 
as in its predictive power, M S E p .  Model 2 is often better 

than models 1 and 3 as might be expected given the 
absence of the affine term in the latter. Model 5 does 
reduce the fitting errors in coilsequence of its much larger 
number of free parameters. However, the adjusted R2 
statistic shows that adding the cubic terms does not 
necessarily lead to a “better enough’’ model. 

5 Conciusion 

In this paper, we have described the first steps in a much 
longer program of collaborative research between the 
Xerox Wilson Research Center and the University of 
Michigan Controls Laboratory. Based on our experience 
so far, we believe that the modeling and control of color 
marking processes is an important and fruitful area of 
research in control applications. 

We have explored as well the validity of simple 
polynomial models of the xerographic dry marking 
process. While much more work is necessary in order to 
draw firm conclusions, the relative fitting and predictive 
power of the higher order polynomial models - even 
when they are “taxed” for their reliance on more 
parameters - suggests the presence of a strong process 
nonlinearity. We suspect, however, that a more structured 
nonlinear-in-parameters model arising from physical 
considerations - a nonlinear change of coordinates in the 
input space that has emerged from recent industrial 
research - might yield a more parsimonious and even 
more accurate I/O model. 

In this presentation, we have all but ignored the very real 
and important effects of uncontrolled perturbations, p in 
(2). on the experimental data and the limitations in 
modeling and control that they imply. Developing a 
theoretical framework and experimental methodology to 
account for the presence of noise in xerography is the 
focus of much of our present work in progress. 
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We have introduced a new coordinate system for dry ink 
tone reproduction within the framework of principal 
component analysis and have demonstrated its superior 
power of data reconstruction relative to present industry 
practice. This demonstration represents the principal 
contribution of the prescnt paper. 
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